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§1 Summary

Denote by u = (u1, u2)
T the unknowns. We consider the first order hyperbolic systems

(diagonalization) with initial-boundary values

{

Lu ≡ ut +Aux + Pu = f(x, t), (x, t) ∈ Q = {0 < x < X, 0 < t < T},

u = g(x, t) = (g1, g2)
T , on Γ− = (Γ−

1 ,Γ
−
2 ).

(1)

where

A =

(

a1 0

0 a2

)

, P =

(

p11 p12

p21 p22

)

.

Assume that p11, p22 ≥ C1 >> 1. Denote its two characteristic directions βi = (1, ai), i = 1, 2

and outer normal direction n = (n1, n2) on boundary. The signs of products βi · n play an

important role to determine the direction of boundary.

The boundary Γ of Q is divided into two parts Γ = Γ−
i + Γ+

i for ui, i = 1, 2:

∗This work was supporte by The National Natral Science Founation of China (No. 10471038)
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The inflow boundary Γ−
i (i.e. down bottom and left side) if βi · n = (β, n) < 0 on

which. The initial-boundary values gi are given on Γ−
i .

The outflow boundary Γ−
i (i.e. super bottom and right side) if βi · n > 0 on which.

The solution ui is determined in Q+ Γ+
i .

The division of the boundaries in the case a1 > 0, a2 < 0 is pictured in Fig.1-2.
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Fig. 1. Boundaries for a1 > 0. Fig. 2. Boundaries for a2 < 0.

We divide the domain Q = Ω × J = (0, X) × (0, T ) into finite number of uniform

rectangular elements K, whose semi-steplength of x, t-directions are h, k respectively(here

taking h = k). Denote its node points by

(xi, tj) = (2ih, 2jk), 0 ≤ i ≤ N, 0 ≤ j ≤M.

In an element K = Kij = {xi < x < xi+1, tj < t < tj+1}, its inflow boundary γ−l and outflow

boundary γ+
l can be defined similarly.

On the inflow boundary γ−i with an outer normal direction n, denote the right and left

limit values of ui on γ−i by

u±i (γ−i ) = lim
s→+0

ui(γ
−
i ± sβi · n), the jump [u] = u+ − u−.

On the boundary γ− = γ−1 ⊕ γ−2 (where βi · n < 0, i = 1, 2), we define the inner product and

the norm respectively by

< u, v >γ−=

∫

γ−

1

u1v
+
1 |β1 · n|dl +

∫

γ−

2

u2v
+
2 |β2 · n|dl, (2)

|u|γ− =
√

< u, u >γ− .

and bilinear form by

(Lu, v)K = (L1u1, v1)K + (L2u2, v2)K .
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Denote the piecewise discontinuous bi-n degree tensor product polynomial space by

Sh
g = {U : U ∈ Sh, U−

0 = gh on Γ−}, Sh = Sh
0 .

Which has (n + 1)2 − 1 freedoms in each K. Define the discrete initial-boundary values

gh = Phg(t) by n-degree (right or left) Radau’s interplant, which has error estimate

|g − gh|Γ0
≤ Chn+1|g|n+1,Γ0

.

We define the discontinuous finite element U ∈ Sh
g in K such that

BK(U, v) ≡ (LU, v)K+ < [U ], v+ >γ−= (f, v)K , v ∈ Sh. (3)

It is also satisfied by the solution u of (1) with jump [u] = 0. So the error e = u−U satisfies

the orthogonal relation

BK(e, v) = 0, v ∈ Sh. (4)

Assume that an interplant uI ∈ Sh of u is constructed, denote

e = u− U = u− uI − (U − uI) = R− θ,

then θ = U − uI ∈ Sh
0 satisfies another equality

BK(θ, v) = BK(R, v), v ∈ Sh. (5)

Taking v = θ and noting

−(v+
j )2 + 2(v+

j − v−j )v+
j = (v+

j − v−j )2 − (v−j )2, v0 = 0,

In section 5, we shall derive a basic error inequality

1

2
(|θ−|2Γ+ +

∑

K

|[θ]|2γ−) + ||θ||2Q ≤ BQ(θ, θ) ≤ |BQ(R, θ)|. (6)

However, as the bilinear form B(R, v) is not symmetrical, how to estimate is an

essential difficulty, which greatly depends on choice of comparison function uI ;

The optimal order convergence have not been obtained. The discontinuous finite elements

are studied as follows:

1. L.Saint-P. Raviart(1974) solved the neutron transport equation, only convergence

order O(hn).

2. C.Johnson-J.Pitkaranta(1984) solved a scalar hyperbolic equation by time-space dis-

continuous finite elements, convergence order is less one half order,

|e−|Γ+ + ||e||Q ≤ Chn+1/2||u||n+1,Q.

They pointed out that this is optimal if u ∈ Hn+1(Q).
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3. B.Cockburn and C.W.Shu (1989) proposed TVB-LDG to solve first order nonlinear

hyperbolic system, i.e. use the discontinuous finite elements in space and the implicit Runge-

Kutta scheme in time. A series of the important results are obtained by them.

4. For a scalar equation, we have used a special Radau orthogonal expansion to construct

a comparison function uI , and proved that R = u− uI has a high order weak estimate

|B(R, v)| ≤ Chn+p||u||n+p+1||v||, p ≥ 1. (7)

It leads to following error estimate

|θ−|Γ + ||θ||Q ≤ Chn+p, p ≥ 1.

So the optimal convergence (p = 1 for n ≥ 0) and superconvegrnce (p = 2 for n ≥ 1)

are derived.(My talk in First China-Germany Conference on Computational and Applied

Mathematics. Berlin. Sept.5-10,2005).

In this talk, we discuss the hyperbolic system and got the main results as follows.

Theorem 1. Assume that rectangular subdivision is quasiuniform , then time-space

bi-n degree discontinuous finite element U has full order error estimate

||u− U ||Γ+ + ||(u− U)(t)||Q ≤ C(T, u)hn+1, n ≥ 0. (8)

where the constant

C(T, u) = C(T )(|g|n+1,Γ− + ||u||n+2,Q).

Take a n + 1 order Radau point z with relatively fixed place in each element K and

define a discrete norm

||e||l2(Q) = {
∑

z∈Q

|e(z)|2h2}1/2.

Theorem 2. Assume that rectangular mesh is uniform and a1 > 0, a2 > 0, then bi-n

degree discontinuous finite element U has superconvergence on n + 1 order right Radau’s

product point zK in each element K,

||e||l2(Q) ≤ Chn+2||u||n+3,Q, n = 1, 2.

If a1 > 0, a2 < 0 are opposite, then on a common side of left-right (or upper-lower) adjacent

elements K and K ′, both U1 and U2 have superconvergence at n + 1 order right Radau

product points z, as left (or lower) limit value for U1 in this element, and as right (or upper)

limit value for U2 in an adjacent element. In particular, they always have superconvergence

at right-upper angular points.

(Superconvergence also holds at Radau’s points on one-dimensional lines).
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§2 Element Orthogonal Expansion and Error Decomposition

Make transform x = sh, s ∈ E = {−1 < s < 1} in a standard element τ = (−h, h). For

smooth function u(x) = u(hs) = u(s) and its parameter variable s, we have differentiating

law, ∂i
su(s) = Dx

i u(x)h
i = O(hi).

Using Legendre orthogonal polynomial in E

l0 = 1, l1(s) = s, l2(s) = (3s2 − 1)/3, ..., lj(s) = ∂j
s(s

2 − 1)j/(2jj!),

lj(s) ⊥ Pj−1(s), j > 0, lj(±1) = (−1)j ,

we expand any function u(s) in the form

u(s) =

∞
∑

j=0

aj lj(s), aj = (j + 1/2)(u, lj), (9)

its Fourier coefficient has estimate, by integration by parts in i ≤ j times,

aj = (j + 1/2)γj(−1)i(∂i
su, ∂

j−i(s2 − 1)j) = O(hi), i ≤ j. (10)

Define n-degree part sum un =
∑n

j=0 aj lj(s), its remainder R∗ is orthogonal to any n-degree

polynomials

R∗ = u− un =

∞
∑

j=n+1

aj lj(s) = an+1lj(s) + .... ⊥ Pn(s).

and can be estimated by Bramble-Hilbert lemma,

||R∗||0,p,τ ≤ Chn+1+(1/p−1/2)||u||n+1,τ , 1 ≤ p ≤ ∞.

Now we define the new bases

φ0 = 1, φ1 = l1 − l0, ..., φj = lj(s) − lj−1(s) ⊥ Pj−2(s). (11)

Obviously φj(1) = 0, φj(−1) = 2(−1)j , j > 0. Assume that

u(s) =
∞
∑

j=0

bjφj(s), uI(s) = P su =
n
∑

j=0

bjφi(s),

where P s is a projection operator from L2(τ) to Pn. Using the expression of φj we rewrite

u(t) = (b0 − b1)l0 + (b1 − b2)l1 + ....

Comparing its Legendre’s expansion, bj can be expressed as a series (to be estimated by

Bramble-Hilbert lemma)

bj = aj + bj+1 = aj + aj+1 + aj+2 + ... = O(hj)|Dju|.
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The roots sj of φn+1(s) = 0 called n+ 1-order (right) Radau’s points Z. Denote an operator

Gs = I − P s, the remainder R = Gsu has four important properties:

1. R = Gsu =
∞
∑

j=n+1

bjφj(t) ⊥ Pn−1,

2. ||R||τ ≤ Chn+1||u||n+1,τ , |R(s)| ≤ Chn+1−1/2||u||n+1,τ ,

3. R(1) = 0,

R(−1) = 2(−1)n+1(bn+1 − bn+2 + ....) = O(hn+1),

4. |R(sj)| ≤ |bn+2φn+2(sj) + ...| ≤ Chn+2−1/2||u||n+2,τ .

On n+ 1-order Radau’s point-set Z, there is superconvergence in discrete norm

||R(Z)||∗K = {
1

n+ 1

n
∑

j=0

|R(sj)|
2h}1/2 ≤ Chn+2||u||n+2,K .

Table 1. Roots sj of basis φn+1(s) = ln+1(s) − ln(s).

n sj

1 1 , -1/3

2 1, 0.28989 79485 5664, -0.68989 79485 5663

3 1 , 0.57531 89235 2169, -0.18106 62711 1853, -0.82282 40809 7459

4 1 , 0.72048 02713 12438, 0.16718 08647 3783,

-0.44631 39727 2375, -0.88579 16077 7097

In a rectangular element K = {−h < x, t < h}, we can construct similarly bi-n degree

tensor product Radau orthogonal projection uI = P t ⊗ P xu, whose error has the important

tensor product decomposition (see Douglas-Dupont-Wheeler(1974) in an elliptic finite element

case)

R(sh, yh) = R(x, t) = (I − P t
k ⊗ P x

h )u = Gtu+Gxu−Gt ⊗Gxu,

where

Gtu = (I − P t)u ⊥ Pn−1(t), Gxu = (I − P x)u ⊥ Pn−1(x), (12)

GtGxu = Gt ⊗Gxu ⊥ Pn−1(t) ⊗ Pn−1(x).

Note that GtGxu is high order small quantity(dependent on smoothness of u)

||GtGxu||0,τ ≤ Chm||u||m,τ , n+ 1 ≤ m ≤ 2n+ 2.

Therefore the main part of the tensor product errors is a sum of the error in t and the error

in x, this is very important property. Especially R(1, 1) = 0 and

Gsu(1, y) = 0, R(1, y) = Gyu(1, y) at s = 1;

Gyu(s, 1) = 0, R(s, 1) = Gsu(s, 1) at y = 1. (13)
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Note that R = O(hn+1) on sides does’nt disappear, this is a new difficulty in multiple case.

Gtu,Gxu can be differentiated with respect to another variable and same orthogonality is

reserved with the following laws (very important !),

DxG
tu = Gsux ⊥ Pn−1(t), DtG

xu = Gxut ⊥ Pn−1(x). (14)

Finally, on n+ 1-order Radau point-set Z : (si, yj), i, j = 0, 1, ..., n, the remainder has high

order accuracy

R(Z) = O(hn+2−2/p)||u||n+2,p,K , ||R(Z)||∗K = O(hn+2)||u||n+2,K . (15)

Later we denote the norm by Mn = ||u||n,2,K in element K. Noting an element area

mes(K) = O(h2) and two dimensional embedding theorem W 1,2 ↪→ Lp, p >> 1, we can

always understand approximately Mn = Ch||u||n,∞,K ∼ Ch||u||n+1,2,Q if u ∈Wn+1,2(Q).

§3 Convergence Analysis for A Scalar Equation

Denote a conjugate operator of L by L∗v = −vt − (av)x + bv, a > 0, b >> 0. We get

conjugate equality by integration by parts,

BK(R, v) =< R−, v− >γ+ + < R−, v+ >γ− +(R,L∗v)K . (16)

Proof of Theorem 1. Taking tensor product uI = Ph ⊗ Pku ∈ Sh
g as a comparison

function, its error has the following tensor product decomposition

R = u− uI = Gxu+Gtu−GxGtu,

Note that Gtu = GtGxu = 0 on line t = tj − 0, and Gxu is continuous with respect to t.

Using the orthogonality Gtu ⊥ vt and integration by parts twice, we have

(Rt, v)K− < R+ −R−, v+ >γ−

=< R−, v− >γ+ + < R+, v+ >γ− − < R+ −R−, v+ >γ− −(R, vt)K

=< R−, v− >γ+ + < R−, v+ >γ− −(Gxu, vt)K

=< Gxu, v− >γ+ + < Gxu, v+ >γ− −(Gxu, vt)K = (Gxut, v)K .

In general, we can derive the followingbasic equality

BK(R, v) = (Gxut + aGtux + qR, v)K = lK(v), (17)

where the linear functional lk(v) in L2 has an important estimate

|lK(v)| ≤ Chn+1||u||n+2,K ||v||,K ≤ ε||v||2K + Ch2n+2||u||2n+2,K ,
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where ε > 0 is suitably small. By (7), cancelling a term ||v||2K on the right side and summing

over K, we get an estimate of η = U − uI

|η−|2Γ +
∑

K

|[η]|2γ−
+ ||η||2Q ≤ Ch2n+2||u||2n+2. (18)

Finally using a given estimate of R = u− uI , the theorem 1 follows.

§4 Element Orthogonality Correction for a Scalar Equation

Proof of Theorem 2. Use orthogonality correction technique proposed by author

(1997) to treat B(R, v), i.e. decompose

Sh = S0 + S′h, S0 = span{φ00},

S′h = span{φij = φi(t)φj(x), (i, j) ∈ I∗n},

I∗n = {(i, j) : 0 ≤ i, j ≤ n, i+ j > 0},

and hope to construct a correction function in element K

w =
∑

(p,q)∈I∗

m

b∗pqφpq(t, x) ∈ S′h, w(1, 1) = 0,

such that there is approximately orthogonal estimate

|BK(R − w, v)| ≤ Chn+p||u||n+1+p,K ||v||K , p ≥ 2, v ∈ S′h. (19)

By orthogonal relation B(u − uh, v) = 0, so θ = uh − uI − w ∈ Sh will satisfies a new

equality

BK(θ, v) = BK(R − w, v) = lK(v) −BK(w, v) = rK(v), v ∈ Sh. (20)

Taking v = θ ∈ S′h, by (20) we have a general estimate

|θ−|2γ+ − |θ−|2γ− + |[θ]|2γ− + ||θ||2K ≤ 2|rK(θ)|. (21)

If we define w such that B(w, v′) = l(v′), which cannot be solved independently in K,

because B(w, v) includes a limit value w− in former elements. Now we change its definition,

i.e. replace w− on former element K ′ by w−(γ+) in this element K,

B′
K(w, v) = (Lw, v)K− < w+ − w−(γ+), v+ >γ−

= (w,L∗v)K+ < w−, v− − v+(γ−) >γ+ ,

which is only dependent in K. So

BK(u, v) = B′
K(u, v) +B0

K(u, v), B0
K(w, v) =< w−(γ+) − w−, v+ >γ− .
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1. Now we decompose v = v0 +v′ and construct w ∈ S′ in K satisfying a new equation

B′
K(w, v′) = BK(R, v) = lK(v′), v′ ∈ S′h, w−

0 = 0. (22)

Taking v′ = w, then the correction function w has the following energy estimate

|w−(γ+) − w+|2γ− + 2||w||2K ≤ 2|lK(w)|. (23)

If w is already defined by (22), and noting l(v0) = 0, then right side in (20) is simplified

to the form

rK(v) = l(v) −B(w, v) = −(w, pv0)K− < w−(γ+) − w−, v+ >γ− . (24)

For w constructed above, we shall prove that rK(v) is of high order small

|rK(v)| ≤ Chn+2Mn+3||v
′||K , n ≥ 1. (25)

Here the most difficulty is to estimate the second term in (24), the measure of γ has only

O(h), but one requires the translation quantity

|w−(γ+) − w−|γ− ≤ Chn+2+1/2Mn+3.

2. To estimate w in K is still difficult. Take new trial functions

φij = φi(t)φj(x), φ(1, 1) = 0,

φ0(t) = 1, φ1(t) = t− 1, φj(t) = Mj(t) = ∂j−2
t (t2 − 1)j−1, j ≥ 2.

Their derivatives have better orthogonality. Taking the correction function

w =
∑

i,j≤n,i+j>0

bijφij , w(1, 1) = 0, b′ = {bij , i+ j > 0}.

where b contains (n+ 1)2 − 1 = n2 + 2n parameters. Obviously,

w− = w(1, x) =

n
∑

j=1

b0jφj(x) = g(x),

w+ = w(−1, x) = g(x) + 2
n
∑

j=0

b1jφj(x),

So their difference can be simply expressed by b1j ,

η = w− − w+ = w(1, x) − w(−1, x) = 2

n
∑

j=0

b1jφj(x),

i.e. the boundary estimate (22) contains 2n+ 1 coefficients

b∗ = {b10, b01, b11, b12, b21, ..., b1n, bn1} ⊂ b′.
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Note that the boundary norm |w|γ− ≈ |b∗|h1/2(Equivalence), and the element norm ||w||K ≈

|b′|h. By (23), we have

|b∗|2h+ |b′|2h2 ≤ Chn+1Mn+2||v
′||K ≤ Chn+1Mn+2|b

′|h1/2.

If n = 1, three parameters b∗ = {b01, b10, b11} = b′ are all of coefficients, and it leads to

|b∗| ≤ Ch2M3 = O(h3), ||w||K ≤ |b∗|h ≤ Ch3M3, |w−
j+1|γ ≤ Ch2+1/2M3.

To improve the estimate of the difference δ = w(K ′) − w(K), we use a translation

techniques in two adjacent elements K and K ′. By (22), δ satisfies

BK(δ, v′) = lK′(v′) − lK(v′) = O(hn+2)Mn+3,K+K′ ||v′||K ,

So we get a high order estimate

|δ|2γ− + ||δ||2K ≤ Chn+2M2
n+3||δ||K ,

When n = 1, we get

| < w−(γ+) − w−, v′ >γ− | ≤ C|δ|γ− |v′|γ− ≤ Ch3M4||v
′||K .

Therefore theorem 2 for n = 1 is proved.

3. But when n ≥ 2, the techniques is not enough. At this time, b∗ is only a part of b′.

To estimate other coefficients b̄, we have to choose other ways. Assume that, for simplicity of

analysis, p = 0, so the equation (22) becomes a linear system of equations

Mb′ = r, r = O(hn+1)Mn+2,

where the matrix M is independent of h. Below we shall prove that its homogenous system

Mb′ = 0 has only zero solution. By the theory of linear system, the inverse M−1 exists

and then b′ = M−1r = O(hn+1)Mn+2. By a translation we also get b′(K) − b′(K ′) =

O(hn+2)Mn+3. The theorem 2 will be proved.

In fact, by energy estimate (23), it is known that b∗ = 0. It remains to prove b̄ = 0. We

take new test functions

ψij = li(t)lj(x) − 1, ψij(1, 1) = 0, i+ j > 0.

Due to B(R, 1) = 0, we can take off the constant 1 in ψij . Obviously, ψij = li(t)lj(t) have

the best orthogonality.

When n = 2, it remains to analyze w = a02φ02 + a20φ20 + a22φ22. Taking v = t, x, tl2(x)

(or l2(t)x) in (22), we get three equations b22 = 3b20, b22 = 3b02, b22 = 0 respectively, i.e.

b02 = b20 = b22 = 0. So the theorem 2 holds for n = 2. Similarly the case n = 3 is also

studied concretely.
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Finally, if a > 0, p > 0 are variable coefficients, taking a0 = a(z) at a point z ∈ K and

a−a0 = O(h), the corresponding linear system is written in the form Mb′ = hM ′b′+r, where

the matrix M is independent of h and M ′ is bounded. By above arguments, we get a new

linear system b′ = hM−1M ′b′ +M−1r. For h suitably small, using a contract mapping leads

to |b′| ≤ C|r| ≤ Chn+1Mn+2. Other arguments above are still valid.

We hope that more general argument can be proposed.

§5 The Linear System with Variable Coefficients

First consider the case of a1 > 0, a2 > 0, its proof is almost same with single equation.

Make bi-n degree right Radau projections for u = (u1, u2)
T and its remainder R = u− uI =

(R1, R2)
T . We have the expression (without linear integrals)

BK(R, v) =

∫

K

{(Gxut +AGtux + (Gxu−GxGtu)(Axv − (A−A0)vx) + PRv}dxdt,

and then

BK(θ, v) = BK(R, v) ≤ Chm+1||u||m+2,K ||v||K .

On the other hand, taking v = θ, the energy on the left has

BK(v, v) =
1

2
(|v−|2γ+ + |[v]|2γ− − |v−|2γ−) + ((P −Ax/2)v, v)K ,

Summing over all elements K and noting v− = θ− = 0 on Γ−, we have

BQ(v, v) =
1

2
(|v|2Γ+ +

∑

K⊂Q

|[v]|2γ−) + ((P −Ax/2)v, v)Q,

Denote c0 = maxQ(|p12|, |p21|). Always assume p11, p22 ≥ C1 > 1 + c0. So

BQ(v, v) ≥
1

2
(||v||2Γ+ +

∑

γ−⊂K

||[v]||2γ− + 2C1||v||
2
Q − 2c0||v1||Q||v2||Q).

or

||v||2Γ+ +
∑

K

||[v]||2γ− + 2||v||2Q ≤ 2B(v, v) = 2B(R, v) ≤ Chn+1||u||n+2,Q||v||Q.

By Young’s inequality, cancel ||v||Q on the right side and get the error estimate

||θ||2Γ+ +
∑

K

||[θ]||2γ− + ||θ||2Q ≤ Ch2n+2||u||2n+2,Q. (26)

Finally the theorem 1 directly follows from estimate ||R||.

Besides, we consider a1 > 0, a2 < 0. At this time, the characteristic β2 = (1, a2)

and the inflow boundary γ−2 for u2 are changed (see Fig. 2). In the analysis, a left Radau

approximation u2,I for u2 should be constructed. In the computation, the corresponding

linear system of equations for U1, U2 should be solved simultaneously in a row elements. But

its theoretical analysis is not essentially changed, the theorem 1 still holds.
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Superconvergence. Assume that rectangular mesh is uniform and a1 > 0, a2 > 0. The

key of proof is that for each equation, its main part Liu = Dtui + aiDxui is same with single

equation. So we can construct the correction function W = (W1,W2)
T and get the linear

system in the form

((

M1 0

0 M2

)

+ h

(

M11 M12

M21 M22

))(

W1

W2

)

=

(

r1

r2

)

.

where the matrices M1,M2 are independent of h, whose inverse M−1
1 ,M−1

2 exist and Mij are

bounded. The corresponding linear system can be rewritten in the form

W1 = A−1
1 (−A11hW1 −A12hW2 + r1),

W2 = A−1
2 (−A21hW1 −A22hW2 + r2).

By a contract map and translation techniques, it leads to

W = O(hn+1)||u||n+2,K , W (K) −W (K ′) = O(hn+2)||u||n+3,K+K′ .

So superconvergence can be still proved.

The proof for a1 > 0, a2 < 0 is similar. But now, superconvergence structures change.

U1 has still n + 1 order right Radau product points, but U2 has the product points of right

Radau points (for t) and left Radau points (for x). At this case, in a same element, U1

and U2 have not a common superconvergence point. But in fact, on the common side in two

left-right (or upper-lower) adjacent elements, at n+1 order right Radau points, both U1 as a

left (or lower) limit and U2 as a right (or upper) limit have superconvergence. In particular,

two angular points on the upper side of K are always common superconvergence points.

Remark. We find in surprise in numerical experiments that bi-n ≥ 2 degree discontin-

uous finite elements have ultraconvergence O(hn+2+1/2) at the right-upper angular points in

each element. This wonderful phenomenon will be discussed in another paper.

§6 Numerical Experiments

Subdivide a square Q = [0, 1]× [0, 1] into the N ×N uniform rectangular elements and

use bi-quadratic elements. Take third order Radau point z with relatively fixed place in each

element K and define a discrete norm in l2(Q) by

||e||l2(Q) = {
∑

z∈Q

|e(z)|2h2}1/2.

1. Two positive characteristic directions.

{

ut + (1 + x+ 2t)ux + v = f1, u(x, 0) = 0, u(0, t) = 0,

vt + (1 + 2x+ 3t)vx + 2u = f2, v(x, 0) = 0, v(0, t) = 0.
(27)
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Figure 1. The error surfaces in an element(left for u, right for v) on 4 × 4 meshes.

Take an exact solution (x, t) = sin(x)(et − 1), v(x, t) = (ex − 1)(cos(t) − 1). The boundary

values given on the left boundary and the computation can be completed in each element

from the left to the right. The average quadratic root error at the right-upper or left-lower

angular points in all elements are listed in table 2. We see that these errors at the left-lower

angular points( inflow points) have convergence O(h3), whereas they have superconveregcne

about O(h4.5) at the right-upper angular points(outflow points).

Table 2. The errors and their ratio for two positive characteristics

N u(right-upper) v(right-upper) u(left-lower) v(left-lower)

4 2.939e-6 7.819e-6(30.834) 1.458e-4 3.737e-5

8 1.052e-7( 28.0) 2.310e-7( 33.8) 1.945e-5(7.50) 5.377e-6( 6.95)

16 4.155e-9(25.3) 7.186e-9( 32.2 ) 2.476e-6(7.86) 7.182e-7(7.49)

32 1.739e-10 ( 23.9 ) 2.374e-10(30.3 ) 3.112e-7(7.95) 9.321e-8(7.71)

64 7.494e-12( 23.2 ) 8.390e-12( 28.3 ) 3.898e-8(7.98 ) 1.189e-8(7.84)

2. Two characteristics have opposite signs

{

ut + (1 + x+ 2t)ux + v = f1, u(x, 0) = 0, u(0, t) = 0,

vt − (2 + x+ t)vx + 3u = f2, v(x, 0) = 0, v(1, t) = 0.
(28)

take the exact solution u(x, t) = sin(x)(et − 1), v(x, t) = sin(t)(ex − e). From the table 3, we

see that U at left-lower angular points and V at right-upper angular points have convergence

order O(h3), whereas U at right-upper angular points and V at left-lower angular points have

superconvergence about O(h4.5).

Table 3. The errors and their ratio for two opposite characteristics

13
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Figure 2. The error surfaces in an element(left for u,right for v) on 4 × 4 meshes.

N u(right-upper) v(left-upper) u(left-lower) v(right-lower)

4 3.479e-6 8.876e-6 1.456e-4 2.142e-4

8 1.303e-7 (26.7 ) 5.905e-7(15.0) 1.952e-5 (7.46 ) 2.779e-5(7.71)

16 5.403e-9(24.1 ) 3.843e-8(15.4 ) 2.483e-6(7.86) 3.491e-6( 7.96)

32 2.401e-10( 22.5) 2.456e-9(15.7) 3.118e-7(7.96 ) 4.3591e-7(8.01)

64 1.129e-11(21.3) 1.553e-10(15.8) 3.902e-8(7.99) 5.441e-8( 8.01)
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