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Abstract. Finite element approximations based on a penalty formulation of
the elliptic obstacle problem are analyzed in the maximum norm. A poste-
riori error estimates, which involve a residual of the approximation and a
spatially variable penalty parameter, are derived in the cases of both smooth
and rough obstacles. An adaptive algorithm is suggested and implemented in
one dimension.

1. Introduction

We consider finite element approximations of the obstacle problem

(1.1)
−∆u(x) + β(u(x)− ψ(x)) 3 f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where ψ and f are given functions with ψ ≤ 0 on ∂Ω, and where β is the maximal
monotone graph defined by

(1.2) β(s) =



{0}, s > 0,
(−∞, 0], s = 0,
∅, s < 0.

Our analysis and our finite element method are based on the following penalized
(or regularized) form of (1.1): find uε such that

(1.3)
−∆uε(x) + ε(x)−1(uε(x)− ψ(x))− = f(x), x ∈ Ω,

uε(x) = 0, x ∈ ∂Ω,

where ε = ε(x) is a positive function on Ω and s− = min{0, s}. This can also be
written

(1.4)
−∆uε + βε(uε − ψ) = f, in Ω,

uε = 0, in ∂Ω,
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where βε is an approximation of β defined by

(1.5) βε(s) =

{
0, s ≥ 0,
s/ε, s ≤ 0.

The weak formulation of (1.4) reads

(1.6) uε ∈ H1
0 (Ω) : (∇uε,∇v) + (βε(uε − ψ), v) = (f, v), ∀v ∈ H1

0 (Ω).

Our finite element method is based on discretizing (1.6). Let T = {K} be a
member of a regular family of partitions of Ω into simplices K and let Vh ⊂ H1

0 (Ω)
be the space of continuous piecewise polynomials of degree < r (r ≥ 2) with respect
to the mesh T . Our finite element problem is:

(1.7) Uε ∈ Vh : (∇Uε,∇χ) + (βε(Uε − ψ), χ) = (f, χ), ∀χ ∈ Vh.
Detailed assumptions about the domain Ω, the mesh T , the penalty function ε, and
the data f and ψ are stated in Section 2 below.

The obstacle problem is often considered as a prototype for a class of problems
that involve free boundaries, modelling many phenomena such as phase transitions,
jet flow, and gas expansion in a porous medium; see Friedman [8]. Thus this is a
natural beginning problem to consider when extending the rapidly growing body
of research on a posteriori error estimates for adaptive finite element algorithms.
There are already several papers on this subject; see Ainsworth et al. [1], Hoppe
and Kornhuber [12], Kornhuber [15], [16], [17], Johnson [13], Chen and Nochetto
[3], Nochetto, Siebert, and Veeser [22], and Veeser [25]. We note also the related
work by Nochetto, Paolini, and Verdi [21] on the Stefan problem.

The a posteriori estimate that we provide is based on the splitting

Uε − u = (Uε − uε) + (uε − u),
where the first term is the discretization error and the second is the penalty error.

We have chosen to conduct our analysis using the penalty formulation (1.4).
This approach is motivated both by the partial differential equations analysis (see
Friedman [8]) and by the desire to regularize the original non-smooth problem
before computation. Finite element error analysis in the penalty formulation was
first done by Scholz [23], who provided an a priori estimate in the energy norm
using constant ε. Johnson [13] proved an a posteriori estimate in the energy norm
and introduced the possibility of letting ε vary with x. Due to the monotonicity of
the nonlinearity, the results obtained in the energy norm are essentially the same
as for the corresponding linear problem. However, the standard Aubin-Nitsche
duality argument does not go through here, because the linearized adjoint problem
lacks the required regularity in L2. Thus one does not obtain the usual rates of
convergence that would be expected in the L2-norm.

The aim of the present work is twofold. We first exploit the fact that the lin-
earized adjoint problem does essentially have the necessary smoothing property in
L1, leading by duality to an error bound in the maximum norm. This bound is of
the form

‖Uε − uε‖L∞(Ω) ≤ C| log hmax| ‖h2R∞‖L∞(Ω),

where h is the piecewise constant mesh function defined by h|K = diam(K) and R∞
is a computable function derived from the residual R = −∆Uε + βε(Uε − ψ)− f ∈
H−1(Ω) of the computed solution; see Theorem 3.4.
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The second important feature of the present work is that we allow the penalty
parameter ε to vary with x. Our result for the penalty error in the case of a smooth
obstacle function, ψ ∈W 2

∞(Ω), is

‖u− uε‖L∞(Ω) ≤ ‖ε(f + ∆ψ)‖L∞(Ω̂),

where Ω̂ = {x ∈ Ω : u(x) − ψ(x) = 0, uε(x) − ψ(x) ≤ 0} is the “contact set”; see
Lemma 4.1. We also consider the case of a rough obstacle where ψ is merely Hölder
continuous, but the resulting estimate is more involved; see Lemma 5.3.

The time-dependent obstacle problem is analyzed in a similar way by Boman [2].
For a posteriori error estimates in the maximum norm for linear elliptic problems
we refer to Eriksson [6], Nochetto [20], and Dari, Durán, and Padra [4].

This paper is organized as follows. In Section 2 we state our assumptions on
the continuous problem (1.1) and the finite element method and we introduce some
notation. In Section 3 we provide the a posteriori estimate of the discretization
error. In Section 4 we analyze the penalty error in the case of a smooth obstacle.
Section 5 is devoted to the case of a rough obstacle. Finally in Section 6 we
present the results of our numerical experiments with an adaptive algorithm in one
dimension.

2. Notation and assumptions

We assume that Ω ⊂ Rd, d = 1, 2, 3, is a bounded polyhedral domain. Let ω ⊂ Ω
with |ω| = meas(ω) and write

(u, v)ω =
∫
ω

uv dx, (u, v) = (u, v)Ω.

We use the standard Lebesgue spaces Lp(ω) with the convention that Lp = Lp(Ω),
and the corresponding Sobolev spaces W k

p (ω), W k
p = W k

p (Ω), Hk = W k
2 . For

k = 1, 2 we let W̊ k
p = {v ∈ W k

p : v|∂Ω = 0} with dual space W−k
p and H1

0 = W̊ 1
2

with dual space H−1. Moreover, for f ∈ (Lp)d and v ∈ W k
p we write

(2.2) ‖f‖Lp =

(
d∑
i=1

‖fi‖pLp

)1/p

, ‖Dkv‖Lp =

( ∑
|α|=k

‖Dαv‖pLp

)1/p

.

Then ‖Dkv‖Lp is equivalent to the standard norm in W̊ k
p and we define the dual

norm

(2.3) ‖f‖W−k
p

= sup
v∈W̊k

p′

|〈f, v〉|
‖Dkv‖Lp′

,

where 〈f, v〉 is the duality pairing, and p, p′ are dual exponents, 1
p + 1

p′ = 1.
We assume further that Ω has the property that there are constants C and

p∗ ∈ (1, 2] such that

(2.4) ‖D2v‖Lp ≤
C

p− 1
‖∆v‖Lp , ∀v ∈ W̊ 2

p , 1 < p ≤ p∗.

This holds with p∗ = 2 if Ω is bounded and convex. To see this, let v = Tf be the
solution of the Dirichlet problem −∆v = f in Ω, v = 0 on ∂Ω, and let D2

ij denote
a partial derivative of second order. It is well known [10] that the operator D2

ijT is
bounded on L2, i.e., it is strong type (2,2); this is the case p = 2 of (2.4). Moreover,
D2
ijT is weak type (1,1); this is an unpublished result of Dahlberg, Verchota, and
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Wolff, but a proof can be found in [9] and a generalization in [7]. An application
of the Marcinkiewicz interpolation theorem now yields (2.4). The inequality (2.4)
also holds if ∂Ω is smooth by the Calderón-Zygmund theory of singular integrals.

It is plausible that (2.4) is true even for nonconvex polyhedral domains for some
p∗ near 1, because the regularity implied by it then holds for p < 4/3; see [5], [10],
[11], [18]; however, we do not know if the constant behaves like (p−1)−1 as p→ 1 in
this case. Related estimates are derived in [4], [20] for general polyhedral domains
under the additional assumption that ∆v has a small support. We formulate (2.4)
as an assumption rather than a statement about convex domains, because we do
not want to rule out this possibility; in any case we are not primarily interested in
dealing with corner singularities in this work.

We further assume that the data satisfy f ∈ L∞(Ω) and ψ ∈ H1(Ω) ∩ Cα(Ω̄)
is Hölder continuous with some exponent α ∈ (0, 1) and also ψ ≤ 0 on ∂Ω. Then
(1.1) has a unique bounded weak solution u ∈ H1

0 (Ω)∩L∞(Ω), which is also Hölder
continuous, perhaps with a different exponent α. In our theorems below we make
additional regularity assumptions about ψ.

Let F = {T } denote a regular family of partitions T = {K} of Ω into simplices
K with diameters hK , i.e., there is C0 > 0 such that, for all T ∈ F ,

(2.5) max
K∈T

hK
ρK
≤ C0,

where ρK denotes the radius of the largest ball contained in K̄. Let ε ∈ C(Ω̄) be a
positive function and set

hmin = min
K∈T

hK , hmax = max
K∈T

hK , εmin = min
x∈Ω̄

ε(x), εmax = max
x∈Ω̄

ε(x).

We also define for each T ∈ F a piecewise constant mesh function h = h(x) by
h|K = hK . We assume that there are constants γ ≥ 1 and C1 > 0 such that, for all
T ∈ F ,

(2.7) hmin ≥ C1h
γ
max, εmin ≥ C1h

γ
max.

Let r ≥ 2 be an integer and for each T ∈ F let Vh ⊂ H1
0 (Ω) be the space of

continuous piecewise polynomials of degree < r with respect to the mesh T .
Under these assumptions it follows that problems (1.6) and (1.7) have unique

solutions uε and Uε, respectively.

3. The Discretization Error

In this section we compare the solutions uε and Uε. We first define the errors

e = Uε − uε, eβ = βε(Uε − ψ)− βε(uε − ψ),

and the residual R = −∆Uε + βε(Uε − ψ)− f ∈ H−1, i.e.,

(3.2) 〈R, v〉 = (∇Uε,∇v) + (βε(Uε − ψ), v)− (f, v), ∀v ∈ H1
0 ,

where 〈·, ·〉 denotes the duality between H1
0 and H−1. In view of (1.6) we thus have

(3.3) e ∈ H1
0 : (∇e,∇v) + (eβ , v) = 〈R, v〉, ∀v ∈ H1

0 ,

and (1.7) means that R is orthogonal to Vh, i.e.,

(3.4) 〈R,χ〉 = 0, ∀χ ∈ Vh.
As a consequence of this orthogonality we have the following a posteriori bound of
the residual with respect to the dual norms (2.3).
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Lemma 3.1. For each p ∈ [1,∞] and l = 1, 2 there is a constant C such that,

|〈R, v〉| ≤ C‖hlRp‖Lp‖Dlv‖Lp′ , ∀v ∈ W̊ l
p′ ,

where the functions h = h(x) and Rp = Rp(x) are defined piecewise by

(3.6)
h|K = hK ,

Rp|K = | −∆Uε + βε(Uε − ψ)− f |+ h
−1/p′

K |K|−1/p‖[∂nUε]‖Lp(∂K\∂Ω).

Here [∂nUε] is the jump across ∂K in the exterior normal derivative ∂nUε = n·∇Uε.

Proof. Write βε = βε(Uε − ψ). Elementwise integration by parts in (3.2) gives

〈R, v〉 =
∑
K

(
(∇Uε,∇v)K + (βε − f, v)K

)

=
∑
K

(
(−∆Uε + βε − f, v)K + (∂nUε, v)∂K

)

=
∑
K

(
(−∆Uε + βε − f, v)K − 1

2 ([∂nUε], v)∂K\∂Ω

)
, ∀v ∈ H1

0 .

(3.7)

The orthogonality (3.4) implies that 〈R, v〉 = 〈R, v − χ〉 for any χ ∈ Vh, so that

|〈R, v〉| ≤
∑
K

(
‖ −∆Uε + βε − f‖Lp(K)‖v − χ‖Lp′(K)

+ 1
2‖[∂nUε]‖Lp(∂K\∂Ω)‖v − χ‖Lp′(∂K)

)
.

(3.8)

We choose χ = Πv, where Π : H1
0 → Vh is an interpolation operator such that

(3.9) ‖Dm(v −Πv)‖Lp′(K) ≤ Chl−mK ‖Dlv‖Lp′(SK), m = 0, 1, l = 1, 2,

where SK is the union of all simplices adjacent to K; see [24]. Using also the
(scaled) trace inequality

(3.10) ‖w‖Lp′(∂K) ≤ C
(
h
−1/p′

K ‖w‖Lp′(K) + h
1−1/p′

K ‖Dw‖Lp′(K)

)
,

we obtain
‖v −Πv‖Lp′(∂K) ≤ Chl−1/p′

K ‖Dlv‖Lp′(SK), l = 1, 2.

Hence

|〈R, v〉| ≤ C
∑
K

hlK

(
‖ −∆Uε + βε − f‖Lp(K)

+ h
−1/p′

K ‖[∂nUε]‖Lp(∂K\∂Ω)

)
‖Dlv‖Lp′(SK)

≤ C‖hlRp‖Lp‖Dlv‖Lp′ ,

(3.12)

where the constant depends only on the constants in (3.9) and (3.10), which in turn
depend only on the constant in (2.5). �

As a result of the inequality

(3.13) (s− − t−)(s− t) ≥ (s− − t−)2, ∀s, t ∈ R,

we have

(3.14)
(
βε(v − ψ)− βε(w − ψ), v − w

)
≥ ‖ε1/2(βε(v − ψ)− βε(w − ψ))‖2L2

.
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Taking v = e in (3.3) we immediately conclude from (3.14) and Lemma 3.1 with
p = 2, l = 1, that

‖∇e‖2L2
+ 2‖ε1/2eβ‖2L2

≤ C‖hR2‖2L2
,

which is Johnson’s result [13].
In order to estimate ‖e‖Lp we argue by duality. We first note that (3.3) may be

written as

(3.16) e ∈ H1
0 : (∇e,∇v) + (be, v) = 〈R, v〉, ∀v ∈ H1

0 ,

where

b(x) =

{
eβ(x)/e(x), if e(x) 6= 0,
0, if e(x) = 0.

Clearly, cf. (3.13), we have

(3.18) 0 ≤ b(x) ≤ ε(x)−1 ≤ ε−1
min, ∀x ∈ Ω̄.

This suggests the introduction of the adjoint problem

(3.19) G ∈ H1
0 : (∇w,∇G) + (w, bG) = (w, g), ∀w ∈ H1

0 ,

with data g ∈ Lp′ . Combining (3.16) and (3.19), and using Lemma 3.1, we get

(3.20) |(e, g)| = |(∇e,∇G) + (be,G)| = |〈R,G〉| ≤ C‖h2Rp‖Lp‖D2G‖Lp′ .

Here we need to bound ‖D2G‖Lp′/‖g‖Lp′ . Trying first p = p′ = 2, we are only able
to show, using (2.4), assuming temporarily that Ω is convex,

‖D2G‖L2 ≤ C‖∆G‖L2 ≤ C
(
‖g‖L2 + ‖bG‖L2

)
≤ C

(
1 + ε

−1/2
min

)
‖g‖L2;

see (3.32) below. This bound is too large to be useful, reflecting the fact that the
nonlinearity is “too strong” to be controlled in the L2-norm. On the other hand
we have ‖bG‖L1 ≤ ‖g‖L1, see (3.32), and we therefore use p =∞, p′ = 1, in (3.20).
However, ‖D2G‖L1/‖g‖L1 cannot be estimated by (2.4) for general data g and we
therefore proceed as in [20] and choose g of a special form.

Let x0 ∈ Ω and let g = gx0 be a regularized δ-function such that

(3.22)
∫
Rd

g dx = 1; supp g ⊂ B(x0; ρ); 0 ≤ g(x) ≤ Cρ−d.

Here B(x0; ρ) denotes the closed ball with center x0 and small radius ρ to be chosen.
Lemma 3.2. Let e satisfy (3.16) and x0 ∈ Ω be such that ‖e‖L∞ = |e(x0)|. Let
g = gx0 be as in (3.22). There are constants h∗ > 0 and σ∗ > 0, depending only
on Ω and the constants in Section 2, such that, if ρ ≤ hσmax with σ > σ∗ and
hmax ≤ h∗, then

(3.23) ‖e‖L∞ ≤ |(e, g)|+ ‖h2R∞‖L∞ .

Proof. In this proof we extend all functions by 0 outside Ω. By the mean value
theorem there is x1 ∈ B(x0; ρ) ∩ Ω̄ such that (e, g) = e(x1). In order to estimate
e(x0) − e(x1) we use a classical Hölder estimate of DeGiorgi and Nash: there are
constants K > 0 and α ∈ (0, 1) such that if v ∈ H1

0 is a weak solution of −∆v =
∇ · F +G, where F ∈ (Lp)d, G ∈ Lp/2 for some p > d, then for all x0 ∈ Ω, ρ > 0

sup
x,y∈B(x0;ρ)∩Ω̄

|v(x) − v(y)| ≤ Kρα
(
‖F‖Lp + ‖G‖Lp/2

)
.

The constants K and α depend only on p and Ω; see [14, Theorem C.2].
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We want to apply this result to equation (3.16) written in the form−∆e = R−be.
By a well known characterization of the dual space W−1

p we have

‖R‖W−1
p

= inf
F
‖F‖Lp,

where the norms are defined in (2.2) and (2.3), and the infimum is taken over all
F ∈ (Lp)d such that R = ∇·F , i.e., 〈R, v〉 = −

∫
Ω
F ·∇v dx for all v ∈ W̊ 1

p′ . Hence,
with p = 4 > d,

|e(x0)− e(x1)| ≤ Kρα
(
‖R‖W−1

4
+ ‖be‖L2

)
.

Inequality (3.18) and a standard energy argument, based on taking v = e in (3.16),
imply

‖be‖L2 ≤ ε
−1/2
min ‖b1/2e‖L2 ≤ ε

−1/2
min ‖R‖W−1

2
.

Using Hölder’s inequality ‖Dv‖L1 ≤ |Ω|1/p‖Dv‖Lp′ in (2.3) and then Lemma 3.1
we get

‖R‖W−1
p
≤ |Ω|1/p‖R‖W−1∞ ≤ C‖hR∞‖L∞ ≤ Ch−1

min‖h2R∞‖L∞,

and we conclude

|e(x0)− e(x1)| ≤ Cραε−1/2
min h−1

min‖h2R∞‖L∞ .

Recalling assumption (2.7) and taking ρ ≤ hσmax we finally get

|e(x0)− e(x1)| ≤ Chσα−3γ/2
max ‖h2R∞‖L∞

and the assertion of the lemma follows with σ∗ = 3γ
2α . �

It remains to bound ‖D2G‖L1/‖g‖L1 = ‖D2G‖L1 .
Lemma 3.3. Let G = Gx0 be the solution of (3.19) with data g = gx0 as in (3.22).
For any κ > 0 there is C such that, if ρ ≤ εκmin, then, for all x0 ∈ Ω,

‖D2G‖L1 ≤ C| log ρ|.

Proof. Let first g be arbitrary. We shall prove that, for 1 ≤ p ≤ 2,

(3.32) ‖bG‖Lp ≤ (Cεmin)−1/p′‖g‖Lp, ∀g ∈ Lp.
From (2.4) and (3.19) we then obtain, for 1 < p ≤ 2, (note that p−1 = p/p′ > 1/p′)

(3.33) ‖D2G‖Lp ≤
C

p− 1
‖∆G‖Lp ≤ Cp′

(
‖g‖Lp + ‖bG‖Lp

)
≤ Cp′ε−1/p′

min ‖g‖Lp.

Now take g as in (3.22). A direct calculation gives

‖g‖Lp ≤ Cρ−d(1−1/p) = Cρ−d/p
′
,

and since ρ ≤ εκmin we conclude from (3.33) with p′ = | log ρ| that

‖D2G‖L1 ≤ C‖D2G‖Lp ≤ Cp′ρ−c/p
′
= C| log ρ|.

We now prove (3.32). Taking w = G/
√
G2 + δ with δ > 0 in (3.19), and passing

to the limit as δ ↓ 0, yields

(3.36) ‖bG‖L1 ≤ ‖g‖L1, ∀g ∈ L1.

Taking w = G in (3.19) shows ‖b1/2G‖L2 ≤ C‖g‖L2, so that in view of (3.18),

(3.37) ‖bG‖L2 ≤ ε
−1/2
min ‖b1/2G‖L2 ≤ (Cεmin)−1/2‖g‖L2, ∀g ∈ L2.
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The Riesz-Thorin theorem applied to the linear operator g 7→ bG now yields

sup
g

‖bG‖Lp
‖g‖Lp

≤
(

sup
g

‖bG‖L1

‖g‖L1

)1−2/p′(
sup
g

‖bG‖L2

‖g‖L2

)2/p′

≤ (Cεmin)−1/p′ ,

which is (3.32). �

We now state the main result of this section. Recall that R∞ is defined in (3.6).
Theorem 3.4. There are C > 0 and h∗ > 0 such that, if hmax ≤ h∗, then

‖Uε − uε‖L∞ ≤ C| log hmax| ‖h2R∞‖L∞.

Proof. Take ρ = hσmax with σ as in Lemma 3.2. In view of (2.7) we may find κ such
that hσmax = ρ ≤ εκmin and Lemma 3.3 applies. The error bound now follows from
(3.20) in conjunction with these lemmas. �

Remark 3.1. The constant C of Lemma 3.3 enters as a “stability factor” in the
error bound. The essence of Lemma 3.3 is that this stability factor is of moderate
size; in particular, it is almost independent of ε.

4. The Penalization Error: Smooth Obstacle

We now compare the solutions u and uε of problems (1.1) and (1.4), respectively.
In the following lemma we assume that the obstacle ψ is smooth.
Lemma 4.1. Let u and uε be the solutions of (1.1) and (1.4), respectively. If
ψ ∈W 2

∞(Ω), then

(4.1) ‖u− uε‖L∞ ≤ ‖ε(f + ∆ψ)‖L∞(Ω̂),

where Ω̂ = Ω̂ψ = {x ∈ Ω : u(x)− ψ(x) = 0, uε(x)−ψ(x) ≤ 0} is the “contact set”.

Proof. We define

Ω− = {x ∈ Ω : u(x)− ψ(x) = 0}, Ω+ = {x ∈ Ω : u(x)− ψ(x) > 0},
Ω−
ε = {x ∈ Ω : uε(x)− ψ(x) ≤ 0}, Ω+

ε = {x ∈ Ω : uε(x) − ψ(x) > 0},

so that Ω̂ = Ω− ∩ Ω−
ε . Let v = u − uε. We shall show that there is a constant C

such that

(4.3) ‖v‖Lq ≤ (Cq′)1/q‖ε1/q
′
(f + ∆ψ)‖Lq(Ω̂),

for all even integers q ≥ 2 (q and q′ are conjugate exponents). Letting q → ∞ we
then obtain (4.1).

In order to prove (4.3) we define

B(x) := ∆u(x) + f(x) ∈ β(u(x) − ψ(x)),

Bε(x) := ∆uε(x) + f(x) = βε(x)(uε(x) − ψ(x)),
(4.4)

so that, for any even integer q ≥ 2,

(4.5) (∇v,∇vq−1) = (Bε −B, vq−1),

where the left side is equal to (note that q − 1 = q/q′)

(4.6) (∇v,∇vq−1) = (q − 1)‖v−1+q/2∇v‖2L2
= 4

qq′ ‖∇(vq/2)‖2L2
.

We now turn to the right side of (4.5). We first show that

(4.7) (Bε −B, vq−1) ≤ (Bε −B, vq−1)Ω̂.
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This follows from (4.4) and the monotonicity of the graphs β and βε(x). More
precisely, if x ∈ Ω+, then B(x) = 0 = βε(x)(u(x)− ψ(x)), so that

(Bε −B)vq−1 = −
(
βε(uε − ψ)− βε(u − ψ)

)
(uε − u)vq−2 ≤ 0 in Ω+.

Here we used the monotonicity (βε(s)− βε(t))(s− t) ≥ 0, and the assumption that
q is even. Similarly, if x ∈ Ω+

ε , then Bε(x) = 0 ∈ {0} = β(uε(x)− ψ(x)), so that

(Bε −B)vq−1 ∈ −
(
β(uε − ψ)− β(u− ψ)

)
(uε − u)vq−2 ⊂ R− in Ω+

ε ,

since (β(s) − β(t))(s − t) ⊂ R+. Therefore, (Bε − B, vq−1)Ω+∪Ω+
ε
≤ 0 and (4.7)

follows.
It now remains to bound the right side of (4.7). In order to do so, we note that

in Ω− we have u = ψ, so that v = ψ− uε, and ∆u = ∆ψ a. e., so that B = f + ∆ψ
a. e. in Ω−. (Note that this is where the smoothness of ψ is required; it implies
that u is smooth, whence u = ψ yields ∆u = ∆ψ.) Moreover, in Ω−

ε we have
Bε = −ε−1(ψ − uε) in view of (4.4).

Summing up: in Ω̂ = Ω− ∩ Ω−
ε we have B = f + ∆ψ, Bε = −ε−1v, so that

(Bε −B, vq−1)Ω̂ = (−ε−1v − (f + ∆ψ), vq−1)Ω̂
= −‖ε−1/qv‖q

Lq(Ω̂)
− (f + ∆ψ, vq−1)Ω̂.

(4.10)

Using Hölder’s and Young’s inequalities

|(f, g)| ≤ ‖f‖Lq‖g‖Lq′ ≤
1
q ‖f‖

q
Lq

+ 1
q′ ‖g‖

q′
Lq′
,

we get ∣∣(f + ∆ψ, vq−1)Ω̂
∣∣ = |(ε1/q′ (f + ∆ψ), (ε−1/qv)q/q

′
)Ω̂|

≤ 1
q ‖ε

1/q′(f + ∆ψ)‖q
Lq(Ω̂)

+ (1− 1
q )‖ε

−1/qv‖q
Lq(Ω̂)

.
(4.12)

Combining (4.5), (4.6), (4.7), (4.10), and (4.12), we conclude

(4.13) 4
q′ ‖∇(vq/2)‖2L2

+ ‖ε−1/qv‖q
Lq(Ω̂)

≤ ‖ε1/q
′
(f + ∆ψ)‖q

Lq(Ω̂)
.

Using also Poincaré’s inequality

‖∇(vq/2)‖2L2
≥ c‖vq/2‖2L2

= c‖v‖qLq ,
we finally obtain (4.3). �
Remark 4.1. Using q = 2 in (4.13) we get

(4.15) 2‖∇(u− uε)‖2L2
+ ‖ε−1/2(ψ − uε)‖2L2(Ω̂)

≤ ‖ε1/2(f + ∆ψ)‖2
L2(Ω̂)

,

which is (a slight improvement of) the corresponding result derived in [23] and
used in [13]. More precisely, in [23] it is assumed that −∆ψ ≤ 0, so that in (4.10)
(−∆ψ, vq−1)Ω̂ = (−∆ψ, (ψ − uε)q−1)Ω̂ ≤ 0, and this term may be dropped. The
right side of (4.13) then becomes ‖ε1/q′f‖q

Lq(Ω̂)
. A similar comment applies to [13],

where it is assumed that ψ = 0 after the change of dependent variable u← u− ψ.
Note also that we localize the error bound to the contact set; this was not done in
either [23] or [13].
Remark 4.2. Comparing with a similar analysis in [19], we note that we allow a
variable penalty parameter ε = ε(x), and we do not truncate the nonlinearities β
and βε.
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Remark 4.3. Lemma 4.1 immediately generalizes to the “double obstacle problem;”
cf. [23], where it is required that ψ(x) ≤ u(x) ≤ φ(x), and where the nonlinear terms
are replaced by

β(u(x)− ψ(x)) − β(φ(x) − u(x)), βε(uε(x) − ψ(x)) − βε(φ(x) − uε(x)).
The result is

‖u− uε‖L∞ ≤ ‖ε(f + ∆ψ)‖L∞(Ω̂ψ) + ‖ε(f + ∆φ)‖L∞(Ω̂φ),

with the obvious definitions of the contact sets Ω̂ψ , Ω̂φ.
To conclude this section we further point out that, in view of Theorem 3.4 and

Lemma 4.1, we readily obtain an almost a posteriori error bound for the entire
approximation procedure.
Theorem 4.2. Let u be the solution of (1.1) and Uε that of (1.7). There are C > 0
and h∗ > 0 such that if ψ ∈W 2

∞(Ω) and hmax ≤ h∗, then

(4.18) ‖u− Uε‖L∞ ≤ C| log hmax| ‖h2R∞‖L∞ + ‖ε(f + ∆ψ)‖L∞(Ω̂),

where Ω̂ = {x ∈ Ω : u(x)− ψ(x) = 0, uε(x)− ψ(x) ≤ 0} is the “contact set”.
Remark 4.4. The error bound in Theorem 4.2 is not computable because the set
Ω̂ is defined in terms of functions that are not known. To remedy this, we define a
computable set

Ωτ = {x ∈ Ω : Uε(x) − ψ(x) ≤ τ},
where τ > 0 is a given tolerance. We claim that if

(4.19) ‖uε − Uε‖L∞ ≤ τ,
then Ω̂ ⊂ Ωτ . In fact, if x ∈ Ω̂, then

(Uε − ψ)(x) = (Uε − uε)(x) + (uε − ψ)(x) ≤ τ + 0 = τ.

Remark 4.5. The basis for the corresponding algorithm of Section 6 is as follows.
Produce an appropriate mesh so that (4.19) holds. Then evaluate the second term
on the right side of (4.18), replacing Ω̂ by Ωτ .
Remark 4.6. Since βε(Uε −ψ) = 0 on Ω \ Ω̂, the size of ε in the domain Ω \ Ω̂ does
not affect the choice of meshsize h in Ω \ Ω̂. Therefore, singularities of ψ in Ω \ Ω̂
will not yield unnecessary refinement.
Remark 4.7. In light of Theorem 4.2 we may expect ε(x) and h(x) to satisfy the
local relation

(4.20) ε(x) ≈ h2(x), ∀x ∈ Ω.

A similar, but global, relation with ε constant was derived in [19] as a result of an
a priori analysis.

5. The penalization error: rough obstacle

The proof of Lemma 4.1 does not generalize to the case when the obstacle func-
tion ψ has less than two derivatives in L∞. This situation is analyzed in the
following lemmas by means of auxiliary problems with a regularized obstacle. We
stress that the auxiliary problems are only used in the analysis and thus do not
alter the definitions of uε and Uε. We assume the existence of µ ∈ (0, 2] such that

(5.1) ψ ∈ Cµ(Ω̄),
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which, in case µ is not an integer, means that the derivatives of order [µ] are Hölder
continuous with exponent µ− [µ].

We start by examining the additional regularization of ψ. Let δ be a smooth
function satisfying, for some constant C∗,

(5.2) |Dkδ(x)| ≤ C∗δ(x)1−k, k = 0, 1, 2, ∀x ∈ Ω.

This function will be used as a space dependent regularization parameter, and can
thus be viewed as a distance function. Its existence is guaranteed by the following
lemma.
Lemma 5.1. For every mesh T ∈ F there exists a positive function δ ∈ C∞(Ω)
satisfying

(5.3) ch(x)1−k ≤ |Dkδ(x)| ≤ Ckh(x)1−k, ∀k ≥ 0, x ∈ Ω.

Proof. The case d = 2 is proved in [21, Lemma 5.1]. The proof, which is based on a
C∞ partition of unity and the fact that any regular mesh is locally quasi-uniform,
is readily adapted to any dimension d. �

We next introduce a measure of the regularity of ψ. We set, for ν ∈ (0, 2],

(Dνδψ)(x) = max
y∈B(x;δ(x))

|ψ(y)− ψ(x) − V (x) · (y − x)|
δ(x)ν

,(5.4)

V (x) =

{
0, if ν ∈ (0, 1],
∇ψ(x), if ν ∈ (1, 2].

(5.5)

We are going to define, via convolution, a regularization ψδ of ψ with parameter
δ = δ(x) as in (5.2). Let ζ ∈ C∞(Rd) be positive, radially symmetric, with support
in B(0; 1) and

∫
ζ dz = 1. We define

ϕδ(y, x) =
1

δ(x)d
ζ
(y − x
δ(x)

)
,(5.6)

ψδ(x) =
∫
Rd

ψ(y)ϕδ(y, x) dy,(5.7)

where ψ is extended outside Ω as a Cµ-function.
Lemma 5.2. There exists C > 0, depending only on C∗, such that, for all x ∈ Ω,

|ψδ(x) − ψ(x)| ≤ δ(x)ν(Dνδψ)(x),(5.8)

|∆ψδ(x)| ≤ Cδ(x)ν−2(Dνδψ)(x).(5.9)

Proof. The following properties of ϕδ are obvious from its definition:∫
Rd

ϕδ(y, x) dy = 1,(5.10) ∫
Rd

∂

∂xi
ϕδ(y, x) dy = 0,(5.11) ∫

Rd

(y − x)ϕδ(y, x) dy = 0.(5.12)

Taking the derivative of the ith component of (5.12) with respect to xj and using
(5.10) yields

(5.13)
∫
Rd

(y − x)i
∂

∂xj
ϕδ(y, x) dy = δij (Kronecker’s delta).
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Taking the derivative of this with respect to xk and using (5.11) yields

(5.14)
∫
Rd

(y − x)i
∂2

∂xk∂xj
ϕδ(y, x) dy = 0.

From the definition (5.7) of ψδ, (5.10) and (5.12), we immediately obtain

|ψδ(x) − ψ(x)| =
∣∣∣ ∫

Rd

(
ψ(y)− ψ(x)− V (x) · (y − x)

)
ϕδ(y, x) dy

∣∣∣
≤ δ(x)ν

∫
Rd

|ψ(y)− ψ(x)− V (x) · (y − x)|
δ(x)ν

ϕδ(y, x) dy

≤ δ(x)νDνδψ(x),

(5.15)

and (5.8) follows. In a similar way, using also (5.14), we get

|∆ψδ(x)| =
∣∣∣ ∫

Rd

(
ψ(y)− ψ(x)− V (x) · (y − x)

)
∆xϕ

δ(y, x) dy
∣∣∣

≤ δ(x)ν
∫
Rd

|ψ(y)− ψ(x) − V (x) · (y − x)|
δ(x)ν

|∆xϕ
δ(y, x)| dy

≤ δ(x)νDνδψ(x)
∫
Rd

|∆xϕ
δ(y, x)| dy,

(5.16)

and (5.9) follows once we have shown

(5.17) |∆xϕ
δ(y, x)| ≤ Cδ(x)−2N(y, x), with

∫
Rd

N(y, x) dy ≤ C.

A tedious but straightforward calculation starting from (5.6) gives

(5.18) |∆xϕ
δ(y, x)| ≤ δ(x)−2

(
1 + |∇δ(x)| + |∇δ(x)|2 + δ(x)|∆δ(x)|

)
N(y, x),

where N(y, x) is a linear combination of

(5.19)
1

δ(x)d
( |y − x|
δ(x)

)j∣∣∣Dkζ
(y − x
δ(x)

)∣∣∣, j, k = 0, 1, 2,

and |Dkζ(z)| denotes the norm of the kth order gradient of ζ at z. Together with
(5.2) this implies (5.17), and concludes the proof. �

Let uδ and uδε denote the solutions of (1.1) and (1.4), respectively, with ψ re-
placed by ψδ and with Dirichlet boundary data max(0, ψδ); note that the convo-
lution may cause ψδ > 0 on ∂Ω. The following lemma provides a localized error
estimate of the effect of penalization. To state it, we need the enlarged contact set

(5.20) Ω̃0 =
4⋃
i=1

Ξi

defined by

Ξ1 := {x ∈ Ω : uδ(x)− ψδ(x) = 0}, Ξ2 := {x ∈ Ω : u(x)− ψ(x) = 0},
Ξ3 := {x ∈ Ω : uδε(x)− ψδ(x) ≤ 0}, Ξ4 := {x ∈ Ω : uε(x)− ψ(x) ≤ 0}.

Lemma 5.3. Let ν ∈ (0, 2] and let δ satisfy (5.2). Let u and uε be the solutions of
(1.1) and (1.4), respectively. There exist C and δ∗ such that if (5.1) is valid and
‖δ‖L∞ ≤ δ∗, then

(5.21) ‖u− uε‖L∞ ≤ ‖εf‖L∞(Ω̃0) + C‖εδν−2Dνδψ‖L∞(Ω̃0) + 2‖δνDνδψ‖L∞(Ω̃0).
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Proof. We have

(5.22) ‖u− uε‖L∞ ≤ ‖u− uδ‖L∞ + ‖uδ − uδε‖L∞ + ‖uδε − uε‖L∞ .

Lemma 4.1 gives

(5.23) ‖uδ − uδε‖L∞ ≤ ‖ε(f + ∆ψδ)‖L∞(Ω̂
ψδ

) ≤ ‖εf‖L∞(Ω̃0) + ‖ε∆ψδ‖L∞(Ω̃0),

because Ω̂ψδ = {x ∈ Ω : uδ(x)− ψδ(x) = 0, uδε(x)− ψδ(x) ≤ 0} is contained in Ω̃0;
note that uδ − uδε = 0 on ∂Ω, whence the proof of Lemma 4.1 is still valid. In view
of (5.9) we readily get

(5.24) ‖ε∆ψδ‖L∞(Ω̃0) ≤ C‖εδν−2Dνδψ‖L∞(Ω̃0).

We now assert that

‖u− uδ‖L∞ ≤ ‖ψ − ψδ‖L∞(Ξ1∪Ξ2),(5.25)

‖uε − uδε‖L∞ ≤ ‖ψ − ψδ‖L∞(Ξ3∪Ξ4),(5.26)

which combined with (5.8) yield (5.21). We resort to the maximum principle to
prove (5.25) and (5.26). In order to prove (5.25) we define

σ = ‖ψ − ψδ‖L∞(Ξ1∪Ξ2),

set w = σ + u, and show that w ≥ uδ. Suppose by contradiction that the open set
G = {x ∈ Ω : w(x) < uδ(x)} is nonempty. Since σ ≥ ψ − ψδ in Ξ1, we deduce that
G ∩ Ξ1 is empty, because

uδ − ψδ > w − ψδ = σ + u− ψδ ≥ σ + ψ − ψδ ≥ 0 in G ∩ Ξ1

which is inconsistent with the definition of Ξ1. In addition, uδ−ψδ > 0 outside Ξ1,
so that β(uδ − ψδ) = {0} in G.

Also the set G ∩ ∂Ω is empty, because in G ∩ ∂Ω we have

0 > u+ σ − uδ = σ −max{0, ψδ},
which implies uδ = ψδ and hence G ∩ ∂Ω ⊂ Ξ1. But then, since σ ≥ ψδ − ψ, we
have 0 > σ − ψδ ≥ −ψ ≥ 0 in G ∩ ∂Ω, which is a contradiction.

By the variational inequalities defining uδ and u, we thus have

−∆uδ = f ≤ −∆u = −∆w in G.
Hence −∆(w − uδ) ≥ 0 in G, w − uδ = 0 on ∂G, so that w − uδ ≥ 0 in G, which is
a contradiction. This proves w ≥ uδ, i.e., uδ − u ≤ σ. The inequality u− uδ ≤ σ is
proved by interchanging the roles of ψ and ψδ, setting w = σ+ uδ, and making use
of Ξ2.

The proof of (5.26) is accomplished in a similar way: we define σ = ‖ψ −
ψδ‖L∞(Ξ3∪Ξ4), w = σ + uε and show that w ≥ uδε . Suppose by contradiction that
the open set G = {x ∈ Ω : w(x) < uδε(x)} is nonempty. Since σ ≥ ψ − ψδ in Ξ3 we
have in G ∩ Ξ3

uδε − ψδ ≥ w − ψδ = σ + uε − ψδ ≥ uε − ψ,
whence, exploiting the monotonicity of βε,

βε(uδε − ψδ) ≥ βε(uε − ψ).

On the other hand, we have uδε − ψδ > 0 outside Ξ3 and consequently

0 = βε(uδε − ψδ) ≥ βε(uε − ψ).
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Thus βε(uδε − ψδ) ≥ βε(uε − ψ) in G and therefore, from the equations defining uδε
and uε we infer that

−∆uδε = f − βε(uδε − ψδ) ≤ f − βε(uε − ψ) = −∆uε = −∆w in G.
We check that G ∩ ∂Ω is empty in the same way as above. This implies that
−∆(w − uδε) ≥ 0 in G, and since w − uδε = 0 on ∂G, that w − uδε ≥ 0 in G, which is
a contradiction. This proves w ≥ uδε , i.e., uδε − uε ≤ σ. The inequality ue− uδε ≤ σ
is proved by interchanging the roles of ψ and ψδ, setting w = σ + uδε , and making
use of Ξ4. �

We see from (5.21) that a natural relation between δ and ε is

(5.35) ε(x) ≈ δ(x)2, ∀x ∈ Ω̃0.

Coupling Theorem 3.4 with Lemma 5.3, we readily obtain an almost a posteriori
error estimate for the whole approximation process.
Theorem 5.4. Let ν ∈ (0, 2] and let δ satisfy (5.2). Let u and uε be the solutions
of (1.1) and (1.4), respectively. There exist C, h∗ > 0, and δ∗ > 0 such that if
(5.1) is valid, hmax ≤ h∗, and ‖δ‖L∞ ≤ δ∗, then (with Ω̃0 defined in (5.20))

‖u− Uε‖L∞ ≤ C| log hmax| ‖h2R∞‖L∞

+ C
(
‖εf‖L∞(Ω̃0) + ‖εδν−2Dνδψ‖L∞(Ω̃0) + ‖δνDνδψ‖L∞(Ω̃0)

)
.

(5.36)

Remark 5.1. As in Theorem 4.2 for smooth obstacles, the error bound (5.36) is not
computable because the enlarged contact set Ω̃0 is defined in terms of functions
that are not known. We now show that Ω̃0 may be replaced by a slightly larger,
but computable, set Ωτ . For a given tolerance τ > 0 let

Ωτ = {x ∈ Ω : Uε(x)− ψ(x) ≤ 3τ}.
We recall from (5.20) that Ω̃0 =

⋃4
i=1 Ξi and suppose x ∈ Ξ1 so that (uδ−ψδ)(x) =

0. From now on we assume that the full right side of (5.36) is less than or equal
to τ . From Lemma 5.3 and its proof it follows that the quantities ‖uδ − u‖L∞ and
‖ψ − ψδ‖L∞ are each less than or equal to τ . Then

Uε − ψ = (Uε − u) + (u− uδ) + (uδ − ψδ) + (ψδ − ψ) ≤ 3τ ;

thus Ξ1 ⊂ Ωτ . The remaining inclusions Ξi ⊂ Ωτ are obtained in the same way.
Thus Ω̃0 ⊂ Ωτ if the right side of (5.36) is less than or equal to τ .
Remark 5.2. An important consequence of the localized estimate (5.36) is that if
the obstacle ψ were rough outside the enlarged contact set Ω̃0 it would not lead to
unnecessary mesh refinement in Ω \ Ω̃0. On the other hand, the size of ε in Ω \ Ω̃0

does not affect the choice of meshsize h in Ω \ Ω̃0 because βε(Uε − ψ) = 0. This is
consistent with both Remark 4.6 for smooth obstacles and Example 6.5 below.

6. Numerical experiments

In this section we discuss the results of preliminary computations in 1D using
adaptive algorithms with h and ε refinement. We examine three distinct exam-
ples: one has a smooth obstacle and the other two have rough obstacles with jump
discontinuities in the first derivative. In the first rough obstacle example the dis-
continuity occurs inside the contact set and we observe the algorithm setting ε to
a very small number and refining the mesh heavily near this point. In the second
rough obstacle example the discontinuity is outside the contact set. The algorithm
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sets ε to a small value near this point but does not refine the mesh heavily there,
since the solution does not touch the rough obstacle and hence is smooth. The
small value of ε outside the contact set does not degrade the performance of the
iteration scheme, since βε is zero in that region. Our preliminary conclusions are
that the a posteriori estimates provide useful upper bounds on the true errors and
the possibility to vary ε provides more accuracy in the rough obstacle case.

6.1. Implementation. Let τ > 0 be a given tolerance, and let Ωτ be the com-
putable set of either Remark 4.4 or Remark 5.1. We use the a posteriori estimate

(6.1) ‖u− Uε‖L∞(Ω) ≤ C1 max
K∈T

h2
K‖R∞‖L∞(K) + C2‖ε(f + ∆ψ)‖L∞(Ωτ )

for both smooth obstacles (Theorem 4.2) and rough obstacles (Theorem 5.4), in
the latter case with the second term on the right side replaced by

C2

(
‖εf‖L∞(Ωτ ) + ‖εD2

hψ‖L∞(Ωτ )

)
.

This keeps both algorithms almost identical and reflects the local nature of the a
posteriori estimates (4.18) and (5.36). The term D2

hψ is defined by a difference at
nodes on the mesh.

We use continuous piecewise linear and quadratic finite element functions in our
approximations. In order to linearize we use Newton’s method and thus solve the
following problem on each iteration: Find U j+1

ε ∈ Vh such that

(∇U j+1
ε ,∇χ) + (βε(U jε − ψ) + (β′

ε(U
j
ε − ψ)(U j+1

ε − U jε ), χ)h = (f, χ)h,

for all χ ∈ Vh. The inner products with subscript h are Gauss quadrature approx-
imations of the corresponding integrals.

6.2. Adaptive Algorithm. We now describe the full adaptive algorithm for the
smooth obstacle example.
Choose the functions ε0, U−1

ε , and U0
ε ; define a mesh T0 (we started with a uniform

mesh with N element domains); set index j = 0; and define tolerances τ (for
adaptivity) and Tol (for the nonlinear iteration).
Do Until
C1 max

K∈Tj
h2
K‖R∞‖L∞(K) +C2‖ε(f + ∆ψ)‖L∞(Ωτ ) ≤ τ and ‖U jε −U j−1

ε ‖L∞(Ω) ≤ Tol:

• Compute U j+1
ε on mesh Tj with function εj and using function U jε to lin-

earize.
• Define new mesh Tj+1 by refining any elements, K, in the mesh Tj where
h2
K‖R∞(U j+1

ε , εj)‖L∞(K) > τ/2.
• Define Ωj+1 = {x ∈ Ω : U j+1

ε − ψ ≤ τ}.
• Choose εj+1 = τ/(2 max{1, |f + ∆ψ|}) on the set Ωj+1.
• Increment j.

End Do Until Loop.
Note that the mesh and ε refinement all happen at the same time. Moreover,

there is only one Newton step for each pass through the loop.
Note that, in view of the discussions after Theorems 4.2 and 5.4, once the al-

gorithm has converged, except for the possibility that the constants were chosen
incorrectly, we expect that the estimate (6.1) with Uε defined as the current iterate
is an upper bound for the error.
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N Estimated Error ‖u− Uε‖L∞(Ω) Rate
12 3.0(-2) 2.6(-2) —
24 3.2(-3) 2.6(-3) 3.3
71 8.7(-5) 7.6(-5) 3.3
154 5.3(-6) 5.0(-6) 3.5

Table 1. Example 6.3: Smooth obstacle.

6.3. Example: Smooth obstacle. We take Ω = (−1, 1), ψ(x) = 1− 4x2, f(x) =
−8, and

u(x) =




4x2 − 16bx− (1 + 16b), if x > b,
ψ(x), if −b ≤ x ≤ b,
4x2 + 16bx− (1 + 16b), if x < −b,

where b = 1 −
√

6/4 ∼= 0.3876275 . . . . Note that b is an irrational number. This
ensures that the typical mesh does not have any nodes at the free boundary.

Since quadratics usually give L∞ a priori estimates with an N−3 convergence
rate assuming the function being approximated has three derivatives this example
is interesting since the true solution has only W 2

∞ regularity with jumps in the
second derivative at the free boundary.

Table 1 shows the results of a series of test runs on this problem, where we
explore the rate of convergence obtained as a result of the mesh refinement and
variable epsilon. We find that C1 = 1/50 is an upper bound for the first constant
and that C2 = 1 is sufficient for the second. (Other estimates of the constant in
front of the ‖u − uε‖L∞ term have shown that the 6 may be replaced by a 1 with
the addition of a very small term on the right side of the inequality).

Examining the table we note that the estimated error was above the true error
as was generally the case and that the rate was very close to 3 as one would hope
for quadratics.

6.4. Example: Rough obstacle. We first consider the specific case where the
roughness is inside the contact set and thus the true solution, u, is also rough. Let
Ω = (−1, 1), f(x) = −8,

ψ̃(x) =
{

3− 4x, if x > 0,
3 + 4x, if x ≤ 0, ũ(x) =




4(x− 1)2, if x > 1/2,
ψ(x), if −1/2 ≤ x ≤ 1/2,
4(x+ 1)2, if x < −1/2,

and then define ψ(x) = ψ̃(x − δ) as well as u(x) = ũ(x − δ), where δ =
√

2/20 ∼=
.0707106 . . . , so that the point of discontinuity is not likely to occur at a mesh
point.

Below we list some results from the experiments with this example. We use
continuous piecewise linear approximation functions in this case with C1 = C2 = 2
in the a posteriori error estimate.

Again we note that the mesh and ε refinement helps us recover a convergence
rate of N−2 and that the estimator is an upper bound. The variable ε is particu-
larly useful in this example. Near the jump discontinuity it becomes very small to
compensate for the large D2

hψ term in the a posteriori estimate.
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N Estimated Error ‖u− Uε‖L∞(Ω) Rate
74 9.5(-2) 1.2(-2) —
96 3.3(-2) 5.0(-3) 3.3
168 8.2(-3) 1.3(-3) 2.4
243 4.5(-3) 6.3(-4) 2.0

Table 2. Example 6.4: Rough obstacle.

2.2

2.4

2.6

2.8

3

3.2

-0.1 0 0.1 0.2 0.3

Solution
Refine/Epsilon

Refine

Figure 1. Example 6.4: Comparison of the true solution and the
refined approximations with variable and constant ε.

To demonstrate this we show the results of two computations, one with and one
without allowing ε to vary in x. In the “Refine” case shown in Figure 6.4 the mesh
has 78 elements, the L∞ error is .243, and ε = .003. In the “Refine/Epsilon” graph
in Figure 6.4 the mesh has 74 elements, the L∞ error is .012, the mesh is shown
in Figure 6.4, and the function ε is shown in Figure 6.4. The (apparent) payoff for
the variable ε is seen in Figure 6.4, which shows how much closer and sharper the
variable ε approximation is to the true solution. Note that the results displayed
in Figure 6.4 are consistent with the solution function involved. On [−1,−0.5]
and [0.5, 1] the size of the mesh elements is small, since u is quadratic, while it is
piecewise linear on (−0.5, 0.5). The refinement is heavy at δ, where u′ has its only
jump.

6.5. Example: Rough obstacle. We finally turn to the case, where the rough
part of the obstacle is outside the contact set. Again, we take Ω = (−1, 1), and let
f(x) = −9/2,

ψ̃(x) =
{
−3 + 3x, if x > 0,
−3− 3x, if x ≤ 0, ũ(x) =




ψ(x), if x > 2/3,
9x2/4− 2, if −2/3 ≤ x ≤ 2/3,
ψ(x) if x < −2/3,
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Figure 2. Example 6.4: The mesh function h versus x.
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Figure 3. Example 6.4: The penalty function ε versus x.

and define ψ(x) = ψ̃(x − δ) as well as u(x) = ũ(x − δ), where δ =
√

2/20 ∼=
.0707106 . . . , so that the point of discontinuity is not likely to occur at a mesh
point. We use continuous piecewise linear approximation functions, and take the
constants in the estimators to each be 2.

Since the jump discontinuity of ψ′ is not in the contact set, and so u is smooth,
one would expect that the algorithm does not refine such a singularity of ψ and
this is what we observe in the experiments. In Table 3 we display some results for
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N Estimated Error ‖u− Uε‖L∞(Ω) Rate
38 9.5(-2) 1.2(-2) —
68 2.4(-2) 3.1(-3) 2.3
136 5.8(-3) 7.5(-4) 2.0
275 1.4(-3) 1.9(-4) 2.0

Table 3. Example 6.5: Rough obstacle with jump discontinuity
in ψ′ outside the contact set.

this problem: we see that the estimator bounds the true error and the convergence
rate is proportional to N−2.

Acknowledgement. We thank A. Veeser for a suggestion leading to the present
form of Lemma 3.2.
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