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Abstract

An integro-differential equation involving a convolution integral with a weakly singular kernel is considered. The

kernel can be that of a fractional integral. The integro-differential equation is discretized using the discontinuous

Galerkin method with piecewise constant basis functions. Sparse quadrature is introduced for the convolution term to

overcome the problem with the growing amount of data that has to be stored and used in each time-step. A priori and

a posteriori error estimates are proved. An adaptive strategy based on the a posteriori error estimate is developed.

Finally, the precision and effectiveness of the algorithm are demonstrated in the case that the convolution is a frac-

tional integral. This is done by comparing the numerical solutions with analytical solutions.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fractional order operators (integrals and derivatives) have proved to be very suitable for modeling

memory effects of various materials and systems of technical interest. In particular, they are very useful

when modeling viscoelastic materials, see, e.g., [3,4,10]. The drawback of these models is that, when the

response is integrated numerically, the whole previous stress or strain history must be included in each time-

step. Rather few algorithms for integrating viscoelastic responses (integral equations with singular kernels)
are available. Most of them are based on the Lubich convolution quadrature for fractional order operators,

see [11] and, e.g., [8]. The Lubich convolution quadrature requires uniformly distributed time-steps. This is

a cumbersome restriction, in particular, when analyzing non-linear viscoelastic responses. Furthermore, it is

not possible to use adaptivity and goal oriented error estimates. It also restricts the possibility to use sparse
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time history. In the present work we discuss these difficulties in the context of the following integro-dif-
ferential equation

utðtÞ þ
Z t

0

bðt � sÞAuðsÞds ¼ f ðtÞ; t 2 ð0; T Þ;

uð0Þ ¼ u0;
ð1:1Þ

where ut ¼ du=dt and A is a self-adjoint, positive definite, linear operator on a separable Hilbert space H
with inner product ð�; �Þ and norm k � k. The operator A may be unbounded with domain of definition

DðAÞ � H , but we assume that it has compact inverse, so that the spectral theorem applies. In applications

H could typically be L2ðXÞ for some spatial domain X, and A an elliptic partial differential operator with

respect to the spatial variables, or the finite element approximation of such an operator. The abstract

Hilbert space framework makes it possible to discuss time discretization without going into details about
the spatial approximation. We assume that the data u0 2 H and f ðtÞ 2 H are such that the equation has a

unique, appropriately regular solution.

The kernel function b may be weakly singular but integrable. More precisely, we assume that b is real-

valued, belongs to L1ð0; T Þ, and positive definite in the sense that, for any T P 0,Z T

0

Z t

0

bðt � sÞuðsÞuðtÞdsdtP 0; 8u 2 L2ð0; T Þ: ð1:2Þ

Our chief example is

bðtÞ ¼ 1

CðaÞ
1

t1�a
; 0 < a6 1; ð1:3Þ

for which the convolution integral can be interpreted as an integral of fractional order a, see, e.g., the
textbook [15], and (1.1) can be written as

utðtÞ þ D�a½Au�ðtÞ ¼ f ðtÞ; t 2 ð0; T Þ;
uð0Þ ¼ u0;

ð1:4Þ

where the operator D�a is the fractional order integral. In the limit a ¼ 0 the kernel b approaches the delta

function and we obtain the parabolic equation

ut þ Au ¼ f ; uð0Þ ¼ u0;

while specializing to a ¼ 1 results in

ut þ
Z t

0

AuðsÞds ¼ f ;

which is equivalent to the hyperbolic equation

utt þ Au ¼ ft; uð0Þ ¼ u0; utð0Þ ¼ f ð0Þ:
This means that by varying the fractional integral exponent we obtain a link between parabolic behavior,

(e.g., heat conduction) and hyperbolic behavior, (e.g., wave propagation).

Here we develop an adaptive algorithm with a priori and a posteriori error estimates for solving (1.1).

The a posteriori error estimate forms the basis for the adaptive strategy. For the numerical integration we

adopt the discontinuous Galerkin method with piecewise constant basis functions. To overcome the

problem with the growing amount of data, that has to be stored and used in each time-step, we introduce
sparse quadrature for the convolution integral. Sparsely distributed time-steps are used in the distant part

of the history while small steps are used in the most recent part. The idea is to break up the convolution
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structure by using piecewise linear interpolants between the large steps in the distant part of the history.
This was first studied in [16,18].

The present work is a further development of the study by McLean et al. [13]. Indeed, they allowed

variable time-steps and introduced sparse quadrature, but their study was limited to a priori error estimates.

Similar considerations apply to fractional order differential equations, Dauþ Au ¼ f , which can be re-

written as Volterra integral equations of the second kind by applying the integral operator D�a, see [6]. The

kernel function in the resulting integral equation is then of the same kind as in the present study. Fractional

differential equations are studied in this way in [5–7]. The numerical schemes are based on the Lubich

convolution quadrature and therefore need equispaced grids, or alternatively logarithmically distributed
time-steps, as in [9]. This prevents the use of adaptivity and sparse quadrature. These issues will be

addressed in the forthcoming paper [2] using the methods of the present work.
2. The discontinuous Galerkin method

Let 0 ¼ t0 < t1 < � � � < tn�1 < tn < � � � < tN ¼ T be a temporal mesh with time intervals In ¼ ðtn�1; tnÞ and
steps kn ¼ tn � tn�1. We define the finite element space (with subscript D for ‘‘discrete’’)

WD ¼ fw : wðtÞ ¼ wn for t 2 In;wn 2 DðAÞ; n ¼ 1; . . . ;Ng: ð2:1Þ
Note that w 2 WD may be discontinuous at t ¼ tn; we write wn ¼ wjIn ¼ w�

n ¼ wþ
n�1 and we let ½w�n ¼ wþ

n �
w�

n ¼ wnþ1 � wn denote the jump.

The approximation U 2 WD of the solution u of (1.1) is given by

U 2 WD; with U�
0 ¼ u0; and for n ¼ 1; . . . ;N ;Z

In

UtðtÞ
�

þ
Z t

0

bðt � sÞAUðsÞds� f ðtÞ; vðtÞ
�
dt þ ð½U �n�1; v

þ
n�1Þ ¼ 0 8v 2 WD:

ð2:2Þ

Here ð�; �Þ denotes the inner product in H . Since the functions in WD are piecewise constant with respect to

t, we get

Un � Un�1

kn
þ qnðAUÞ � �ffn ¼ 0; ð2:3Þ

where

�ffn ¼
1

kn

Z tn

tn�1

f ðtÞdt;

qnðAUÞ ¼ 1

kn

Z tn

tn�1

Z t

0

bðt � sÞAUðsÞdsdt

¼ 1

kn

Z tn

tn�1

Xn
j¼1

Z tj^t

tj�1

bðt � sÞAUj dsdt ¼
Xn
j¼1

kjxnjAUj;

xnj ¼
1

knkj

Z tn

tn�1

Z tj^t

tj�1

bðt � sÞdsdt; tj ^ t ¼ minðtj; tÞ:

ð2:4Þ

This is a variant of the backward Euler method, where the source term f and the convolution integral enter

in the form of averages instead of point values. In each time-step we have to solve a linear equation for Un,

namely,

ðI þ k2nxnnAÞUn ¼ Un�1 � kn
Xn�1

j¼1

kjxnjAUj þ kn�ffn: ð2:5Þ
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Since xnn > 0 and A is positive definite, it is clear that (2.5) has a unique solution. In the case of the weakly

singular kernel (1.3) we have

k2nxnn ¼
k1þa
n

að1þ aÞCðaÞ : ð2:6Þ

In addition to the finite element space WD we introduce the space W of functions with values in DðAÞ
that are piecewise smooth with respect to the temporal mesh. Note the inclusion WD � W and that the

error e ¼ U � u 2 W.

We define the bilinear form B : W�W ! R by

Bðw; vÞ ¼
XN
n¼1

Z
In

wtðtÞ
�

þ
Z t

0

bðt � sÞAwðsÞds; vðtÞ
�
dt þ

XN�1

n¼1

ð½w�n; vþn Þ þ ðwþ
0 ; v

þ
0 Þ

¼
XN
n¼1

Z
In

wðtÞ;
�

� vtðtÞ þ
Z T

t
bðs� tÞAvðsÞds

�
dt þ

XN�1

n¼1

ðw�
n ;�½v�nÞ þ ðw�

N ; v
�
N Þ; ð2:7Þ

where the second variant is obtained by integration by parts:Z
In

ðwt; vÞdt ¼
Z
In

ðw;�vtÞdt þ ðw�
n ; v

�
n Þ � ðwþ

n�1; v
þ
n�1Þ

and rearrangement of the jump terms and the convolution integral.

By adding Eqs. (2.2) and the identity ðU�
0 ; v

þ
0 Þ ¼ ðu0; vþ0 Þ, that determine the finite element solution U up

to time tN ¼ T , we obtain

U 2 WD : BðU ; vÞ �
Z T

0

ðf ; vÞdt � ðu0; vþ0 Þ ¼ 0 8v 2 WD: ð2:8Þ

We recall from (1.1) that the exact solution satisfies

u 2 W : Bðu; vÞ �
Z T

0

ðf ; vÞdt � ðu0; vþ0 Þ ¼ 0 8v 2 W: ð2:9Þ

The a posteriori error estimate is based on the residual of the computed solution, which is the linear

functional r : W ! R defined by

hr; vi ¼ BðU ; vÞ �
Z T

0

ðf ; vÞdt � ðu0; vþ0 Þ 8v 2 W: ð2:10Þ

With this notation (2.8) becomes

hr; vi ¼ 0 8v 2 WD; ð2:11Þ
reflecting that this is a Galerkin method.

Using (2.9) and (2.10) we obtain, with e ¼ U � u,

Bðe; vÞ ¼ BðU ; vÞ � Bðu; vÞ ¼ BðU ; vÞ �
Z T

0

ðf ; vÞdt � ðu0; vþ0 Þ ¼ hr; vi 8v 2 W:

This means that the error satisfies the equation

e 2 W : Bðe; vÞ ¼ hr; vi 8v 2 W: ð2:12Þ
Note that this is of the same form as (2.9) but with the data terms ðu0; vþ0 Þ þ

R T
0
ðf ; vÞdt replaced by the

residual.
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3. A priori error estimate

The following a priori error estimate is Theorem 6.1 in [13]. We repeat the proof, expressed in our

present notation. We recall that k � k denotes the norm in H .

Theorem 3.1. Let u and U be the solutions of (2.9) and (2.8), respectively. Let ~uu 2 WD denote the piecewise
constant interpolant determined by ~uuðtÞ ¼ uðtnÞ for t 2 In. Then, for all tN P 0,

kUN � uðtN Þk6 2kbkL1ð0;tN Þ
Z tN

0

kAðuðtÞ � ~uuðtÞÞkdt6 2kbkL1ð0;tN Þ
XN
n¼1

kn

Z
In

kAutðtÞkdt:
Proof. We begin by showing that the bilinear form B is positive. By adding the first and second variants

of Bðv; vÞ in (2.7) we get

Bðv; vÞ ¼ 1

2
kv�Nk

2 þ 1

2
kvþ0 k

2 þ 1

2

XN�1

n¼1

k½v�nk
2 þ

Z tN

0

Z t

0

bðt � sÞðAvðsÞ; vðtÞÞdsdt:

Let kj > 0 be the eigenvalues of A and uj a corresponding ON-basis of eigenvectors. Writing vðtÞ ¼P1
j¼1 v̂vjðtÞuj, v̂vj ¼ ðv;ujÞ and using (1.2), we getZ tN

0

Z t

0

bðt � sÞðAvðsÞ; vðtÞÞdsdt ¼
X1
j¼1

kj

Z tN

0

Z t

0

bðt � sÞv̂vjðsÞv̂vjðtÞdsdtP 0:

Therefore,

Bðv; vÞP 1

2
kv�Nk

2 8v 2 W:

Let e ¼ ðU � ~uuÞ þ ð~uu� uÞ ¼ hþ q. Then

Bðh; vÞ ¼ Bðe; vÞ � Bðq; vÞ ¼ �Bðq; vÞ 8v 2 WD;

since Bðe; vÞ ¼ 0 in view of (2.12) and (2.11). We choose v ¼ h here, to get

kh�Nk
2
6 2jBðq; hÞj:

Moreover, using the second variant of Bðw; vÞ in (2.7), and the fact that q�
n ¼ 0, we get

Bðq; hÞ ¼
XN
n¼1

Z
In

qðtÞ;
�

� htðtÞ þ
Z tN

t
bðs� tÞAhðsÞds

�
dt þ

XN�1

n¼1

ðq�
n ;�½h�nÞ þ ðq�

N ; h
�
N Þ

¼
Z tN

0

Z tN

t
bðs� tÞðqðtÞ;AhðsÞÞdsdt ¼

Z tN

0

Z t

0

bðt � sÞðAqðsÞ; hðtÞÞdsdt:

Hence,

jBðq; hÞj6
Z tN

0

Z t

0

bðt � sÞkAqðsÞkkhðtÞkdsdt6 kbkL1ð0;tN Þ
Z tN

0

kAqðsÞkds max
06 t6 tN

khðtÞk: ð3:1Þ

Putting these things together, recalling that hjIn ¼ h�n ¼ hn, we arrive at

khNk2 6 2kbkL1ð0;tN Þ
Z tN

kAqðtÞkdt max
16 n6N

khnk;

0
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This holds for all N and the right side is increasing with respect to N . With eNN chosen so that

kh~NNk ¼ max16 n6N khnk, we therefore have

kh~NNk
2
6 2kbkL1ð0;tN Þ

Z tN

0

kAqðtÞkdtkh~NNk;

which proves the first error estimate, because UN � uðtNÞ ¼ hN . The second one follows by noting thatZ
In

kAqðtÞkdt ¼
Z
In

Z tn

t
AutðsÞds

���� ����dt6 kn

Z
In

kAutðsÞkds: �
4. A posteriori error estimate

In order to obtain a representation of the error we introduce the adjoint problem with arbitrary data

/ 2 H and T ¼ tN :

� wtðtÞ þ
Z T

t
bðs� tÞAwðsÞds ¼ 0; t 2 ð0; T Þ;

wðT Þ ¼ /;

ð4:1Þ

By the transformation t 7!T � t, Eq. (4.1) takes the same form as (1.1) with f ¼ 0, whose solution we

denote by uðtÞ ¼ EðtÞu0 following [12]. The solution of (4.1) is thus wðtÞ ¼ EðT � tÞ/.
Eq. (4.1) is the adjoint of (2.12). Using the second variant of (2.7) it can be written in weak form as

w 2 W : Bðw;wÞ ¼ ðw�
N ;/Þ 8w 2 W: ð4:2Þ

Using w ¼ e in (4.2) and v ¼ w in (2.12) we obtain

ðe�N ;/Þ ¼ hr;wi ¼ hr;EðtN � �Þ/i: ð4:3Þ

This equation is the basis for our a posteriori error estimates. It expresses the error in terms of the residual

r, which tells how well the approximate solution satisfies the original equation, and the adjoint solution w,
which captures the stability properties of the error equation (2.12).

In the case of the weakly singular kernel (1.3) we recall from ([12, Theorems 5.1, 5.5]) the stability

estimates

kwðtÞk6 k/k; t 2 ½0; T �; ð4:4Þ

kwtðtÞk6CaðT � tÞ�1k/k; t 2 ½0; T Þ: ð4:5Þ
In the following theorem we present a sequence of increasingly larger a posteriori error estimates.

Theorem 4.1. Let u and U be the solutions of (2.9) and (2.8), respectively, and let wðtÞ ¼ EðtN � tÞ/ be the
solution of (4.1). Let

RðtÞ ¼
Z t

0

bðt � sÞAUðsÞds� f ðtÞ ð4:6Þ

and let �ww 2 WD denote the orthogonal projection of w onto the space of piecewise constant functions, deter-
mined by

�wwðtÞ ¼ k�1
n

Z
I
wðsÞds; t 2 In: ð4:7Þ
n
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Then, for all tN P 0,

kUN � uðtN Þk6 sup
k/k¼1

XN
n¼1

Z
In

kR
�

� vkdt þ k½U �n�1k
�
max

In
kw� �wwk ð4:8Þ

6 sup
k/k¼1

XN
n¼1

Z
In

kR
��

� vkdt þ k½U �n�1k
�
min

Z
In

kwtkdt; 2max
In

kwk
� ��

; ð4:9Þ

where v 2 WD is arbitrary. If w satisfies stability estimates of the form (4.4), (4.5), then

kUN � uðtN Þk6Ca;N max
16 n6N

kn max
In

kR
�

� vk þ k½U �n�1k
�
; ð4:10Þ

where Ca;N ¼ 2þ Ca logðtN=kN Þ.

Here
R
In
kR� vkdt þ k½U �n�1k is an estimate of the residual, while the quantity minð

R
In
kwtkdt; 2maxIn kwkÞ

is a stability factor.

Proof. Recalling the definition of the residual (2.10) and the bilinear form (2.7), adding and subtracting

U�
0 ¼ u0, we obtain

hr;wi ¼ BðU ;wÞ �
Z tN

0

ðf ;wÞdt � ðu0;wþ
0 Þ

¼
XN
n¼1

Z
In

UtðtÞ
�

þ
Z t

0

bðt � sÞAUðsÞds� f ðtÞ;wðtÞ
�
dt þ

XN
n¼1

ð½U �n�1;w
þ
n�1Þ:

We also recall the orthogonality property (2.11), which implies that

hr;wi ¼ hr;w� �wwi: ð4:11Þ
Therefore, in view of (4.3),

kUN � uðtN Þk ¼ ke�Nk ¼ sup
k/k¼1

jðe�N ;/Þj ¼ sup
k/k¼1

jhr;w� �wwij:

Since U is piecewise constant with respect to t, recalling the definition (4.6) of RðtÞ, and noting that �ww is the
orthogonal projection of w onto WD, we get for any v 2 WD,

hr;w� �wwi ¼
XN
n¼1

Z
In

ððR� vÞðtÞ; ðw� �wwÞðtÞÞdt þ
XN
n¼1

ð½U �n�1; ðw� �wwÞþn�1Þ: ð4:12Þ

Hence,

jhr;w� �wwij6
XN
n¼1

Z
In

kðR
�

� vÞðtÞkkðw� �wwÞðtÞkdt þ k½U �n�1kkðw� �wwÞþn�1k
�

6

XN
n¼1

Z
In

kðR
�

� vÞðtÞkdt þ k½U �n�1k
�
max
t2In

kðw� �wwÞðtÞk:

This proves (4.8). Here,

max
t2In

kðw� �wwÞðtÞk ¼ max
t2In

k�1
n

Z
In

ðwðtÞ
���� � wðsÞÞds

����6 Z
In

kwtkds;
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and also

max
t2In

kðw� �wwÞðtÞk6 2max
In

kwk:

This proves (4.9). In order to prove (4.10), we use (4.9) to get

ke�Nk6 sup
k/k¼1

XN�1

n¼1

knmax
In

kR
�(

� vkþ k½U �n�1k
�Z

In

kwtkdsþ 2 kN max
IN

kR
�

� vkþ k½U �N�1k
�
max
IN

kwk
)

6 max
16n6N

knmax
In

kR
�

� vkþ k½U �n�1k
�

sup
k/k¼1

Z tN�1

0

kwtkdt
�

þ 2max
IN

kwk
�
:

Using (4.4) and (4.5) we getZ tN�1

0

kwtkdt þ 2max
IN

kwk6 ð2þ Ca logðtN=kNÞÞk/k;

and (4.10) follows. h
5. Sparse quadrature

Sparse quadrature was introduced in [13], but only for the case of a kernel without singularity. Here we

use the same procedure, but extend it to the case of the singular kernel with an emphasis on adaptivity.

We introduce time levels 0 ¼ M0 < M1 < M2 < � � � and replace the function s 7!bðt � sÞ in the integral

qnðAUÞ in (2.4) by a piecewise linear interpolant,

~bbðt; sÞ ¼ bðt � tMl�1
Þ/1;lðsÞ þ bðt � tMlÞ/2;lðsÞ; s 2 ½tMl�1

; tMl �; l ¼ 1; . . . ; L;
bðt � sÞ; s 2 ½tML ; t�;

�
ð5:1Þ

where

/1;lðsÞ ¼
tMl � s
Kl

; /2;lðsÞ ¼
s� tMl�1

Kl
; Kl ¼ tMl � tMl�1

; ð5:2Þ

and L is the largest integer such that t � tML P 1. This gives a margin from the singularity at s ¼ t, see Fig. 1.
The discrete problem (2.8) is then replaced by

U 2 WD : eBBðU ; vÞ �
Z T

0

ðf ; vÞdt � ðu0; vþ0 Þ ¼ 0 8v 2 WD; ð5:3Þ

where instead of (2.7)

eBBðw; vÞ ¼XN
n¼1

Z
In

wtðtÞ
�

þ
Z t

0

~bbðt; sÞAwðsÞds; vðtÞ
�
dt þ

XN�1

n¼1

ð½w�n; vþn Þ þ ðwþ
0 ; v

þ
0 Þ: ð5:4Þ
k
1

K
1

tM
l

tM
l-1

tM
1

K
l margin

tM
L

kn

tn

t

s

0

Fig. 1. Time mesh showing original time-steps kn and sparse time-steps Kl. Note the margin.
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In each time-step we then have to solve

Un � Un�1

kn
þ ~qqnðAUÞ � �ffn ¼ 0; ð5:5Þ

where the quadrature formula, ~qqnðuÞ � qnðuÞ is defined for u 2 WR, the space of all real-valued functions

that are piecewise constant with respect to the temporal mesh, by

~qqnðuÞ ¼
1

kn

Z tn

tn�1

Z t

0

~bbðt; sÞuðsÞdsdt ¼ 1

kn

Z tn

tn�1

Z tML

0

~bbðt; sÞuðsÞds
 

þ
Z t

tML

bðt � sÞuðsÞds
!
dt

¼
XML

j¼1

1

knkj

Z tn

tn�1

Z tj

tj�1

~bbðt; sÞdsdt kjuj

 !
þ
Xn

j¼MLþ1

1

knkj

Z tn

tn�1

Z tj^t

tj�1

bðt
 

� sÞdsdt kjuj

!

¼
XML

j¼1

~xxnjkjuj þ
Xn

j¼MLþ1

xnjkjuj; ð5:6Þ

where

~xxnj ¼
1

knkj

Z tn

tn�1

Z tj

tj�1

~bbðt; sÞdsdt; ð5:7Þ

and xnj is defined in (2.4). The first sum can be computed asXML

j¼1

~xxnjkjuj ¼
XL
l¼1

~bbnl;1 ~uul;1

�
þ ~bbnl;2 ~uul;2

�
; ð5:8Þ

where

~bbnl;1 ¼
1

kn

Z tn

tn�1

bðt � tMl�1
Þdt; ~bbnl;2 ¼

1

kn

Z tn

tn�1

bðt � tMlÞdt; ð5:9Þ

and

~uul;i ¼
XMl

j¼Ml�1þ1

Z tj

tj�1

/i;lðsÞdsuj; i ¼ 1; 2: ð5:10Þ

We now estimate the quadrature error. Recall that WR denotes the real-valued piecewise constant

functions.

Theorem 5.1. The local quadrature error is bounded by

j~qqnðuÞ � qnðuÞj6
XML

j¼1

�njkjjujj; 8u 2 WR; ð5:11Þ

where

�nj ¼
1

8
max
s2Inl

jb00ðsÞjK2
l ; if j ¼ Ml�1 þ 1; . . . ;Ml;

Inl ¼ ½tn�1 � tMl ; tn � tMl�1
�:

ð5:12Þ

The global quadrature error is bounded by

jeBBðw; vÞ � Bðw; vÞj6
XN
n¼1

kn
XML

j¼1

�njkjkAwjkmax
In

kvk; 8w 2 WD; v 2 W: ð5:13Þ
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Proof. The standard interpolation error formula gives, with ~ss 2 ½tMl�1
; tMl �,

j~qqnðuÞ � qnðuÞj6
XL
l¼1

XMl

j¼Ml�1þ1

1

knkj

Z
In

Z
Ij

j~bbðt; sÞ � bðt � sÞjdsdt kjjujj

6
1

2

XL
l¼1

XMl

j¼Ml�1þ1

1

knkj

Z
In

Z
Ij

jb00ðt � ~ssÞjðs� tMl�1
ÞðtMl � sÞdsdt kjjujj

6
1

8

XL
l¼1

XMl

j¼Ml�1þ1

max
s2Inl

jb00ðsÞjK2
l kjjujj:

This is (5.11). The estimate (5.13) is proved in the same way as (5.11) using the definitions of B and eBB. h

Note that �nj is piecewise constant with respect to j. This implies that the sums in (5.11), (5.13) can be

computed without storing the whole history.

In the case of the weakly singular kernel (1.3) we have

max
s2Inl

jb00ðsÞj ¼ jb00ðtn�1 � tMlÞj ¼
ð1� aÞð2� aÞ

CðaÞ ðtn�1 � tMlÞ
�3þa

: ð5:14Þ

The quadrature formula ~qqn is not necessarily positive definite, i.e., the modified kernel ~bb does not satisfy

an analog of (1.2). This is needed in the a priori analysis. We therefore add a positive term on the diagonal:

q̂qnðuÞ ¼ ~qqnðuÞ þ dnun: ð5:15Þ
So instead of (2.3) we now use

Un � Un�1

kn
þ q̂qnðAUÞ � �ffn ¼ 0: ð5:16Þ

The discrete problem (2.8) is then replaced by

U 2 WD : bBBðU ; vÞ �
Z T

0

ðf ; vÞdt � ðu0; vþ0 Þ ¼ 0 8v 2 WD; ð5:17Þ

where instead of (2.7), and with dðtÞ ¼ dn for t 2 In,

bBBðw; vÞ ¼XN
n¼1

Z
In

wtðtÞ
�

þ
Z t

0

~bbðt; sÞAwðsÞdsþ dðtÞAwðtÞ; vðtÞ
�
dt þ

XN�1

n¼1

ð½w�n; vþn Þ þ ðwþ
0 ; v

þ
0 Þ: ð5:18Þ

The following lemma is identical to ([13, Lemma 5.2]).

Lemma 5.2. Assume that the numbers dj are positive and increasing with dj P �NjtN=2, where �Nj is defined in
(5.12). Then we have the following analog of (1.2):Z tN

0

Z t

0

~bbðt; sÞuðsÞuðtÞds
�

þ dðtÞuðtÞ2
�
dtP 0; 8u 2 WR: ð5:19Þ

This guarantees stability and we can prove an a priori error estimate.

Theorem 5.3. Let u and U be the solutions of (2.9) and (5.17), respectively, with dj as in Lemma 5.2. Let
~uu 2 WD denote the piecewise constant interpolant determined by ~uuðtÞ ¼ uðtnÞ for t 2 In. Then, for all tN P 0,

kUN � uðtN Þk6 2kbkL1ð0;tN Þ
Z tN

0

kAðuðtÞ � ~uuðtÞÞkdt þ 2�̂�N 6 2kbkL1ð0;tN Þ
XN
n¼1

kn

Z
In

kAutðtÞkdt þ 2�̂�N :

ð5:20Þ
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Here �̂�N is a bound for the quadrature error:

�̂�N ¼
XN
n¼1

kn
XML

j¼1

�njkjkAujk þ
XN
n¼1

kndnkAunk: ð5:21Þ
Proof. We modify the proof of Theorem 3.1. Let e ¼ ðU � ~uuÞ þ ð~uu� uÞ ¼ hþ q. Then

bBBðh; vÞ ¼ �Bðq; vÞ � ðbBBð~uu; vÞ � Bð~uu; vÞÞ 8v 2 WD:

We choose v ¼ h. By Lemma 5.2 we have bBBðh; hÞP 1
2
khNk2 and hence

khNk2 6 2ðjBðq; hÞj þ jbBBð~uu; hÞ � eBBð~uu; hÞj þ jeBBð~uu; hÞ � Bð~uu; hÞjÞ;

which, in view of (3.1) and (5.13), proves the desired result. h

We next prove a posteriori estimates. These are based on the stability of the adjoint problem (4.1) and we

need not assume that dj are strictly positive.

Theorem 5.4. Let u and U be the solutions of (2.9) and (5.17), respectively, with dj P 0. Let wðtÞ ¼ EðtN � tÞ/
be the solution of (4.1). Let

bRRðtÞ ¼ Z t

0

~bbðt; sÞAUðsÞds� f ðtÞ þ dðtÞAUðtÞ; ð5:22Þ

and let �ww 2 WD denote the orthogonal projection of w onto the space of piecewise constant functions, defined in
(4.7). Then, for all tN P 0,

kUN � uðtN Þk6EG þ EQ: ð5:23Þ
Here EG is the error due to the Galerkin approximation, which is estimated by

EG ¼ sup
k/k¼1

XN
n¼1

Z
In

ðbRR;wÞdt����� þ ð½U �n�1;w
þ
n�1Þ

����� ð5:24Þ

6 sup
k/k¼1

XN
n¼1

Z
In

kbRR�
� vkdt þ k½U �n�1k

�
max

In
kw� �wwk ð5:25Þ

6 sup
k/k¼1

XN
n¼1

Z
In

kbRR��
� vkdt þ k½U �n�1k

�
min

Z
In

kwtkdt; 2max
In

kwk
� ��

; ð5:26Þ

where v 2 WD is arbitrary. Finally, EQ is the global quadrature error, which is estimated by

EQ ¼ sup
k/k¼1

jBðU ;wÞ � bBBðU ;wÞj6 sup
k/k¼1

XN
n¼1

kn
XML

j¼1

�njkjkAUjk
 

þ dnkAUnk
!
max

In
kwk: ð5:27Þ

If w satisfies stability estimates of the form (4.4), (4.5), then

kUN � uðtN Þk6Ca;N max
16 n6N

kn max
In

kbRR�
� vk þ k½U �n�1k

�
þ
XN
n¼1

kn
XML

j¼1

�njkjkAUjk
 

þ dnkAUnk
!
;

ð5:28Þ
where Ca;N ¼ 2þ Ca logðtN=kN Þ.
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Proof. Using (2.9) we obtain for all / with k/k ¼ 1

ðe�N ;/Þ ¼ Bðe;wÞ ¼ BðU ;wÞ � Bðu;wÞ

¼ BðU ;wÞ
�

� bBBðU ;wÞ
�
þ bBBðU ;wÞ
�

�
Z T

0

ðf ;wÞdt � ðu0;wþ
0 Þ
�
6EQ þ EG:

The estimate (5.27) of EQ follows immediately from (5.13) with the addition of the terms involving dn. For
EG we argue as in the proof of Theorem 4.1. We first use (5.17) with v ¼ �ww 2 WD to get

bBBðU ;wÞ �
Z T

0

ðf ;wÞdt � ðu0;wþ
0 Þ ¼ bBBðU ;w� �wwÞ �

Z T

0

ðf ;w� �wwÞdt � ðu0;wþ
0 � �wwþ

0 Þ

¼
XN
n¼1

Z
In

ðbRR � vÞðtÞ; ðw� �wwÞðtÞ
� �

dt þ
XN
n¼1

ð½U �n�1; ðw� �wwÞþn�1Þ;

cf. (4.12). The proof is now completed as the proof of Theorem 4.1 with R replaced by bRR. h

Note that the estimates of the Galerkin error EG can be computed using the sparse quadrature and

therefore does not require storage of the whole history Un, 16 n6N . The sums in the quadrature error
estimate (5.27) can also be computed without storing the whole history. The optimal choice of v is the

orthogonal projection of bRR ¼ eRR þ dAU ,

v ¼ bRR ¼ eRR þ dAU ¼ eRR þ dAU ;

where in the last step we used that dAU is piecewise constant. Other choices are possible, for example, we

may choose v ¼ dAU in order to make the latter term disappear. In our numerical experiments in Section 7
we use v ¼ 0.

The a priori error estimate in Theorem 5.3 guarantees that, in general, the error converges to zero if the

mesh is refined. We are not able to prove this without adding the positive terms dj. On the other hand, the a

posteriori error estimate gives a bound for the actual error which reveals, in each particular case, if the error

converges or not. In the cases that we have examined in our numerical experiments we have obtained

convergence without the dj.
6. Adaptive strategy

The goal of the adaptive strategy is to provide a solution to the integro-differential equation within a user

defined tolerance, TOL. The adaptive strategy is based on a posteriori error estimates of the total error at

the final time T ¼ tN . More precisely, we base the strategy on two different estimates of the error, the exact

Galerkin error (5.24) given by

EG1 ¼ sup
k/k¼1

XN
n¼1

Z
In

ðbRR;wÞdt����� þ ð½U �n�1;w
þ
n�1Þ

�����;
or the estimated Galerkin error (5.26) given by

EG2 ¼ sup
k/k¼1

XN
k2nrG;nsG;n;
n¼1
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where, with the choice v ¼ 0,

rG;n ¼
1

kn

Z
In

kbRRkdt�
þ k½U �n�1k

�
; sG;n ¼

1

kn
min

Z
In

kwtkdt; 2max
In

kwk
� �

:

Additional error is introduced by sparse quadrature. The estimated quadrature error (5.27) is divided

into two parts

Eq ¼ sup
k/k¼1

XN
n¼1

k2nrq;nsq;n; ð6:1Þ

where

rq;n ¼
1

kn

XML

j¼1

�njkjkAUjk; sq;n ¼ max
In

kwk;

and

Ed ¼ sup
k/k¼1

XN
n¼1

k2nrd;nsd;n;

where

rd;n ¼
1

kn
dnkAUnk; sd;n ¼ max

In
kwk:

Using this notation, the estimate of the total error becomes

E1 ¼ EG1 þ Eq þ Ed;

or, using the estimated Galerkin error,

E2 ¼ EG2 þ Eq þ Ed ¼ sup
k/k¼1

XN
n¼1

k2nðrG;nsG;n þ rq;nsq;n þ rd;nsd;nÞ ¼ sup
k/k¼1

XN
n¼1

E2;n:

Finally, we recall the following relationship between the error estimates

ke�Nk6E1 6E2:

Note that the first estimate E1 is sharper, and will be used in the stop criterion. The latter estimate, on the

other hand, is used to adapt the mesh.

The stability factors sG;n, sq;n, sd;n must be evaluated. We suggest three possibilities: (i) In simple test

problems we may have an analytic solution formula for the adjoint solution wðtÞ ¼ EðtN � tÞ/, see our

numerical experiments below. (ii) More generally, in the case of the weakly singular kernel (1.3) we can use

a priori estimates of the form (4.4), (4.5), which leads to

sG;n 6Ca
1

kn
log

tN � tn�1

tN � tn
; n6N � 1;

sG;N 6
2

kN
; sq;n ¼ sd;n 6 1:

(iii) The adjoint problem may be solved numerically with some guess for the data / with k/k ¼ 1.

We choose a strategy with the purpose to equidistribute the error contributions E2;n from each time-step,

i.e., we aim at E2;n � TOL=N . The time-steps having an error contribution larger than E2;n are split into Cn

smaller elements of equal length k̂kn according to
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k̂kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TOL=N
rG;nsG;n þ rq;nsq;n þ rd;nsd;n

s
¼ kn

Cn
; ð6:2Þ

where kn is the time-step of element n from the previous mesh. Certainly, the number of elements N is not

known a priori, therefore we use the number of elements from the previous calculation. Note that the error
estimate E2 is used here because it is possible to sum the error contribution from the different elements. This

choice will also somewhat compensate for using the previous number of time-steps. In this way we obtain a

new mesh with steps kn, in which we choose sparse quadrature steps Kl. A natural choice of the sparse time-

steps is (see (5.11) and (5.12))

Kl ¼
ffiffiffi
�kk

p
; with �kk ¼ T=N : ð6:3Þ

Note that N is here the updated number of elements. For this choice of sparse step length, the first order

accuracy of the Galerkin method is preserved (which will be demonstrated by numerical experiments). The

strategy follows the procedure:

(1) Start with a uniform mesh and choose Kl according to (6.3) while imposing the margin tn � tML 2 ð1; 2Þ.
(2) Solve the primal problem for U 2 WD.

(3) Evaluate the error estimates E1 and E2.

(4) If E1 6TOL then stop, and if not modify the mesh where the error contribution is large, i.e.,

E2;n PTOL=N , by splitting these elements according to (6.2). Create Kl as in 1 and return to 2.
7. Numerical experiments

In the following examples we consider (1.4) with A ¼ 1 for different values of the fractional integral

exponent a. The equation then reads

utðtÞ þ
1

CðaÞ

Z t

0

uðsÞ
ðt � sÞ1�a ds ¼ f ðtÞ; t 2 ð0; T Þ;

uð0Þ ¼ u0:

ð7:1Þ

The weights xnj in (2.4) and ~xxnj in (5.7) are integrated analytically. The mean value �ffn in (2.4) of the source

term f and the integrals over In in the a posteriori estimates are computed using the trapezoidal rule, which

means that additional errors are introduced. These errors are not taken into account in the present study.

However, numerical experiments indicate that these errors are negligible.

7.1. Analytical solutions

We will here present an analytical solution to (7.1) with f ðtÞ ¼ f0 in the form of a series. This solution

will be used when validating the present numerical method. First we consider the Laplace domain solution

~uuðsÞ ¼ f0
s2ð1þ s�a�1Þ þ

u0
sð1þ s�a�1Þ : ð7:2Þ

Take c > 0 so that jc�a�1j < 1. Along the vertical line from c� i1 to cþ i1 in the s-plane, we have

~uuðsÞ ¼ f0
s2ð1þ s�a�1Þ þ

u0
sð1þ s�a�1Þ ¼

X1
n¼0

ð�1Þn f0s�ðð1þaÞnþ2Þ

þ u0s�ðð1þaÞnþ1Þ�;
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which converges uniformly on the vertical line in consideration. For t > 0, the inverse uðtÞ can be found as

uðtÞ ¼ L�1½~uuðsÞ�ðtÞ ¼ 1

2pi

Z cþi1

c�i1
~uuðsÞest ds

¼
X1
n¼0

ð�1Þn 1

2pi

Z cþi1

c�i1
½f0s�ðð1þaÞnþ2Þ þ u0s�ðð1þaÞnþ1Þ�est ds

¼
X1
n¼0

L�1½f0s�ðð1þaÞnþ2Þ þ u0s�ðð1þaÞnþ1Þ�:

Finally, by term-wise inversion (see, e.g., [14, p. 237]), we obtain

uðtÞ ¼
X1
n¼0

ð�1Þn f0
tð1þaÞnþ1

Cðð1þ aÞnþ 2Þ

�
þ u0

tð1þaÞn

Cðð1þ aÞnþ 1Þ


: ð7:3Þ

We are now in the position to investigate the convergence of the series solution. The asymptotic behavior of

the partial sum unðtÞ as n ! 1 is obtained by use of the following asymptotic formula for the Gamma

function (see, e.g., [1])

Cðazþ bÞ �
ffiffiffiffiffiffi
2p

p
e�azðazÞazþb�1=2

; jzj ! 1; j arg zj < p; b > 0: ð7:4Þ
Applying the ratio test, we now get

unþ1ðtÞ
unðtÞ

���� ���� � t
ðaþ 1Þðnþ 1Þ

� aþ1

! 0; as n ! 1; ð7:5Þ

which means that the series is convergent. But the convergence rate is rather slow (in particular for large

times). For given t we need to add

n >
t

aþ 1
� 1

terms before we can expect terms to begin to fall off in size. If a large number of terms is to be included in

the sum when evaluating uðtÞ the numerical stability can be lost. Obviously, there is a need for an asymp-

totic expression for uðtÞ for large times. Concerning the asymptotic behavior of uðtÞ, we formally use the
asymptotic theorem for the Laplace transform as s ! 0 (see, e.g., [17]). Thus, expanding ~uuðsÞ in (7.2) for

small s > 0 gives

~uuðsÞ �
X1
n¼0

ð�1Þn f0s�ðð1þaÞnþ2Þ�
þ u0s�ðð1þaÞnþ1Þ�; as s ! 0:

Formal term-wise Laplace inversion then yields an asymptotic series for uðtÞ:

uðtÞ �
X1
n¼0

ð�1Þn f0
t�ð1þaÞn�a

C½�ð1þ aÞnþ 1� a�

�
þ u0

t�ð1þaÞn�a�1

C½�ð1þ aÞn� a�

�
; as t ! 1:

Note that the above derivation is purely formal and requires detailed verification which we will not attempt

here. However, numerical calculations verify that the sum of the first few terms approximate uðtÞ well for
large times.

For comparison we consider the two extreme cases of a ¼ 0 and a ¼ 1. In the case of a ¼ 0, (7.1) with

f ðtÞ ¼ f0 becomes the parabolic equation

ut þ u ¼ f0; uð0Þ ¼ u0;
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with solution

uðtÞ ¼ f0ð1� e�tÞ þ u0e�t:

For a ¼ 1, (7.1) with f ðtÞ ¼ f0 becomes the hyperbolic equation

utðtÞ þ
Z t

0

uðsÞds ¼ f0; uð0Þ ¼ u0;

with solution

uðtÞ ¼ f0 sinðtÞ þ u0 cosðtÞ:
7.1.1. The adjoint solution

In the calculation of the error estimates we need the solution of the adjoint problem (cf. (4.1) with / ¼ 1

as the error is to be calculated at the final time T )

� wtðtÞ þ
Z T

t
bðs� tÞwðsÞds ¼ 0; bðtÞ ¼ 1

CðaÞ
1

t1�a
; t 2 ð0; T Þ;

wðT Þ ¼ / ¼ 1:

ð7:6Þ

In general we need to solve this problem numerically. However, in case of a fractional integral it is possible

to find an analytical solution. The solution takes the same form as the solution to the primal problem in
(7.3) with f0 ¼ 0, u0 ¼ 1 and t 7!T � t

wðtÞ ¼ EðT � tÞ/ ¼
X1
n¼0

ð�1Þn ðT � tÞð1þaÞn

Cðð1þ aÞnþ 1Þ ; ð7:7Þ

with asymptotic series for large T � t

wðtÞ �
X1
n¼0

ð�1Þn ðT � tÞ�ð1þaÞn�a�1

C½�ð1þ aÞn� a� : ð7:8Þ
7.2. Uniform mesh

To validate the discontinuous Galerkin method for integro-differential equations with weakly singular

kernel, we solve (7.1) using a uniform mesh with kn ¼ k ¼ 0:025 on t 2 ð0; 10Þ without sparse quadrature.

Different values of a 2 ð0; 1Þ, which is the relevant interval for viscoelastic applications, are used together

with f ðtÞ ¼ 1 and u0 ¼ 0:5. Fig. 2 shows the numerical solutions and the analytical solutions (7.3) to (7.1)

for three different a. As mentioned before, the case a ¼ 0 is a parabolic equation and the case a ¼ 1 is a

hyperbolic equation, whereas the intermediate values represent a mixed behavior, as a ¼ 0:67 indicates. The
corresponding adjoint solution according to (7.7) is displayed in Fig. 3. We note that most of the error

arises from the last time-steps, and that this behavior becomes more distinct then the equation is parabolic.

Further, Table 1 shows that the computed error E1 is in close agreement with the exact error eðtN Þ ¼
UN � uðtN Þ (obtained using the analytical solution (7.3)), while notably E2 is an over-estimate. As expected,

the error becomes comparatively larger for increasing a. The reason for this is that (7.1) becomes more

‘‘parabolic’’ with decreasing a, which means that errors are strongly damped. Moreover, we observe that

in the case of a ¼ 1 numerical damping is imposed, which can be understood by the fact that the dis-

continuous Galerkin method is similar to the backward Euler method.
We are now in the position to introduce sparse quadrature and investigate its effects on the total error.

The factor maxs2Inl jb
00ðsÞj, see (5.14), that enters in the quadrature error (6.1) shows that this error depends
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Fig. 2. Comparison of the analytical solution and the numerical solution for different values of a using constant time-steps

kn ¼ k ¼ 0:025.
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Fig. 3. The adjoint solution.

Table 1

Exact errors and computed errors for different values of a

a jeðtN Þj E1 E2

0.001 9.98· 10�7 1.19· 10�6 1.06· 10�5

0.67 3.14· 10�3 3.21· 10�3 1.34· 10�2

1 5.71· 10�2 5.73· 10�2 2.37· 10�1
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strongly on a (note that the error vanishes for a ¼ 0 and a ¼ 1). We compute the solution to (7.1) on
t 2 ð0; 10Þ with a ¼ 0:67, f ðtÞ ¼ 1 and u0 ¼ 0 for three uniform meshes with time-steps decreasing by a

factor ten. Two different choices of the parameter dn are used. First we choose dn as in Lemma 5.2, which
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guarantees stability. This results in the error contribution Ed. Then we choose dn ¼ 0, and consequently
Ed ¼ 0, which gives sharper error estimates. The computed errors and the contributions from their various

parts are shown in Table 2. We see that the solution converges for decreasing time-steps in both cases. Also

note that the total error decreases by the same factor as the time-step, reflecting that the first order accuracy

is retained. The first order accuracy of the Galerkin error is expected. The quadrature error, however,

requires the quadrature steps Kl to be chosen as in (6.3) while imposing tn � tML P 1 for the accuracy to be

preserved. Table 3 shows the error without using sparse quadrature. The maximum number of quadrature

steps L during the calculation is also shown in Table 2. Having in mind that we always have a margin

tn � tML 2 ð1; 2Þ, we observe that the major part of the time interval is covered by large quadrature steps.
This means that, for sufficiently large times the number of data that need to be stored and included in each

calculation is significantly reduced from OðnÞ to OðLÞ. It is also worth mentioning that if a spatial domain

is included we would benefit even more by using sparse quadrature.
Table 2

The total errors and their different parts for different step lengths when using sparse quadrature

N L E1 EG1 Eq Ed

100 28 9.62· 10�3 6.59· 10�3 1.47· 10�3 1.57· 10�3

1000 89 9.66· 10�4 7.05· 10�4 1.42· 10�4 1.19· 10�4

10 000 284 9.42· 10�5 6.98· 10�5 1.40· 10�5 1.05· 10�5

100 28 8.12· 10�3 6.65· 10�3 1.47· 10�3 0

1000 89 8.47· 10�4 7.05· 10�4 1.42· 10�4 0

10 000 284 8.37· 10�5 6.98· 10�5 1.40· 10�5 0

Table 3

The computed errors for different step lengths when using full quadrature

N E1

100 6.63· 10�3

1000 7.05· 10�4

10 000 6.98· 10�5
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Fig. 4. The time-steps after using the adaptive strategy.
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7.3. Adaptivity

Again we consider (7.1) on t 2 ð0; 10Þ with a ¼ 0:67, f ðtÞ ¼ 1 and u0 ¼ 0:5. The capability of the method

to handle variable step lengths and predict solutions within a given tolerance is investigated here. For this

purpose the adaptive strategy outlined in Section 6 with dn as in Lemma 5.2 is employed. When the tol-

erance is set to 1 · 10�3 and the number of time-steps initially are 100, three iterations are required (i.e., two

refinements are used) giving an upper limit to the error of E1 ¼ 5:96� 10�4 and a number of time-steps of

2093. Note that this is the error at the final time, it does not tell us anything about the error in the interior of
the interval. Further, Fig. 4 shows the time-mesh used in the last iteration suggested by the adaptive

strategy aiming to equidistribute the error contributions. For comparison, to obtain the same error with a

uniform mesh, 2573 time-steps need to be used. This means that we do not significantly benefit from using

adaptivity in this particular case.
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Fig. 5. The primal solution after using the adaptive strategy.
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Fig. 6. The time-steps after using the adaptive strategy.
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Next we consider the same problem with a variable source term,

f ðtÞ ¼
ð1=1:5Þt; t 2 ð0; 1:5Þ;
1; t 2 ð1:5; 8:5Þ;
1� ð1=1:5Þðt � 8:5Þ; t 2 ð8:5; 10Þ:

8<:
Also in this case three iterations are needed to meet the tolerance 1 · 10�3, resulting in 2406 time-steps and

the error E1 ¼ 4:50� 10�4. Figs. 5 and 6 show the primal solution and the time-mesh from the last iteration,

respectively. By comparing Figs. 4 and 6, we see that the time-steps vary more in the latter case, which gives
an indication that it is more preferable to use adaptivity. Computing with a uniform mesh, we find that it

takes 4511 time-steps to reach the same error. Due to the fact that the integro-differential equation contains

a convolution term this is a considerable gain in computational effort.
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