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Abstract

An efficient numerical method to integrate the constitutive response of fractional order viscoelasticity is developed.

The method can handle variable time steps. To overcome the problem of the growing amount of data that has to be

stored and used in each time step we introduce sparse quadrature. We use an internal variable formulation of the

viscoelastic equations where the internal variable is of stress type. The rate equation that governs the evolution of the

internal variable involves a fractional integral and can be identified as a Volterra integral equation of the second kind

with a weakly singular kernel. For the numerical integration of the rate equation we adopt the finite element method in

time, in particular the discontinuous Galerkin method with piecewise constant basis functions is used. A priori and a

posteriori error estimates are proved. An adaptive strategy based on the a posteriori error estimate is developed. Fi-

nally, the precision and effectiveness of the method are demonstrated by comparing the numerical solutions with

analytical solutions.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Fractional order operators (integrals and derivatives) have proved to be very suitable for modeling

memory effects of various materials and systems of technical interest. In particular, they are very useful for

modeling viscoelastic materials, see, e.g., [1,2]. Polymers in general show a weak frequency dependence of

their viscoelastic characteristics. This frequency dependence is difficult to describe with classical visco-

elasticity based on integer order operators in the rate laws for the internal variables. A large number of

derivative operators (or internal variables), resulting in many parameters, is required to obtain a reasonably

accurate description of the observed viscoelastic characteristics. By introducing fractional order operators
in the constitutive relations, the number of parameters can be significantly reduced. The fractional order
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viscoelastic model has successfully been fitted to experimental data over a broad frequency range for several
polymers using only four parameters (two ‘‘elastic’’ constants, one relaxation constant, and the non-

dimensional fractional order of differentiation) in the uniaxial case, see, e.g., [1]. The fractional order

viscoelastic model has also been successfully fitted to time domain rubber data at small strains in, e.g., [3].

A motivation for using fractional order operators in viscoelasticity is that a whole spectrum of visco-

elastic mechanisms can be included in a single internal variable. The stress relaxation spectrum for the

fractional order model is continuous with the relaxation constant as the most probable relaxation time,

while the order of the operator plays the role of a distribution parameter. Note that the spectrum is discrete

for the classical model that is based on integer order derivatives. By a suitable choice of material parameters
for the classical viscoelastic model it is observed both numerically and analytically that the classical model

with a large number of internal variables (each representing a specific viscoelastic mechanism) converges to

the fractional model with a single internal variable [4].

The drawback of the fractional order model is that when numerically integrating the constitutive re-

sponse the whole history of the internal variables must be saved and included in each time step. The most

commonly used algorithms for this integration are based on the Lubich [5,6] convolution quadrature for

fractional order operators (see, e.g., [7–9]). Discretization of fractional order differential equations using the

Lubich approach are also studied in [10–12]. The Lubich convolution quadrature requires uniformly dis-
tributed time steps or alternatively logarithmically distributed time steps as outlined in [12]. These are

cumbersome restrictions because it is not possible to use adaptivity and goal oriented error estimation.

From an engineering viewpoint it is important to assess the quality of the numerical algorithm with respect

to its capability to predict responses with high accuracy. This means that goal oriented error estimations

should be used.

The starting point for the present study is the numerical integration method for an integro-differential

equation with a weakly singular convolution kernel developed in a previous study [13] which is based on the

work in [14]. Here we develop an adaptive algorithm with a priori and a posteriori error estimates for the
integration of fractional order viscoelastic constitutive equations. The rate equation for the internal vari-

able is written in a form that involves a fractional integral operator (rather than a fractional derivative

operator) and may be identified as a Volterra integral equation with a weakly singular kernel. Fractional

integral operators are advantageous as they are less singular than fractional derivative operators and

therefore easier to handle numerically. For the numerical integration of the rate equation we adopt the

discontinuous Galerkin method with piecewise constant basis functions. This method is in particular well

suited for singular kernels in that the convolution integrals enter in the form of averages instead of point

values. The a posteriori error estimate forms the basis for the adaptive strategy. Following [13,14] we use
sparse quadrature in order to overcome the problem with the growing amount of data that has to be stored

and used in each time step. Sparsely distributed time steps are used in the distant part of the history while

small steps are used in the most recent part. The idea is to break up the convolution structure by using

piecewise linear interpolants of the kernel between the large steps in the distant part of the history. This

kind of sparse quadrature was first studied in [15,16]. A posteriori error analysis similar to the present work

was done in [17], but without sparse quadrature and without emphasis on the singular kernel.

In a few numerical examples, we consider the constitutive response. In particular, the stress relaxation

function (i.e., the stress response upon a unit strain) is calculated and compared to the analytical solution.
2. Fractional order viscoelasticity

We will now formulate a time domain linear viscoelastic model based on a single internal variable with

rate equation involving a fractional integral. The model is equivalent to the fractional derivative model of

viscoelasticity (see, e.g., [18,19]) in the sense that the models give the same constitutive stress response on a
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given strain history. Isothermal conditions and isotropy are assumed throughout the present study. For
constitutive modeling of anisotropic fractional order viscoelastic response we refer to [8]. First we define

fractional integration and differentiation. The Riemann–Liouville definition of fractional integration of

order a is (see, e.g., [20])

D�ayðtÞ ¼ 1

CðaÞ

Z t

0

yðsÞ
ðt � sÞ1�a ds:

The same definition can be used for fractional differentiation of order a by a formal replacement of �a by a
(a 6¼ 1; 2; 3; . . .),

DayðtÞ ¼ 1

Cð�aÞ

Z t

0

yðsÞ
ðt � sÞ1þa ds:

The convolution integral above is in general divergent and needs to be interpreted in the sense of its reg-

ularization. A convergent expression for the fractional derivative operator is obtained by splitting the

derivative operator into an integer order derivative and a fractional integral operator

Da ¼ DN�q ¼ DND�q;

where N is the integer that satisfies a < N < aþ 1 and 0 < q < 1. Specializing to 0 < a < 1, which is the

interesting interval in viscoelasticity, the definition of the fractional derivative can be written as

DayðtÞ ¼ 1

Cð1� aÞ
d

dt

Z t

0

yðsÞ
ðt � sÞa ds

� �
:

We note that the fractional differential operator is not a local operator, i.e., the derivative depends on the
whole history of the function.

Now consider the simplest uniaxial fractional derivative viscoelastic model that can reproduce instan-

taneous and long time elastic responses. By using the concept of internal, or non-observable, variables the

constitutive equation is formulated as two coupled equations (see [8])

rðtÞ ¼ E1ðeðtÞ � evðtÞÞ þ E2eðtÞ; ð2:1Þ

DaevðtÞ þ 1

sa
evðtÞ ¼ 1

sa
eðtÞ; evð0Þ ¼ 0; ð2:2Þ

where r is the stress and e is the (macroscopic) strain, while ev is an internal variable of strain type rep-

resenting a distribution of irreversible microstructural processes in the material, E1 > 0 and E2 > 0 are

elastic stiffnesses, s > 0 is the relaxation constant, and 0 < a6 1. When a < 1, the formal initial condition

to (2.2) would be a fractional integral Da�1evð0Þ ¼ 0, rather than evð0Þ ¼ 0. However, (having in mind that

the strain must be bounded)

evð0Þ ¼ 0 implies Da�1evð0Þ ¼ 0:

The initial condition above means that the model predicts an initial response following Hooke’s elastic law,

rð0Þ ¼ ðE1 þ E2Þeð0Þ ¼ Eð0Þeð0Þ; ð2:3Þ

where Eð0Þ ¼ E1 þ E2 is the instantaneous stiffness of the model.

The present method for evaluating the convolution integral requires that the kernel is integrable; we

therefore reformulate the rate equation to contain a fractional integral rather than a fractional derivative.

By applying the fractional integral operator D�a to the rate equation (2.2) with evð0Þ ¼ 0, while using the
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composition rule for fractional order operators (see [20]) and making the change of variable E1ðe� evÞ 7!rv,
the constitutive equations (2.1) and (2.2) can be written as

rðtÞ ¼ rvðtÞ þ E2eðtÞ; ð2:4Þ

rvðtÞ þ 1

sa
D�arvðtÞ ¼ E1eðtÞ; ð2:5Þ

where rv can be regarded as an internal variable of stress type. Note that these equations need not be

accompanied by initial conditions because no derivatives are involved. However, with t ¼ 0 in (2.5) we get

rvð0Þ ¼ E1eð0Þ which together with (2.4) leads to Hooke’s law (2.3). The rate equation (2.5) can be identified

as a Volterra integral equation of the second kind

rvðtÞ þ 1

sa

Z t

0

bðt � sÞrvðsÞds ¼ E1eðtÞ; t 2 ð0; T Þ;

with bðtÞ ¼ 1

CðaÞ t
�1þa; 0 < a6 1:

ð2:6Þ

The kernel function b in the fractional integral formulation (2.6) is weakly singular but integrable and

belongs to L1ð0; T Þ, while the kernel function in the fractional derivative formulation (2.2)

(� t�1�a 62 L1ð0; T Þ). This makes the fractional integral formulation easier to handle numerically and

suitable for the present method based on the discontinuous Galerkin method.

It is convenient to work with non-dimensional quantities. We therefore introduce the replacements:

r=Eð0Þ 7!r, rv=Eð0Þ 7!rv, E1=Eð0Þ 7!E1, E2=Eð0Þ 7!E2, t=s 7! t, and T=s 7!T . The change of variables does not
affect the expression for the total stress (2.4). The rate equation (2.6), however, is now given by

rvðtÞ þ
Z t

0

bðt � sÞrvðsÞds ¼ E1eðtÞ; t 2 ð0; T Þ;

with bðtÞ ¼ 1

CðaÞ t
�1þa; 0 < a6 1:

ð2:7Þ

For the sake of greater generality, and for the convenience of notation, we study the equation (2.7) in a

Hilbert space H with inner product ð�; �Þ and norm k � k. We also use the space L2ð0; T ;HÞ of square

integrable functions with values in H , equipped with the norm

kvk½L2ð0;T Þ� ¼
Z T

0

kvðtÞk2 dt
� �1=2

:

In structural mechanics, the stress and strain are defined in a spatial domain X and the natural Hilbert
space is H ¼ L2ðXÞ. However, it is customary to consider the constitutive response pointwise, i.e., the re-

sponse is regarded to be only a function of time and not a function of spatial coordinates. As a conse-

quence, in this case, H ¼ R (the space of real numbers) and ðu; vÞ ¼ uv and kuk ¼ juj. This is the situation in

our numerical experiments in Section 7.

We now derive a stability estimate for the solution of the continuous problem. It is well known that the

kernel function is positive definite for a 2 ð0; 1� in the sense that for any T P 0 (a proof can be found in [4]),Z T

0

Z t

0

bðt � sÞuðsÞuðtÞdsdtP 0; 8u 2 L2ð0; T ;RÞ: ð2:8Þ
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Take the inner product of (2.7) with rv and integrate with respect to t,Z T

0

ðrvðtÞ; rvðtÞÞdt þ
Z T

0

Z t

0

bðt � sÞðrvðsÞ; rvðtÞÞdsdt ¼
Z T

0

E1ðeðtÞ; rvðtÞÞdt: ð2:9Þ

By expanding rv in an ON-basis, rvðtÞ ¼
P1

i¼1 r
v
i ðtÞei, while using that the kernel function b satisfies (2.8),

we getZ T

0

Z t

0

bðt � sÞðrvðsÞ; rvðtÞÞdsdt ¼
X1
i¼1

Z T

0

Z t

0

bðt � sÞrv
i ðsÞrv

i ðtÞdsdtP 0: ð2:10Þ

Upon using (2.9) and (2.10) together with the Cauchy–Schwartz inequality, we obtainZ T

0

krvðtÞk2 dt6
Z T

0

E1jðeðtÞ; rvðtÞÞjdt6
Z T

0

E1keðtÞkkrvðtÞkdt;

and we arrive at

krvk2L2ð0;T Þ 6E1kekL2ð0;T Þkr
vkL2ð0;T Þ:

Finally, we have

krvkL2ð0;T Þ 6E1kekL2ð0;T Þ: ð2:11Þ

This implies that the solution is unique. Since the integral operator in (2.7) is compact in L2ð0; T ;HÞ, this
also implies existence of a solution, by the Fredholm theory. Thus, for any e 2 L2ð0; T ;HÞ there is a unique

solution rv 2 L2ð0; T ;HÞ to (2.7).
2.1. Three-dimensional formulation

In isotropic linear viscoelasticity it is customary to consider viscoelastic behavior under conditions of
pure shear and pure dilatation separately. This is done by decomposing the stress tensor rij and the strain

tensor eij in their deviatoric and volumetric parts,

rij ¼ sij þ 1
3
dijrkk and eij ¼ eij þ 1

3
dijekk;

where dij is the unity tensor and the summation convention is used.

The three-dimensional generalization of the viscoelastic model in (2.4) and (2.5) then reads, in dimen-

sional units,

sij ¼ svij þ 2G2eij; svij þ
1

saGG
D�aGsvij ¼ 2G1eij

and

rkk ¼ rv
kk þ 3K2ekk; rv

kk þ
1

saKK
D�aKrv

kk ¼ 3K1ekk;

where K1, K2, G1, and G2 are elastic stiffnesses, and sG and sK are relaxation constants in shear and volu-

metric responses, respectively, while aG and aK are the fractional integral exponents in shear and volumetric

responses, respectively. The initial response follows Hooke’s elastic law with

sijð0Þ ¼ 2ðG1 þ G2Þeijð0Þ ¼ 2Gð0Þeijð0Þ

and

rkk ¼ 3ðG1 þ G2Þekkð0Þ ¼ 3Kð0Þeijð0Þ;
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where Gð0Þ ¼ G1 þ G2, and Kð0Þ ¼ K1 þ K2 are identified as the instantaneous shear and bulk moduli,

respectively.

In the following, we develop methods for computing the constitutive response and error estimates for

the uniaxial case (2.4) and (2.7). However, essentially the same methods will apply for the three-dimen-

sional case by letting H ¼ R3�3 with inner product and norm ðu; vÞ ¼ uijvij and kuk ¼ ðuijuijÞ1=2, respec-
tively.
3. The discontinuous Galerkin method

Let 0 ¼ t0 < t1 < � � � < tn�1 < tn < � � � < tN ¼ T be a temporal mesh with time intervals, In ¼ ðtn�1; tnÞ,
and time steps, kn ¼ tn � tn�1. (Recall that we use non-dimensional time steps.) We define the finite element

space as

WD ¼ w : wðtÞf ¼ wn for t 2 In;wn 2 H ; n ¼ 1; . . . ;Ng:
Note that w 2 WD may be discontinuous at t ¼ tn; we write wn ¼ w�

n ¼ wþ
n�1.

The finite element approximation Rv 2 WD of the exact solution rv of (2.7) is given by,

Rv 2 WD; for n ¼ 1; . . . ;N ;Z
In

RvðtÞ
 

þ 1

CðaÞ

Z t

0

RvðsÞ
ðt � sÞ1�a ds� E1eðtÞ; vðtÞ

!
dt ¼ 0 8v 2 WD:

ð3:1Þ

Since the functions in WD are piecewise constant, we get

Rv
n þ qnðRvÞ � E1�en ¼ 0; ð3:2Þ

where

�en ¼
1

kn

Z tn

tn�1

eðtÞdt;

qnðRvÞ ¼ 1

kn

Z tn

tn�1

1

CðaÞ

Z t

0

RvðsÞ
ðt � sÞ1�a dsdt

¼ 1

kn

Z tn

tn�1

Xn
j¼1

1

CðaÞ

Z tj^t

tj�1

ðt � sÞa�1Rv
j dsdt ¼

Xn
j¼1

kjxnjR
v
j ;

xnj ¼
1

knkj

Z tn

tn�1

1

CðaÞ

Z tj^t

tj�1

ðt � sÞa�1
dsdt; tj ^ t ¼ minðtj; tÞ:

ð3:3Þ

Thus, in each time step we have to solve the following equation for Rv
n:

ð1þ knxnnÞRv
n ¼ E1�en �

Xn�1

j¼1

kjxnjR
v
j :

As we can see the discontinuous Galerkin method results in discrete equations where the terms enter in

form of averages instead of point values. This approach is in particular suitable for singular kernels. The
integrals in the expression for the weights xnj can be integrated analytically. Note that in the case of a

uniform mesh the set of weights from the previous time step can be reused in the subsequent time steps. This

is not possible with a non-uniform mesh. However, the computational cost to compute the weights is

comparatively low. The integration of the source term e must in general be carried out by a suitable

quadrature rule.
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In addition to the finite element space WD we introduce the space W of functions that are piecewise
smooth with respect to the temporal mesh. We may note that WD � W. Further, we define the bilinear

form B : W�W ! R by

Bðw; vÞ ¼
XN
n¼1

Z
In

wðtÞ
�

þ
Z t

0

bðt � sÞwðsÞds; vðtÞ
�
dt

¼
XN
n¼1

Z
In

wðtÞ; vðtÞ
�

þ
Z T

t
bðs� tÞvðsÞds

�
dt: ð3:4Þ

Using the first variant of (3.4), the finite element problem (3.1) becomes

Rv 2 WD : BðRv; vÞ �
Z T

0

ðE1e; vÞdt ¼ 0 8v 2 WD: ð3:5Þ

For later reference we note the weak form of (2.7),

rv 2 W : Bðrv; vÞ �
Z T

0

ðE1e; vÞdt ¼ 0 8v 2 W: ð3:6Þ
4. Sparse quadrature

We are now in the position to introduce sparse quadrature for the convolution term qn in (3.3), and

thereby reduce the computational cost. The idea is to create an additional time mesh with steps larger than

the original steps, and break up the convolution character by using linear interpolation of the kernel b in

(2.7) between the large steps. We introduce time levels 0 ¼ M0 < M1 < M2 < � � �, and replace the kernel

bðt � sÞ by a piecewise linear interpolant

~bðt; sÞ ¼ bðt � tMl�1
Þ/1;lðsÞ þ bðt � tMlÞ/2;lðsÞ; s 2 ½tMl�1

; tMl �; l ¼ 1; . . . ; L;
bðt � sÞ; s 2 ½tML ; t�;

�
where

/1;lðsÞ ¼
tMl � s
Kl

; /2;lðsÞ ¼
s� tMl�1

Kl
; Kl ¼ tMl � tMl�1

:

In order to have a margin from the singularity at s ¼ t in b we take L to be the largest integer such that

t � tML P 1, see Fig. 1.

We now define the quadrature formula, ~qnðuÞ � qnðuÞ for u 2 WD, as

~qnðuÞ ¼
1

kn

Z tn

tn�1

Z t

0

~bðt; sÞuðsÞdsdt ¼ 1

kn

Z tn

tn�1

Z tML

0

~bðt; sÞuðsÞds
 

þ
Z t

tML

bðt � sÞuðsÞds
!
dt

¼
XML

j¼1

1

knkj

Z tn

tn�1

Z tj

tj�1

~bðt; sÞdsdt kjuj

 !
þ
Xn

j¼MLþ1

1

knkj

Z tn

tn�1

Z tj^t

tj�1

bðt
 

� sÞdsdt kjuj

!

¼
XML

j¼1

~xnjkjuj þ
Xn

j¼MLþ1

xnjkjuj; ð4:1Þ
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Fig. 1. Time mesh including original time steps kn and sparse time steps Kl. Note the margin.
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where the weights xnj are defined in (3.3) and

~xnj ¼
1

knkj

Z tn

tn�1

Z tj

tj�1

~bðt; sÞdsdt: ð4:2Þ

The first part (where sparse quadrature is used) can be computed asXML

j¼1

~xnjkjuj ¼
XL
l¼1

~bnl;1~ul;1

�
þ ~bnl;2~ul;2

�
;

where

~bnl;1 ¼
1

kn

Z tn

tn�1

bðt � tMl�1
Þdt; ~bnl;2 ¼

1

kn

Z tn

tn�1

bðt � tMlÞdt

and

~ul;i ¼
XMl

j¼Ml�1þ1

Z tj

tj�1

/i;lðsÞdsuj; i ¼ 1; 2:
By using ~ul;i the number of data that needs to be stored and used in the first sum of the last row in (4.1) is

reduced from OðnÞ to OðLÞ. The finite element problem including sparse quadrature takes the form

Rv 2 WD : eBðRv; vÞ �
Z T

0

ðE1e; vÞdt ¼ 0 8v 2 WD;

where

eBðw; vÞ ¼XN
n¼1

Z
In

wðtÞ
�

þ
Z t

0

~bðt; sÞwðsÞds; vðtÞ
�
dt:

So instead of (3.2) we solve

Rv
n þ ~qnðRvÞ � E1�en ¼ 0:

We now estimate the quadrature error.

Theorem 4.1. The quadrature error of the fractional integral is bounded byZ t

0

ð~bðt; sÞ
���� � bðt � sÞÞuðsÞds

����6 XML

j¼1

�njkjkujk; 8u 2 WD; ð4:3Þ
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where

�nj ¼
1

8
max
s2Inl

jb00ðsÞjK2
l ; if j ¼ Ml�1 þ 1; . . . ;Ml; and

Inl ¼ ½tn�1 � tMl ; tn � tMl�1
�:

ð4:4Þ

The global quadrature error is bounded by

jeBðw; vÞ � Bðw; vÞj6
XN
n¼1

kn
XML

j¼1

�njkjkwjk
 !2

0@ 1A1=2

kvkL2ð0;tN Þ; 8w 2 WD; 8v 2 W:
Proof. By using the standard interpolation error formula, with ~s 2 ½tMl�1
; tMl �, we getZ t

0

ð~bðt; sÞ
���� � bðt � sÞÞuðsÞds

����6 XL
l¼1

XMl

j¼Ml�1þ1

1

kj

Z
Ij

j~bðt; sÞ � bðt � sÞjdskjkujk

6
1

2

XL
l¼1

XMl

j¼Ml�1þ1

1

kj

Z
Ij

jb00ðt � ~sÞjðs� tMl�1
ÞðtMl � sÞdskjkujk

6
1

8

XL
l¼1

XMl

j¼Ml�1þ1

max
s2Inl

jb00ðsÞjK2
l kjkujk:

The bound for the global quadrature error is obtained by using the definitions of B and eB together with

(4.3)

jeBðw; vÞ � Bðw; vÞj ¼
Z tN

0

Z t

0

ð~bðt; sÞ
�				 � bðt � sÞÞwðsÞds; vðtÞ

�
dt

				
6

Z tN

0

Z t

0

ð~bðt; sÞ
���� � bðt � sÞÞwðsÞds

����kvðtÞkdt
6

Z tN

0

Z t

0

ð~bðt; sÞ
����

 
� bðt � sÞÞwðsÞds

����2 dt
!1=2 Z tN

0

kvðtÞk2 dt
� �1=2

6

XN
n¼1

kn
XML

j¼1

�njkjkwjk
 !2

0@ 1A1=2

kvkL2ð0;tN Þ;

where in the last step we used that �nj is piecewise constant with respect to the original mesh. h

The factor (4.4) that enters in the quadrature error can explicitly be written as

max
s2Inl

jb00ðsÞj ¼ jb00ðtn�1 � tMlÞj ¼
ð1� aÞð2� aÞ

CðaÞ ðtn�1 � tMlÞ
�3þa

: ð4:5Þ

The factor in (4.5) will be large if sparse quadrature is used close to the singularity point at s ¼ t, which
motivates the previous choice of margin t � tML P 1. Note that in the special case of a ¼ 1 (ordinary

integration) this factor becomes zero. This means that the quadrature error is zero, as expected.

The modified kernel ~bðt; sÞ is not necessarily positive definite in the sense of (2.8). The positive defi-

niteness is needed in order to prove a priori error estimates (stability) of the present numerical method. As

in [13,14] we therefore add a positive term dðtÞ ¼ dn for t 2 In to the quadrature formula:
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q̂nðuÞ ¼ ~qnðuÞ þ dnun:

The following lemma is identical to [14, Lemma 5.2]. The proof is a combination of (2.10) and (4.3).

Lemma 4.2. Assume that the numbers dj are positive and increasing with dj P �NjtN=2, where �Nj is defined in
(4.4). Then we have the following analog of (2.8):Z tN

0

Z t

0

~bðt; sÞuðsÞds
�

þ dðtÞuðtÞ;uðtÞ
�
dtP 0; 8u 2 WD:

The final form of the finite element problem becomes

Rv 2 WD : bBðRv; vÞ �
Z T

0

ðE1e; vÞdt ¼ 0 8v 2 WD; ð4:6Þ

where

bBðw; vÞ ¼XN
n¼1

Z
In

wðtÞ
�

þ
Z t

0

~bðt; sÞwðsÞdsþ dðtÞwðtÞ; vðtÞ
�
dt;

and instead of (3.2) we now solve

Rv
n þ q̂nðRvÞ � E1�en ¼ 0:

The additional term dn calls for a modification of the global quadrature error.

Theorem 4.3. The global quadrature error is bounded by

jbBðw; vÞ � Bðw; vÞj6
XN
n¼1

kn
XML

j¼1

�njkjkwjk
 !2

0@ 1A1=2

kvkL2ð0;tN Þ

þ
XN
n¼1

knðdnkwnkÞ2
 !1=2

kvkL2ð0;tN Þ; 8w 2 WD; 8v 2 W: ð4:7Þ

Proof. We begin by rewriting the bilinear form according tobBðw; vÞ � Bðw; vÞ ¼ eBðw; vÞ�
� Bðw; vÞ

�
þ bBðw; vÞ�

� eBðw; vÞ�:
Hence,

jbBðw; vÞ � Bðw; vÞj6 jeBðw; vÞ � Bðw; vÞj þ jbBðw; vÞ � eBðw; vÞj:
The first term was estimated in Theorem 4.1 and the second term is treated analogously by using that

dðtÞ ¼ dn and wðtÞ ¼ wn for t 2 In. h
5. Error estimates

We define the error e ¼ Rv � rv 2 W. Then by using the first variant of (3.4) and (3.6), we have

Bðe; vÞ ¼ BðRv; vÞ � Bðrv; vÞ ¼ BðRv; vÞ �
Z T

0

ðE1e; vÞdt: ð5:1Þ
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By introducing the residual
rðtÞ ¼ RvðtÞ þ
Z t

0

bðt � sÞRvðsÞds� E1eðtÞ; ð5:2Þ
we obtain the following equation in weak form for the error:
e 2 W : Bðe; vÞ ¼
Z T

0

ðr; vÞdt 8v 2 W: ð5:3Þ
5.1. A priori error estimates

In this section we prove a priori error estimates for the discontinuous Galerkin method with piecewise

constant basis functions together with sparse quadrature. However, we begin by considering the case

without sparse quadrature.

Theorem 5.1. Let Rv and rv be the solutions to (3.5) and (3.6), respectively. Further, let �rv 2 WD denote the
orthogonal projection of rv onto the space of piecewise constant functions, determined by
�rvðtÞ ¼ k�1
n

Z
In

rvðsÞds; t 2 In: ð5:4Þ
Then, for all tN P 0,
kRv � rvkL2ð0;tN Þ 6Cakrv � �rvkL2ð0;tN Þ 6Ca

XN
n¼1

kn min kn

Z
In

krv
t k

2
dt; 4max

In
krvk2

� 
 !1=2

;

where Ca ¼ 2þ taN=ðaCðaÞÞ and rv
t ¼ drv=dt.

Proof. We begin the proof by showing that the bilinear form B is positive. By using the first variant of B in

(3.4), we get

Bðv; vÞ ¼
Z tN

0

kvðtÞk2 dt þ
Z tN

0

Z t

0

bðt � sÞðvðsÞ; vðtÞÞdsdt:

Here the last term is non-negative, see (2.10), so that

Bðv; vÞP kvk2L2ð0;tN Þ 8v 2 W: ð5:5Þ

Now, let e ¼ ðRv � �rvÞ þ ð�rv � rvÞ ¼ hþ q. Note that h 2 WD and q 2 W. In view of (3.5) and (5.3)

Bðh; vÞ ¼ Bðe; vÞ � Bðq; vÞ ¼ �Bðq; vÞ 8v 2 WD: ð5:6Þ
By choosing v ¼ h in (5.5) and (5.6), we get

khk2L2ð0;tN Þ 6 jBðq; hÞj: ð5:7Þ
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The right-hand side of (5.7) can be estimated as

jBðq; hÞj ¼
Z tN

0

ðqðtÞ; hðtÞÞdt
				 þ

Z tN

0

Z t

0

bðt
�

� sÞqðsÞds; hðtÞ
�
dt

				
6

Z tN

0

kqðtÞkkhðtÞkdt þ
Z tN

0

Z t

0

bðt
���� � sÞqðsÞds

����khðtÞkdt
6

Z tN

0

kqðtÞk2 dt
� �1=2 Z tN

0

khðtÞk2 dt
� �1=2

þ
Z tN

0

Z t

0

bðt
����

 
� sÞqðsÞds

����2 dt
!1=2 Z tN

0

khðtÞk2 dt
� �1=2

: ð5:8Þ

Upon using the following inequalityZ tN

0

Z t

0

bðt
����

 
� sÞqðsÞds

����2 dt
!1=2

6

Z tN

0

kbðtÞkdt
Z tN

0

kqðtÞk2 dt
� �1=2

; ð5:9Þ

while combining (5.7) and (5.8), we arrive at

khkL2ð0;tN Þ 6 ð1þ kbkL1ð0;tN ÞÞkqkL2ð0;tN Þ:

Since kekL2 6 khkL2 þ kqkL2 this completes the proof for the first estimate.

For the intervals where rv
t exists, we can use the formula

rvðtÞ � �rvðtÞ ¼ 1

kn

Z
In

ðrvðtÞ � rvðsÞÞds ¼ 1

kn

Z
In

Z t

s
rv
t ðrÞdrds

to getZ
In

kðrv � �rvÞðtÞk2 dt6 k2n

Z
In

krv
t ðtÞk

2
dt:

We also have the alternative estimate, to be used when rv
t is unbounded or large,Z

In

kðrv � �rvÞðtÞk2 dt6 kn max
t2In

kðrv � �rvÞðtÞk2 6 4kn max
In

krvk2;

and the second estimate follows. h

We will now discuss the convergence of the present approximation method. First we consider the case

when rv
t 2 L2ð0; tN ;HÞ. In this case the method is of first order, OðkÞ. In order to show this we let

k ¼ max16 n6N kn. ThenXN
n¼1

k2n

Z
In

krv
t k

2
dt

 !1=2

6 k2krv
t k

2

L2ð0;tN Þ

� �1=2
¼ kkrv

t kL2ð0;tN Þ: ð5:10Þ

Next we consider the case when rv is discontinuous (unbounded rv
t ) at a finite number of time points,

resulting from discontinuities in e. In this case the method will be of order Oðk1=2Þ, but still convergent. For
an interval containing such a discontinuity, we have

4kn max
In

krvk2
� �1=2

6 2k1=2 max
In

krvk: ð5:11Þ
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The total error estimate will then consist of a finite number of contributions of the form (5.11) plus a term

of the form (5.10) with the discontinuity intervals excluded. Thus the order is Oðk1=2Þ. This motivates the

use of adaptivity in viscoelastic applications. It is favorable to take shorter time steps in the vicinity of

discontinuities in the strain to maintain the original precision.

In the next theorem we include sparse quadrature.

Theorem 5.2. Let rv and Rv be the solutions to (3.6) and (4.6), respectively, with dj as in Lemma 4.2. Let also
�rv be as in (5.4). Then, for all tN P 0,

kRv � rvkL2ð0;tN Þ 6Cakrv � �rvkL2ð0;tN Þ þ EQ 6Ca

XN
n¼1

kn min kn

Z
In

krv
t k

2
dt; 4max

In
krvk2

� 
 !1=2

þ EQ;

where Ca ¼ 2þ taN=ðaCðaÞÞ, and EQ is a bound for the quadrature error

EQ ¼
XN
n¼1

kn
XML

j¼1

�njkj max
Ij

krvk
 !2

0@ 1A1=2

þ
XN
n¼1

kn
�
dn max

In
krvk

�2 !1=2

: ð5:12Þ

Proof. We modify the proof of Theorem 5.1. Let e ¼ ðRv � �rvÞ þ ð�rv � rvÞ ¼ hþ q. ThenbBðh; vÞ ¼ �Bðq; vÞ � ðbBð�rv; vÞ � Bð�rv; vÞÞ 8v 2 WD:

We choose v ¼ h here. By Lemma 4.2 we have bBðh; hÞP khk2L2ð0;tN Þ and hence

khk2L2ð0;tN Þ 6 jBðq; hÞj þ jbBð�rv; hÞ � Bð�rv; hÞj;

which, in view of k�rvðtÞk6 maxIj krvk in Ij, (4.7), (5.8) and (5.9), proves the desired result. h

In the following we show that the first order accuracy can be preserved when sparse quadrature is in-

cluded. The first terms in Theorems 5.1 and 5.2 are the same, so it remains to consider EQ. Let

K ¼ max16 l6L Kl. Then we have an upper bound for �nj in (4.4) as

�nj ¼
1

8
max
s2Inl

jb00ðsÞjK2
l 6

1

8
max
s2Inl

jb00ðsÞjK2: ð5:13Þ

Further, we choose dj in accordance with Lemma 4.2 as

dj ¼
tN
16

max
s2INl

jb00ðsÞjK2; ð5:14Þ

where b00 is given by (4.5); recall that l depends on j in (5.13) and (5.14). Upon using (5.13) and (5.14) in the

quadrature error EQ (5.12), we finally get

EQ 6K2
XN
n¼1

kn
XML

j¼1

1

8
max
s2Inl

jb00ðsÞjkj max
Ij

krvk
 !2

0@ 1A1=2

~þK2
XN
n¼1

kn
tN
16

max
s2INl

jb00ðsÞjmax
In

krvk
� �2

 !1=2

: ð5:15Þ

The quadrature error is evidently second order accurate OðK2Þ. So the choice K ¼ k1=2 (while having a

suitable margin to the singularity point at s ¼ t) will retain the original order of the method.
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The purpose of the sparse quadrature in (4.1) is to reduce the storage requirement and hence the
operation count of the algorithm. However, when a finite margin tN � tML P 1 is used, the storage is

asymptotically the same as for the original method in (3.3). Nevertheless, if the time interval is large we

expect a substantial reduction of the storage. We illustrate this in the case of a uniform mesh with step k,
sparse step K ¼

ffiffiffi
k

p
, and final time T ¼ Nk. The storage requirement for the original method is �N , while

the sparse part of the sum in (4.1) requires �L � T=K ¼
ffiffiffiffi
T

p ffiffiffiffi
N

p
and the margin part �k�1 ¼ T�1N . Thus,

for fixed T , the storage for both methods grows linearly with N , but for large T the slope is much smaller for

the sparse method. This is even more important in a structural analysis calculation, where Rv
n belongs to a

high-dimensional space resulting from spatial discretization.
5.2. A posteriori error estimates

In this section we develop a posteriori error estimates, i.e., errors expressed in terms of the finite element

solution Rv. These estimates will be used in the numerical computations and constitute the basis for the

adaptive strategy.

First we consider the case without using sparse quadrature. Recall that the error is defined as e ¼
Rv � rv.

Theorem 5.3. Let rv be the exact solution of (3.6) and let Rv be the finite element solution of (3.5) with T ¼ tN .
Then, for all tN P 0,

kRv � rvkL2ð0;tN Þ 6 krkL2ð0;tN Þ;

where the residual r is defined in (5.2).

Proof. By using v ¼ e ¼ Rv � rv in (5.3), we obtain

Bðe; eÞ ¼
Z tN

0

ðrðtÞ; eðtÞÞdt6 krkL2ð0;tN ÞkekL2ð0;tN Þ: ð5:16Þ

Then by using the positivity property (5.5) of B, we get

kek2L2ð0;tN Þ 6Bðe; eÞ6 krkL2ð0;tN ÞkekL2ð0;tN Þ;

and the desired result follows. h

In the case of sparse quadrature an additional error arises which will be incorporated in Theorem 5.4.

The a posteriori error estimates are based on the positivity of B rather than bB. This means that dj need not
be chosen in accordance with Lemma 4.2 to prove a posteriori estimates, but the stability might be lost.

However, in the present numerical examples stability is achieved with dj ¼ 0.

Theorem 5.4. Let rv be the exact solution of (3.6) and let Rv be the finite element solution of (4.6) with dj P 0.
Further, denote the residual

r̂ðtÞ ¼ ð1þ dðtÞÞRvðtÞ þ
Z t

0

~bðt; sÞRvðsÞds� E1eðtÞ: ð5:17Þ

Then, for all tN P 0,

kRv � rvkL2ð0;tN Þ 6EG þ EQ:
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The first part is an estimate of the Galerkin error
EG ¼ kr̂kL2ð0;tN Þ; ð5:18Þ

and the second part is an estimate of the quadrature error

EQ ¼
XN
n¼1

kn
XML

j¼1

�njkjkRv
jk

 !2
0@ 1A1=2

þ
XN
n¼1

knðdnkRv
nkÞ

2

 !1=2

: ð5:19Þ
Proof. By adding and subtracting bB to (5.1) with v ¼ e, we obtain

Bðe; eÞ ¼ bBðRv; eÞ
�

�
Z tN

0

ðE1e; eÞdt
�
þ BðRv; eÞ
�

� bBðRv; eÞ
�
:

Hence, using (5.17), we obtain

Bðe; eÞ6
Z tN

0

ðr̂; eÞdt
				 				þ bBðRv; eÞ

			 � BðRv; eÞ
			:

The first part is estimated in the same way as in (5.16) of Theorem 5.3 by making the replacement r 7! r̂Z tN

0

ðr̂; eÞdt
				 				6 kr̂kL2ð0;tN ÞkekL2ð0;tN Þ:

The last part is Theorem 4.3

jbBðRv; eÞ � BðRv; eÞj6
XN
n¼1

kn
XML

j¼1

�njkjkRv
jk

 !2
0@ 1A1=2

kekL2ð0;tN Þ þ
XN
n¼1

knðdnkRv
nkÞ

2

 !1=2

kekL2ð0;tN Þ:

Finally, combining the two estimates while using (5.5) with v ¼ e, we arrive at

kek2L2ð0;tN Þ 6Bðe; eÞ6 ðEG þ EQÞkekL2ð0;tN Þ;

which completes the proof. h

Note that the quadrature sum in the quadrature error (5.19) is a sparse sum. This means that the effort to

compute the a posteriori error estimate and the solution Rv is equivalent.
An alternative, and possibly sharper, estimate can be formulated by means of a duality argument. For

this purpose we introduce the adjoint problem to (2.7) with source term e ¼ Rv � rv,

wðtÞ þ 1

CðaÞ

Z T

t

wðsÞ
ðs� tÞ1�a ds ¼ eðtÞ; t 2 ð0; T Þ: ð5:20Þ

By the replacement t 7!T � t the adjoint problem takes the same form as the primal problem (2.7) with

E1e ¼ e. For this reason the adjoint solution satisfies stability estimates of the same form as the primal
solution, see (2.11), and we have

kwkL2ð0;T Þ 6 kekL2ð0;T Þ:

Using the second variant of Bðw; vÞ in (3.4) we have the weak form of (5.20),

w 2 W : Bðw;wÞ ¼
Z T

0

ðw; eÞdt 8w 2 W: ð5:21Þ
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Then by letting w ¼ e in (5.21) and v ¼ w in (5.3), we obtain a representation of the error in the L2-norm,

kek2L2ð0;T Þ ¼
Z T

0

ðr;wÞdt: ð5:22Þ

In the theorem below we present increasingly larger a posteriori error estimates.

Theorem 5.5. Let rv be the exact solution of (3.6), let Rv be the finite element solution of (4.6) with dj P 0, and
let w be the solution of (5.21). Further, let �w 2 WD denote the orthogonal projection of w onto the space of
piecewise constant functions, determined by

�wðtÞ ¼ k�1
n

Z
In

wðsÞds; t 2 In:

Then, for all tN P 0,

kRv � rvk2L2ð0;tN Þ 6
Z tN

0

ðr̂;wÞdt
				 				þXN

n¼1

Eq;nkwkL2ðInÞ 6
XN
n¼1

kr̂kL2ðInÞkw� �wkL2ðInÞ þ
XN
n¼1

Eq;nkwkL2ðInÞ;

ð5:23Þ

where r̂ is defined in (5.17) and

Eq;n ¼ k1=2n

XML

j¼1

�njkjkRv
jk þ k1=2n dnkRv

nk:
Proof. We begin as in the proof of Theorem 5.4,

jBðe;wÞj6
Z tN

0

ðr̂;wÞdt
				 				þ bBðRv;wÞ

			 � BðRv;wÞ
			: ð5:24Þ

Due to the orthogonality of (4.6) and since �w 2 WD, we obtainZ tN

0

ðr̂;wÞdt
				 				 ¼ Z tN

0

ðr̂;w
				 � �wÞdt

				6 XN
n¼1

kr̂kL2ðInÞkw� �wkL2ðInÞ:

The last part is obtained in a similar way as in Theorem 4.3,

jbBðRv;wÞ � BðRv;wÞj6
XN
n¼1

Eq;nkwkL2ðInÞ:

Finally, by inserting the two estimates above in (5.24) while using (5.3) and (5.22), the proof follows. h

Note that this estimate is not straightforward to use because it requires a reasonably good approxi-

mation of the error to be used as the data of the adjoint problem. This could be achieved by solving the

primal problem on a finer mesh. Moreover, the adjoint problem needs to be solved on the fine mesh and its

solution inserted into (5.23). The potentially sharper estimate of Theorem 5.5 thus requires additional

computational work. Therefore, we use the estimate of Theorem 5.4 as the basis for our adaptive algorithm.
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6. Adaptive strategy

In this section we develop an adaptive strategy. The goal of the strategy is to produce an approximate

solution to (2.4) and (2.7) with an error below a user defined tolerance, TOL. Here the L2-norm is used to

measure the error.

The adaptive strategy is based on the a posteriori error estimates and the purpose is to equidistribute the

error contribution from each time step. We recall the error estimate in Theorem 5.4,

kekL2ð0;tN Þ 6E ¼ EG þ EQ;

where we now have introduced E as the total estimated error. The first part of the error E is the estimated

Galerkin error in (5.18)

EG ¼
XN
n¼1

Z
In

kr̂k2 dt
 !1=2

; ð6:1Þ

while the second part of the error E is the estimated quadrature error in (5.19) (for convenience split into

two parts)

EQ ¼ EQ1 þ EQ2 ¼
XN
n¼1

kn
XML

j¼1

�njkjkRv
jk

 !2
0@ 1A1=2

þ
XN
n¼1

knðdnkRv
nkÞ

2

 !1=2

:

We now need a stop criterion and a modification strategy for creating a new set of time steps. As a stop
criterion, we choose E6TOL. In order to obtain a strategy to adapt the mesh it is more convenient to use

the squared L2-norm. We obtain the following relations

kek2L2ð0;tN Þ 6 ðEG þ EQÞ2 6 2ðE2
G þ E2

QÞ6 2E2
G þ 4ðE2

Q1 þ E2
Q2Þ:

With the aim to equidistribute the error contributions from the different time steps, we introduce

XN
n¼1

knRn ¼
XN
n¼1

TOL2

N
;

where

Rn ¼
1

kn

Z
In

2kr̂k2 dt þ 4
XML

j¼1

�njkjkRv
jk

 !2

þ 4ðdnkRv
nkÞ

2
:

From this expression and the previous time step kn, a new time step k̂n can be calculated by

k̂n ¼
kn
Cn

� TOL2

NRn
; ð6:2Þ

where Cn is the number of subintervals that the interval In should be divided into. Note here that we use N
and Rn from the previous mesh since these quantities are not known a priori. In this way a new mesh is

obtained, in which we choose sparse quadrature steps Kl. In order to retain the first order accuracy of the
original Galerkin method, a natural choice of the sparse time steps is (see (5.15))

Kl ¼
ffiffiffi
�k

p
; with �k ¼ T=N ; ð6:3Þ

where N now is the updated number of elements. Below we outline the procedure:
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(1) Start with a uniform mesh and choose Kl according to (6.3) while imposing the margin tn � tML 2 ð1; 2Þ.
(2) Solve the primal problem for Rv 2 WD.

(3) Compute the total error estimate E and Rn for n ¼ 1; . . . ;N .

(4) If E6TOL then stop, and if not modify the mesh where the error contribution is large, i.e.,

knRn PTOL2=N , by splitting these elements according to (6.2). Create Kl as in 1 and return to 2.
7. Numerical examples

In this section we verify the numerical method by solving the non-dimensional viscoelastic problem (2.4)

and (2.7) numerically for some simple but realistic loading cases. We also compute error estimates of the

numerical solutions expressed in the L2-norm. In all examples, fictitious materials with non-dimensional

stiffnesses E1 ¼ E2 ¼ 1=2, and integration order a 2 ð0; 1� are considered. The weights xnj in (3.3) and ~xnj in

(4.2) are integrated analytically. The estimated Galerkin error in (6.1) needs to be integrated carefully to

ensure that the error is negligible compare to the discretization error of the method. Numerical experiments

indicate that the trapezoidal rule is sufficient as well as efficient for this purpose.

7.1. Uniform mesh

We begin by solving the viscoelastic equations on a uniformly distributed (non-dimensional) time mesh

for t 2 ð0; 10Þ using the discontinuous Galerkin method in its original form, i.e., without sparse quadrature.

We compute the stress response due to the following step strain

eðtÞ ¼ 1; tP 0;
0; t < 0:

�
ð7:1Þ

In this case we have an analytical solution, which can be used to compute the true error. The solution reads

(see [19])

rðtÞ ¼ 1

2
Eað�taÞ þ 1

2
;

where

EaðuÞ ¼
X1
k¼0

uk

Cð1þ akÞ

is the Mittag–Leffler function of order a. In Fig. 2 the numerical solutions with time steps kn ¼ 0:067 are

compared to the analytical solutions for different values of a. We see that the largest error in the stress

occurs in the region close to the discontinuity in the strain. To show that the numerical method is first order

accurate we solve the same problem with different time steps for a ¼ 0:67. The discontinuity in the strain

coincides with a node point which means that we expect a first order accuracy according to the a priori

error estimate (5.10). From Table 1 we observe a first order error. Note that the estimated error E is in close

agreement with the exact error kekL2 . Next consider the same problem but now with the step strain applied

at t ¼ 0:0555, which implies that the discontinuity occurs inside a time step for the meshes in consideration.
According to (5.11) we now expect a square root order of the error which is seen in Table 2. In order to

investigate the reliability of the error estimate in the case of a variable source term, we calculate the stress

response to the harmonic strain

eðtÞ ¼ sinðptÞ; tP 0;
0; t < 0

�
ð7:2Þ
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Fig. 2. The stress response due to a unit step strain imposed at time t ¼ 0. Numerical solutions are compared with analytical solutions

for different values of a.

Table 1

Exact errors kekL2 and estimated errors E for different time steps with a ¼ 0:67

N kekL2 E

100 1.71· 10�2 1.82· 10�2

1000 2.04· 10�3 2.07· 10�3

10,000 2.19· 10�4 2.19· 10�4

Discontinuity in the strain coincides with a node.

Table 2

Estimated errors E for different time steps with a ¼ 0:67

N E

100 8.34· 10�2

1000 2.71· 10�2

10,000 7.87· 10�3

Discontinuity in the strain lies inside an element.
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for a ¼ 0:67 on t 2 ð0; 10Þ with kn ¼ 0:1. In this case the mean values �en in (3.3) can not be exactly
evaluated. Instead the right endpoint rule is used. Here we have no analytical solution. Instead a

numerical solution obtained on a finer mesh kn ¼ 0:001 is used to estimate the true error. In the case of

kn ¼ 0:1 the estimated error becomes E ¼ 2:11� 10�1 while the estimated true error becomes

kekL2 � 1:91� 10�1. This shows that the sharpness of the error estimate is well sufficient also for the

harmonic source term.
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7.1.1. Sparse quadrature

We now introduce sparse quadrature in the numerical algorithm and investigate its effect on the solution.

The integral exponent considered is here a ¼ 0:5 while the time mesh is still uniform for t 2 ð0; 10Þ. Sparse
quadrature steps are chosen uniformly as Kl ¼

ffiffiffiffiffiffiffiffiffiffi
T =N

p
while the margin is forced to be in the interval

tn � tML 2 ð1; 2Þ, which is in accordance with the margin proposed in Section 4. Two different choices of dn
are used. First we choose dn as in (5.14) which guarantees stability. Second, for simplicity, we choose dn ¼ 0.

First consider the harmonic strain in (7.2). The total error estimates and their different parts are given in

Table 3. Both solutions converge with a first order rate of convergence as predicted in (5.10) and (5.15). We
observe that the error contribution mostly arises from the Galerkin error. This means that we may consider

taking longer sparse quadrature steps and/or use a shorter margin. Fig. 3 shows the stress response to the

harmonic strain when N ¼ 1000 and dn ¼ 0. For comparison the stationary solution (obtained using

Fourier transformation technique)
Table 3

The total estimated errors and their different parts for different time steps in the case of the harmonic strain

N L E EG EQ1 EQ2

100 28 2.02· 10�1 1.96· 10�1 2.21· 10�3 3.49· 10�3

1000 89 2.14· 10�2 2.09· 10�2 2.07· 10�4 2.69· 10�4

10,000 284 2.17· 10�3 2.12· 10�3 2.02· 10�5 2.39· 10�5

100 28 1.98· 10�1 1.96· 10�1 2.21· 10�3 0

1000 89 2.11· 10�2 2.09· 10�2 2.07· 10�4 0

10,000 284 2.14· 10�3 2.12· 10�3 2.02· 10�5 0
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Fig. 3. The stress response due to the harmonic strain in (7.2) using sparse quadrature. For comparison the stationary solution is also

shown.
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rðtÞ ¼ 1

2

1þ 2p2a þ 3pa cosðap=2Þ
1þ p2a þ 2pa cosðap=2Þ

� �
sinðptÞ þ 1

2

pa sinðap=2Þ
1þ p2a þ 2pa cosðap=2Þ

� �
cosðptÞ

is also displayed. Note that the transient decays fast due to the high damping inherent in the viscoelastic

model with the present choice of parameters.

Second consider the step strain in (7.1). In this case the history effects become stronger than in the

previous harmonic case. The total error estimates and their different parts are given in Table 4. Again, we
observe that the convergence rate is of first order. Fig. 4 shows the stress response to the step strain when

N ¼ 1000 and dn ¼ 0.

Tables 3 and 4 also show the maximum number of large time steps L in the calculations. We observe that

the major part of the time interval is covered by the large time steps. This means that for sufficiently large

times the number of data that needs to be stored is reduced from OðnÞ to OðLÞ. It is also worth mentioning

that in a structural analysis calculation the benefit of using sparse quadrature will increase significantly

because the stress response is to be computed at each Gauss point of the structure.
Table 4

The total estimated errors and their different parts for different time steps in the case of the step strain

N L E EG EQ1 EQ2

100 28 2.17· 10�2 1.83· 10�2 1.64· 10�3 1.75· 10�3

1000 89 2.82· 10�3 2.56· 10�3 1.40· 10�4 1.28· 10�4

10,000 284 3.48· 10�4 3.23· 10�4 1.36· 10�5 1.14· 10�5

100 28 2.00· 10�2 1.83· 10�2 1.64· 10�3 0

1000 89 2.69· 10�3 2.56· 10�3 1.40· 10�4 0

10,000 284 3.36· 10�4 3.23· 10�4 1.36· 10�5 0
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Fig. 4. The stress response due to the step strain in (7.1) using sparse quadrature.
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7.2. Adaptivity

We now investigate the capability of the numerical method to handle variable time steps and to produce

a solution with an error below a user defined tolerance, TOL. For this purpose we use the adaptive strategy

developed in Section 6. Since no indication of lost stability has been observed with dn ¼ 0, we keep this

choice. We compute the stress due to a unit step strain followed by a step unloading

eðtÞ ¼ 1; t 2 ð0; 2:5Þ;
0; otherwise:

�
ð7:3Þ

The analytical solution is given by

rðtÞ ¼
1
2
Eað�taÞ þ 1

2
; t 2 ð0; 2:5Þ;

1
2
Eað�taÞ � Eað�ðt � 2:5ÞaÞð Þ þ 1

2
; otherwise:

�

Again, we consider t 2 ð0; 10Þ and a ¼ 0:5. We set TOL ¼ 1� 10�2 and introduce a minimum step length

kn ¼ 0:005 to prevent unnecessary short steps which may be suggested since information from the previous

calculation is used. With an initial mesh of 100 uniform steps, two iterations (i.e., one refinement) are

needed to meet the tolerance. The strategy suggests 334 time steps. Table 5 shows the result of the two

iterations. Figs. 5 and 6 show the solutions after each iteration. Finally, Fig. 7 shows the time mesh sug-
Table 5

Estimated errors when using the adaptive strategy

N L E EG EQ1 EQ2

100 28 2.65· 10�2 2.52· 10�2 1.36· 10�3 0

334 50 3.64· 10�3 3.28· 10�3 3.66· 10�4 0
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Fig. 5. The stress response to the strain in (7.3) after the first iteration.
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Fig. 6. The stress response to the strain in (7.3) after the second (final) iteration.
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Fig. 7. The time step distribution suggested by the adaptive strategy.
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gested by the adaptive strategy aiming to equidistribute the error contribution from the different steps. For
comparison, to obtain the same error E ¼ 3:64� 10�3 with a uniform mesh, 1011 time steps need to be

used. Having in mind that the equation contains a convolution integral the use of adaptivity results in a

considerable gain in computational cost.
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