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Abstract. We derive pointwise a posteriori residual-based error estimates for finite element
solutions to the Stokes equations in polyhedral domains. The estimates relies on the regularity of
the of Stokes equations and provide an upper bound for the pointwise error in the velocity field
on polyhedral domains. Whereas the estimates provide upper bounds for the pointwise error in the
gradient of the velocity field and the pressure only for a restricted class of polyhedral domains, convex
polyhedral domains in R2, and polyhedral domains with angles at edges < 3π/4 in R3. In the cause
of this study we also derive Lq a posteriori error estimates, generalizing well known L2 estimates.
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1. Introduction. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain and consider
the Dirichlet Stokes problem in dimensionless form

−∆u + ∇p = f in Ω,

∇ · u = g in Ω,

u = 0 on ∂Ω,

(1.1)

where u = (u1, . . . , un) is the unknown velocity field, p is the unknown pressure, f =
(f1, . . . , fn) is an external body force and g is a function prescribing the compressibility
of the flow, for incompressible flows g = 0.

The purpose of this paper is to establish residual-based pointwise a posteriori error
estimates for conforming finite element approximations (uh, ph) to the Stokes problem
(1.1). Only requiring that the finite element mesh is regular, allowing adaptively
refined meshes, we obtain a number of error estimates.

1. For polyhedral domains we derive pointwise error estimates for the velocity
field

‖uh − u‖L∞(Ω) ≤ E1(uh, ph, f, g, Ω, T ).

2. For convex polyhedral domains in R2, and for polyhedral domains in R3 with
angles at edges < 3π/4 we derive pointwise error estimates for the gradient
of the velocity field

‖∇(uh − u)‖L∞(Ω) ≤ E2(uh, ph, f, g, Ω, T )

3. For polyhedral domains as specified in Item 2 above we derive pointwise error
estimates for the pressure

‖ph − p‖L∞(Ω) ≤ E3(uh, ph, f, g, Ω, T ).

4. For polyhedral domains and for q ∈ [2n/(n + 1), 2n/(n − 1)] we also derive
the following Lq-estimate

‖∇(uh − u)‖Lq(Ω) + ‖ph − p‖Lq(Ω) ≤ E4(uh, ph, f, g, Ω, T ).
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The right hand sides E1,2,3,4 in the estimates above are functions derived from
the residuals, depending on the finite element solution, the data, the domain and the
triangulation.

The first estimate in Item 1 relies on the fact that, for sufficiently regular data,
the velocity field is Hölder continuous in polyhedral domains. Similarly, the pointwise
estimates for the gradient of the velocity field, Item 2, and the pressure, Item 3,
require continuity. This is generally not obtained in polyhedral domains without
imposing extra constraints, convexity for polyhedral domains in R2 and a minimum
inner angle condition, < 3π/4 at edges, for polyhedral domains in R3 [14]. We note
that estimating the gradient of the velocity field is somewhat more involved since ∇uh

is discontinuous at the (n − 1)-faces of the triangulation.
The fourth estimate in Item 4 relies on Lq-regularity estimates stated in [3] for

Lipschitz domains and also in [14] for polyhedral domains. It is a straightforward
generalization of the L2-based estimates in [23].

The techniques used to prove the pointwise error estimate is inspired by [16],
where an a posteriori residual-based pointwise error estimate was derived for Poisson’s
equation in two dimensions, later this analysis was also done in three dimensions for
conforming and non-conforming finite elements [4]. The techniques provided in [16]
has also been applied to: the obstacle problem [8, 17], contact problems [18], and
monotone semi-linear equations [15]. Moreover we note the related and independent
work [6]. We remark that the gradient of the solution was not considered in these
[16, 4].

The pointwise a priori error analysis for the Stokes problem was worked out in
two dimensions for convex domains and quasiuniform triangulations [5], and in three
dimensions for polyhedral domains with the similar type of constraints as mentioned
above and for quasiuniform triangulations [11].

1.1. Assumptions and notation. We only consider functions defined on bounded
domains ω ⊆ Ω ⊂ Rn, n = 2, 3, with measure denoted by |ω|, and where Ω is associ-
ated with the Stokes problem (1.1) and the dual problem (1.4).

Let {ei}n
i=1 denote the canonical unit vectors, e1 = (1, 0) and e2 = (0, 1) for n = 2

and e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) for n = 3.
We denote the i:th partial derivative by

Di :=
∂

∂xi
, i = 1, . . . , n,

and the gradient by

∇ := (D1, . . . , Dn),

and the matrix of second order derivatives

∇2 := (DiDj)
n
i,j=1.

We use standard notation for spaces of smooth functions, for example, Cm(ω),
C∞

0 (ω) and Cm,γ(ω), and for Lebesgue and Sobolev spaces, Lq(ω) = W 0,q(ω), W k,q(ω)

and W k,q
0 (ω), see for example [1]. For u ∈ Lq(ω) or u ∈ W k,q(ω) we use the following

notation for the norm

‖u‖Lq(ω) = ‖u‖q,ω and ‖u‖W q,k(ω) = ‖u‖q,k,ω,

and likewise for the corresponding seminorms |u|q,k,ω.
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When q = 2 Lq(ω) = L2(ω) becomes a Hilbert space and we denote the scalar
product by

(u, v)ω :=

∫

ω

uv dx.

For u ∈ W 1,q
0 (ω) or for u ∈ W 1,q(ω) with

∫

ω0

u dx = 0 for some non empty

ω0 ⊂ ω, the norm is equivalent to the seminorm, ‖u‖1,q,ω ≈ |u|1,q,ω, see for example
[22, Lemma 1.1.1–2, pp. 43–44]. We will use this equivalence without further notice
throughout this work.

We denote the dual exponent to q by q′ = q/(q−1) and the dual space to W k,q
0 (ω)

by W−k,q′

(ω) with the dual norm

‖u‖−k,q′,ω := sup
ϕ∈C∞

0
(ω)

|〈u, ϕ〉|

‖ϕ‖k,q,ω
, (1.2)

where 〈·, ·〉 denotes the duality pairing.
Generally, for a vector space V we denote its dual space by V ′ with dual norm

‖u‖V ′ := sup
ϕ∈V

|〈u, ϕ〉|

‖ϕ‖V
,

for example, W k,q
0 (ω)′ := W−k,q′

(ω).
When ω = Ω we sometimes write Lq instead of Lq(Ω) and ‖·‖q instead of ‖·‖q,Ω

and likewise for Sobolev spaces and their norms and the L2 scalar product.
We use the quotient space W k,q/R with the norm

‖v‖W k,q/R := inf
c∈R

‖v + c‖k,q.

For vector fields

Ω ∋ x 7→ u(x) = (u1(x), . . . , un(x)) ∈ Rn

we set

∇u := (Diuj)
n
i,j=1,

∇2u := (DiDjuk)n
i,j,k=1,

and for u = (u1, . . . , un) ∈ W k,q(Ω)n we use the Sobolev (Lebesgue) norm

‖u‖k,q :=

(

n
∑

i=1

‖ui‖
q
k,q

)1/q

,

and the corresponding seminorms, the maximum norms

‖u‖∞ := max
i

‖ui‖∞,

‖∇u‖∞ := max
i,j

‖Diuj‖∞,

and the scalar product

(u, v) =

n
∑

i=1

(ui, vi).
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We also use the product spaces W1,q := W 1,q
0 (Ω)n × Lq(Ω)/R with the norm

‖(u, p)‖W1,q := ‖u‖1,q + ‖p‖Lq/R,

and W2,q := (W 2,q(Ω)n × W 1,q(Ω)) ∩ W1,s where s = nq/(n − q), see Theorem 1.3,
with the norm

‖(u, p)‖W2,q := ‖u‖2,q + ‖p‖W 1,q/R.

Finally, throughout this work we use C or Ci, i = 1, 2, . . ., to denote various
constants, not necessarily with the same value from time to time.

1.2. Weak formulation. We follow the standard notation, cf. [12, 23], and
define the bilinear form

L((u, p), (φ, λ)) := a(u, φ) + b(φ, p) − b(u, λ),

for test functions (φ, λ) and where

a(u, φ) :=

∫

Ω

n
∑

i,j=1

∂ui

∂xj

∂φi

∂xj
dx and b(φ, p) := −

∫

Ω

(∇ · φ)p dx.

For data f ∈ W−1,q and g ∈ Lq such that
∫

Ω
g dx = 0 and for 2n/(n + 1) <

q < 2n/(n − 1) there is a unique weak solution to (1.1), see Theorem 1.1 for a more
precise statement. The weak formulation of (1.1) now reads. Find (u, p) ∈ W1,q(Ω)
such that

L((u, p), (φ, λ)) = 〈f, φ〉 + (g, λ) ∀(φ, λ) ∈ W1,q′

(Ω), (1.3)

where 〈·, ·〉 denotes the appropriate duality pairing.
The dual problem to (1.1) is

−∆ũ −∇p̃ = f̃ in Ω,

−∇ · ũ = g̃ in Ω,

ũ = 0 on ∂Ω,

(1.4)

where f̃ ∈ W−1,q′

and g̃ ∈ Lq′

such that
∫

Ω
g̃ dx = 0 and for 2n/(n + 1) < q′ <

2n/(n− 1). The corresponding weak formulation is. Find (ũ, p̃) ∈ W1,q′

(Ω) such that

L((φ, λ), (ũ, p̃)) = 〈φ, f̃〉 + (λ, g̃) ∀(φ, λ) ∈ W1,q(Ω). (1.5)

1.3. Existence and regularity in non-smooth domains. For any domain
Ω ⊂ Rn, n = 2, 3, and data f ∈ W−1,2(Ω)n and g ∈ L2(Ω) such that

∫

Ω g dx = 0, it

is well known that there exists a unique weak solution (u, p) ∈ W 1,2
0 (Ω)n × L2(Ω)/R

to (1.1), see for example [22, Chaper 3] and references therein. For sufficiently regular
domains and data there are several extensions such that (u, p) ∈ W 1,q

0 (Ω)n×Lq(Ω)/R,
see Remark 1.1 below. In Theorem 1.1 we quote one example of such an extension
where the Stokes problem is formulated on Lipschitz domains. This is a slight modifi-
cation of [3, Theorem 2.9] where it was provided with g = 0. However the case g 6= 0
is readily included.

Theorem 1.1. Let Ω ⊂ Rn, n = 2, 3, be a bounded Lipschitz domain. There exist
ε > 0 such that if (3 + ε)/(2 + ε) < q < 3 + ε and f ∈ W−1,q(Ω)n and g ∈ Lq(Ω) with
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∫

Ω
g dx = 0, then there exist a unique weak solution (u, p) ∈ W 1,q

0 (Ω)n × Lq(Ω)/R to
(1.1). Moreover, the solution satisfies the inequality

‖u‖1,q + ‖p‖Lq/R ≤ C
(

‖f‖−1,q + ‖g‖q

)

, (1.6)

for some C = C(n, q, Ω).

Proof. For g = 0 this is [3, Theorem 2.9]. For g 6= 0 we use the method of
subtracting the divergence, see for example [22, Theorem 1.4.1, p. 114], to handle the
non-homogenous compressibility constraint.

For Ω and g as stated there exists v ∈ W 1,q
0 (Ω)n such that

∇ · v = g and ‖v‖1,q ≤ C‖g‖q, (1.7)

see, for example, [22, Lemma 2.1.1, p. 68]. Taking w = u − v we see that (1.1) is
equivalent to

−∆w + ∇p = f + ∆v, ∇ · w = 0, in Ω,

and w|∂Ω = 0. Now [3, Theorem 2.9] implies that there exist a unique pair (w, p) ∈
W 1,q

0 (Ω)n × Lq(Ω)/R satisfying the above equations and the inequality

‖w‖1,q + ‖p‖Lq/R ≤ C‖f + ∆v‖−1,q,

for some C = C(n, q, Ω).

Thus, (u, p) ∈ W 1,q
0 (Ω)n×Lq(Ω)/R is a unique solution to (1.1) and the estimate

above implies that

‖u‖1,q + ‖p‖Lq/R ≤ C
(

‖f‖−1,q + ‖v‖1,q + ‖∆v‖−1,q

)

.

The inequality (1.6) now follows from the estimate in (1.7) and the fact that ‖∆v‖−1,q ≤
‖v‖1,q.

Remark 1.1. (1) For n = 2 the results of the theorem actually holds with (4 +
ε)/(3 + ε) < q < 4 + ε. This is provided in the same way as for n = 3 [21]. (2) For
polyhedral domains a similar theorem was established in [14], in particular, for convex
polyhedral domains the result holds with 1 < q < ∞. (3) For C1-domains there is a
similar theorem again with 1 < q < ∞, see for example [9].

As a consequence of Theorem 1.1 and Remark 1.1 we obtain the following inf-sup
like estimate.

Corollary 1.2. For q and Ω as in Theorem 1.1 we have

‖(u, p)‖W1,q ≤ C sup
(φ,λ)∈W1,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W1,q′

∀(u, p) ∈ W1,q(Ω), (1.8)

where C = C(n, q′, Ω).
Proof. Let (φi, λi) be the solutions to the following problems

−∆φ1 −∇λ1 = f̃ , ∇ · φ1 = 0, in Ω; φ1|∂Ω = 0,

−∆φ2 −∇λ2 = 0, ∇ · φ2 = g̃ − g̃0, in Ω; φ2|∂Ω = 0,

where f̃ ∈ W−1,q′

(Ω)n and g̃ ∈ Lq′

(Ω) with the mean g̃0 = |Ω|−1
∫

Ω
g̃ dx.
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With Theorem 1.1 applied to the above problems and with (1.5) we get

sup
(φ,λ)∈W1,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W1,q′

≥
1

2

(

|L((u, p), (φ1, λ1))|

‖(φ1, λ1)‖W1,q′

+
|L((u, p), (φ2, λ2))|

‖(φ2, λ2)‖W1,q′

)

≥ C

(

|〈u, f̃〉|

‖f̃‖−1,q′

+
|(p, g̃ − g̃0)|

‖g̃ − g̃0‖q′

)

(1.9)

Since W 1,q and Lq are reflexive for 1 < q < ∞ we get

sup
f̃∈W−1,q′ (Ω)n

|〈u, f̃〉|

‖f̃‖−1,q′

= ‖u‖1,q,

and since (p, g̃ − g̃0) = (p − p0, g̃), where p0 = |Ω|−1
∫

Ω p dx, we have

sup
g̃∈Lq′(Ω)

|(p, g̃ − g̃0)|

‖g̃ − g̃0‖q′

≥
1

2
inf
c∈R

sup
g̃∈Lq′ (Ω)

|(p + c, g̃)|

‖g̃‖q′

=
1

2
‖p‖Lq/R,

where we also used the estimate ‖g̃ − g̃0‖q′ ≤ 2‖g̃‖q′ .

Now since (1.9) is valid for any f̃ ∈ W−1,q′

(Ω)n and for any g̃ ∈ Lq′

(Ω) we may
take the supremum with respect to f̃ and g̃, which together with the last two estimates
above completes the proof.

The next theorem concerns the W 2,q(Ω)n × W 1,q(Ω)-regularity of the solution
to (1.1) in polyhedral domains. The theorem is due to [14], for a review see [13],
although it is formulated somewhat differently here.

Theorem 1.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain and let 1 < q ≤ 4/3.
Suppose f ∈ Lq(Ω)n and g ∈ W 1,q(Ω) such that

∫

Ω
g dx = 0. Then there exist a

unique weak solution (u, p) ∈ W 1,s
0 (Ω)n × Ls(Ω)/R to (1.1) for s = nq/(n − q) such

that (u, p) ∈ W 2,q(Ω)n × W 1,q(Ω). Moreover, the solution satisfies the inequality

‖u‖2,q + ‖p‖W 1,q/R ≤ C
(

‖f‖q + |g|1,q

)

, (1.10)

for some C = C(n, q, Ω).
Proof. By virtue of Theorem 1.1 and Remark 1.1 we obtain the existence, since by

Sobolev’s imbedding theorem we have Lq ⊂ W−1,s and W 1,q ⊂ Ls for s = nq/(n−q),
1 < q ≤ 4/3 and we readily check that 2 ≤ s ≤ 4 for n = 2 and (3 + ε)/(2 + ε) < s <
3 + ε for n = 3 and any ε > 0.

The regularity (u, p) ∈ W 2,q(Ω)n ×W 1,q(Ω) follows from [14, Theorem 5.3] which
is also true provided (u, p) ∈ W 1,s

0 (Ω)n×Ls(Ω)/R [19]. The estimate (1.10) is then as
consequence of the open mapping theorem, see for example [7, Corollary 5.11, p. 162].

Remark 1.2. (1) For n = 2 and if the maximum inner angle in the polyhedral
domain is less than π − δ for some δ > 0, then the result can be extended to hold
with 1 < q ≤ 2 + ε for some ε > 0 [19] and cf. [14, §5.5]. (2) For n = 3 and if
the maximum inner angle at the edges in the polyhedral domain is less than 3π/4− δ
for some δ > 0, then the result can be extended to hold with 1 < q ≤ 3 + ε for some
ε > 0 [19] and cf. [14, §5.5]. (3) For C1-domains there is a similar theorem with
1 < q < ∞, see for example [9]. In cases (1) and (2) the existence is also true since
for convex domains Theorem 1.1 is modified as in Remark 1.1.
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We now state a corollary where we assume that we have the higher regularity in
Remark 1.2.

Corollary 1.4. Suppose that the solution (ũ, p̃) to (1.4) with data as in Theorem
1.3 belongs to W 2,q′

(Ω)n×W 1,q′

(Ω) for some q′ > n. Then the solution (u, p) to (1.1)
satisfies

‖u‖q + ‖p‖W 1,q′ (Ω)′/R ≤ C
(

‖f‖−2,q + ‖g‖W 1,q′(Ω)′

)

, (1.11)

for some C = C(n, q′, Ω) and where 1/q +1/q′ = 1 and W 1,q′

(Ω)′/R is the dual space
to W 1,q′

(Ω)/R.
Proof. We use the same technique as in the proof of Corollary 1.2. With (1.3) we

estimate

‖f‖−2,q + ‖g‖W 1,q′ (Ω)′ = sup
φ∈C∞

0
(Ω)n

|〈f, φ〉|

‖φ‖2,q′

+ sup
λ∈W 1,q′/R

|〈g, λ〉|

‖λ‖W 1,q′/R

≥ sup
(φ,λ)∈W2,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W2,q′

.

Let (φi, λi) be the solutions to the following problems

−∆φ1 −∇λ1 = f̃ , ∇ · φ1 = 0, in Ω; φ1|∂Ω = 0,

−∆φ2 −∇λ2 = 0, ∇ · φ2 = g̃ − g̃0, in Ω; φ2|∂Ω = 0,

where f̃ ∈ Lq′

(Ω)n and g̃ ∈ W 1,q′

(Ω) with the mean g̃0 = |Ω|−1
∫

Ω
g̃ dx. We assumed

that (φi, λi) ∈ W 2,q′

(Ω)n × W 1,q′

(Ω) and thus we estimate

sup
(φ,λ)∈W2,q′

|L((u, p), (φ, λ))|

‖(φ, λ)‖W2,q′

≥
1

2

(

|L((u, p), (φ1, λ1))|

‖(φ1, λ1)‖W2,q′

+
|L((u, p), (φ2, λ2))|

‖(φ2, λ2)‖W2,q′

)

≥ C

(

|(u, f̃)|

‖f̃‖q′

+
|〈p, g̃ − g̃0〉|

|g̃|1,q′

)

,

(1.12)

for some C = C(n, q′, Ω).
Since Lq and W 1,q′

(Ω)′ are reflexive for 1 < q < ∞ we get

sup
f̃∈Lq′ (Ω)n

|〈u, f̃〉|

‖f̃‖q′

= ‖u‖q,

and since (p, g̃ − g̃0) = (p − p0, g̃), where p0 = |Ω|−1
∫

Ω p dx, we have

sup
g̃∈W 1,q′ (Ω)

|〈p, g̃ − g̃0〉|

|g̃|1,q′

≥ inf
c∈R

sup
g̃∈W 1,q′ (Ω)

|〈p + c, g̃〉|

‖g̃‖1,q′

= ‖p‖W 1,q′(Ω)′/R.

Now since (1.12) is valid for any f̃ ∈ Lq′

(Ω)n and any g̃ ∈ W 1,q′

(Ω) we may take
the supremum with respect to f̃ and g̃, which together with the last two estimates
above completes the proof.
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1.4. Finite element formulation. Let {T }h>0 denote a family of regular tri-
angulations of Ω and let hT denote the diameter of an n-simplex T ∈ T and set
hmin = minT∈Th

hT .
We only consider conforming finite element spaces, Xh ⊂ W 1,q

0 (Ω)n for the
velocity and, Mh/R ⊂ Lq(Ω)/R for the pressure and define the product space
Wh = Xh × Mh/R. From (1.3) we obtain the finite element formulation. Find
(uh, ph) ∈ Wh such that

L((uh, ph), (φh, λh)) = 〈f, φh〉 + (g, λh) ∀(φh, λh) ∈ Wh. (1.13)

As usual we also require that Wh satisfies the inf-sup condition [12], that is,

‖(uh, ph)‖W1,2 ≤ C sup
(φh,λh)∈Wh

|L((uh, ph), (φh, λh))|

‖(φh, λh)‖W1,2

, (1.14)

for all (uh, ph) ∈ Wh, which implies that (1.13) is well posed.
We particularly have in mind the family of Taylor-Hood finite elements, see fore

example [12], which satisfy the above requirements.
We recall a few standard results from interpolation theory, see for example [20].

Let ST denote the union of all simplices adjacent to T and let IXh
and IMh

denote
interpolation operators IXh

: Wm,q
0 (Ω)n → Xh and IMh

: Wm−1,q(Ω)/R → Mh/R.
For integers ℓ = 0, 1, m = 1, . . ., and (φ, λ) ∈ Wm,q(ST )n × Wm−1,q(ST )/R, we have

‖∇ℓ(φ − IXh
φ)‖q,T ≤ Chm−ℓ

T |φ|m,q,ST
, (1.15)

and

‖λ − IMh
λ‖Lq(T )/R ≤ Chm−1

T |λ|W m−1,q(ST )/R. (1.16)

On the boundary, ∂T , we use the trace inequality [9, Theorem 3.3, p. 43] and scale
it appropriately, i.e., for w ∈ W 1,q(T ) we obtain the estimate

‖w‖q,∂T ≤ C
(

h
−1/q
T ‖w‖q,T + h

1−1/q
T |w|1,q,T

)

,

and hence

‖φ − IXh
φ‖q,∂T ≤ Ch

m−1/q
T |φ|m,q,ST

. (1.17)

We also use inverse estimates, see for example [2, Theorem 4.5.3, p. 111]. For any
T ∈ T , let V be a finite dimensional subspace of W k,q(T )∩Wm,s(T ), where 1 ≤ q ≤ ∞
and 1 ≤ s ≤ ∞ and 0 ≤ m ≤ k. Then there exist a constant C such that for all v ∈ V

‖v‖k,q,T ≤ Ch
m−k+n/q−n/s
T ‖v‖m,s,T . (1.18)

2. Error analysis . We consider the error in the finite element solution to (1.13),

eu := uh − u and ep := ph − p,

and note that (eu, ep) ∈ W1,q, since the finite elements are conforming.
Define the residual in the momentum equation (me) by

Rme := f + ∆uh −∇ph ∈ W−1,q(Ω)n, (2.1)
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and the residual in the compressibility constraint (cc) by

Rcc := g −∇ · uh ∈ Lq(Ω), (2.2)

where we note that
∫

Ω
Rcc dx = 0.

In weak form the residual becomes

R((uh, ph), (φ, λ)) := 〈f, φ〉 + (g, λ) − L((uh, ph), (φ, λ)), (2.3)

for all (φ, λ) ∈ W1,q′

.
From (1.3) we obtain the identity

L((eu, ep), (φ, λ)) = R((uh, ph), (φ, λ)) ∀(φ, λ) ∈ W1,q′

(2.4)

and from (1.13) and it follows

R((uh, ph), (φh, λh)) = 0 ∀(φh, λh) ∈ Wh, (2.5)

which is the classical Galerkin orthogonality.
Inspired by [8, Lemma 3.1] we now provide the following lemma.
Lemma 2.1. For q ∈ [1,∞], and m = 1, 2, there is a constant C such that

|R((uh, ph), (φ, λ))| ≤ Cηm,q

(

|φ|m,q′ + |λ|W m−1,q′ /R

)

,

for all (φ, λ) ∈ Wm,q′

where

ηm,q =







(

∑

T∈T ηq
m,q,T

)1/q

for q ∈ [1,∞),

maxT∈T ηm,∞,T for q = ∞,

with

ηm,q,T = hm
T ‖Rme‖q,T +

1

2
h

m−1/q′

T ‖[∂νuh]‖q,∂T\∂Ω + hm−1
T ‖Rcc‖q,T .

Here [∂νuh] denotes the jump across ∂T in the normal derivative, ∂νuh = ν · ∇uh,
where ν denotes the outward normal to ∂T .

Proof. By (2.5) and by integration by parts

R((uh, ph), (φ, λ)) = R((uh, ph), (φ − IXh
φ, λ − IMh

λ))

=
∑

T∈T

(

(f + ∆uh −∇ph, φ − IXh
φ)T

+
1

2
([∂νuh], φ − IXh

φ)∂T\∂Ω

+ (g −∇ · uh, λ − IMh
λ)T

)

.

Since
∫

Ω
(g −∇ · uh) dx = 0, we have

(g −∇ · uh, λ − IMh
λ)T = inf

c∈R

(g −∇ · uh, λ − IMh
λ + c)T

and hence by Hölder’s inequality,

|R((uh, ph), (φ, λ))|

≤
∑

T∈T

(

‖f + ∆uh −∇ph‖q,T ‖φ − IXh
φ‖q′,T

+
1

2
‖[∂νuh]‖q,∂T\∂Ω‖φ − IXh

φ‖q′,∂T\∂Ω

+ ‖g −∇ · uh‖Lq(T )‖λ − IMh
λ‖Lq′ (T )/R

)

.

(2.6)
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Thus, with the interpolation estimates (1.15)–(1.17) in (2.6) we get

|R((uh, ph), (φ, λ))|

≤ C
∑

T∈T

(

hm
T

(

‖f + ∆uh −∇ph‖q,ST

+
1

2
h

1/q′

T ‖[∂nuh]‖q,∂T\∂Ω

)

|φ|m,q′,ST

+ hm−1
T ‖g −∇ · uh‖Lq(T )|λ|W m−1,q′ (ST )/R

)

.

(2.7)

Finally, we conclude the proof by using Hölder’s inequality for sums and the notation
in (2.1) and (2.2).

Let (ũ, p̃) be the solution to the dual problem (1.5). By choosing (φ, λ) = (ũ, p̃)
in (2.4) we get

L((eu, ep), (ũ, p̃)) = R((uh, ph), (ũ, p̃)),

and by choosing (φ, λ) = (eu, ep) in (1.5) we obtain

L((eu, ep), (ũ, p̃)) = 〈eu, f̃〉 + (ep, g̃).

Thus

〈eu, f̃〉 + (ep, g̃) = R((uh, ph), (ũ, p̃)). (2.8)

In order to proceed in the error analysis we need to choose the data in the dual
problem in a certain way. Let δ = δx0,ρ/2 ∈ C∞

0 (Ω) be a regularization of the Dirac
distribution at x0 ∈ Ω, that is, let

supp(δ) ⊂ B(x0; ρ/2),

∫

Rn

δ dx = 1, 0 ≤ δ ≤ Cρ−n, (2.9)

where B(x0; ρ/2) denotes the ball with center in x0 and radius ρ/2 chosen such that

ρ ≤ hσ
min, (2.10)

where σ > 0 will be specified in the proofs of Lemmas 2.2–2.4 below. For q ∈ [1,∞]
it follows that

|δ|k,q ≤ Cρ−n(1−1/q)−k. (2.11)

In the remainder of this section we state and prove three lemmas providing esti-
mates of the following kind

‖eu‖∞ . |(eui
, δx0,ρ/2)|,

‖∇eu‖∞ . |(eu, Diδx0,ρ/2ej)|,

‖ep‖∞ . |(ep, δx0,ρ/2)|,

where eui
denotes the i:th component of eu and where ej is the j:th unit vector. We

stress that x0 may be different in the three estimates. With these estimates we will
be able to make a connection to the estimate in Lemma 2.1, which in turn is crucial
for the final pointwise error analysis.
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In order to obtain these estimates we will have to assume that eu and ep are
continuous. This will be the case for eu provided the data is sufficient regular due to
Theorem 1.1, whereas for ep we also have to impose further constraints on the domain
Ω, see Remark 1.2. We note that ∇eu is not continuous since ∇uh is discontinuous.
However, with the same assumptions as for ep we derive an estimate that includes
jump terms of the same type as in the right hand side of the estimate in Lemma 2.1.

Lemma 2.2. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain and let x0 ∈ Ω and
i be such that ‖eu‖∞ = |eui

(x0)|. Then for data to (1.1) as in Theorem 1.1 and for
some q > n there is a constant C such that

‖eu‖∞ ≤ |(eui
, δ)| + Cη2,∞,

where δ = δx0,ρ/2 is the regularized Dirac distribution (2.9) and η2,∞ as Lemma 2.1.
We note that the lemma is meaningful since due to Theorem 1.1 and Remark 1.1

there is q > n such that eu ∈ W 1,q
0 (Ω)n.

Proof. By Sobolev’s imbedding theorem, see [1, p. 98], W 1,q
0 (Ω)n ⊂ C0,γ(Ω)n for

some γ such that 0 < γ ≤ 1 − n/q. Consequently, by the mean value theorem there
is x1 ∈ B(x0, ρ/2) ∩ Ω such that (eui

, δ) = eui
(x1) and thus

‖eu‖∞ ≤ |(eui
, δ)| + |eui

(x0) − eui
(x1)|.

We estimate the last term in the right hand side above. By Sobolev’s inequality

|eui
(x0) − eui

(x1)| ≤ Cργ‖eui
‖C0,γ(B(x0,ρ/2)∩Ω) ≤ Cργ‖eu‖1,q.

By Theorem 1.1

‖eu‖1,q ≤ C
(

‖Rme‖−1,q + ‖Rcc‖q

)

.

By Hölder’s inequality ‖ϕ‖1,1 ≤ |Ω|1/q‖ϕ‖1,q′ in (1.2) and with Lemma 2.1 with
m = 1,

‖Rme‖−1,q ≤ |Ω|1/q‖Rme‖−1,∞ ≤ Cη1,∞ ≤ Ch−1
minη2,∞,

and trivially ‖Rcc‖q ≤ Ch−1
minη2,∞.

Thus, with (2.10) we obtain

|eui
(x0) − eui

(x1)| ≤ Cη2,∞,

where we choose σ so that γσ = 1.
Lemma 2.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the solution

to (1.1) with data as in Theorem 1.3 is continuous in the sense that (u, p) ∈ W2,q,
for q > n. Let x0 ∈ Ω, i and j be such that ‖∇eu‖∞ = |Dieuj

(x0)|. Then there are
constants C1,2 such that

‖∇eu‖∞ ≤ |(eu, Diδej)| + C1h
β
min

(

‖f‖q + |g|1,q

)

+ C2 max
T∈T

‖[∂νuh]‖∞,∂T\∂Ω,

where δ = δx0,ρ/2 is the regularized Dirac distribution (2.9), β may be chosen arbi-
trarily large, and [∂νuh] is the jump as described in Lemma 2.1.

We note that the lemma is meaningful since with additional constraints on the
domain Ω as in Remark 1.2 there is q > n such that u ∈ W 2,q(Ω)n so that u ∈
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W 1,∞(Ω)n. Note also that ∇uh is discontinuous across ∂T for T ∈ T which need to
be taken into account proving Lemma 2.3. However, ∇uh is continuous in the interior
of each T ∈ T .

Proof. The idea of the proof is the same as for Lemma 2.2. Let

BT =
⋃

{T ∈ T : T ∩ B(x0, ρ/2) 6= ∅},

where we for simplicity assume that BT is convex and note that card(BT ) ≤ C due
to the regularity in the triangulation.

By the mean value theorem there are xT ∈ B(x0, ρ/2) ∩ T for T ∈ BT such that

(Dieuj
, δ) =

∑

T∈BT

(Dieuj
, δ)B(x0,ρ/2)∩T =

∑

T∈BT

Dieuj
(xT )

∫

B(x0,ρ/2)∩T

δ dx,

where
∫

B(x0,ρ/2)∩T δ dx < 1 and thus

‖∇eu‖∞ ≤ |(eu, Diδej)| +
∑

T∈BT

|Dieuj
(x0) − Dieuj

(xT )|, (2.12)

since by integration by parts (Dieuj
, δ) = −(eu, Diδej).

We estimate the terms in sum above. For T ∈ BT consider the line from x0 to xT

and for Tℓ ∈ BT suppose this line intersect m+1 n-simplices Tℓ and m boundaries ∂Tℓ

at points xℓ for ℓ = 1, . . . , m. Note that m is bounded from above since card(BT ) ≤ C.
Let x−

ℓ and x+
ℓ be the limits at xℓ going from x0 and xT respectively. Set x+

0 = x0

and x−
m+1 = xT . We estimate

|Dieuj
(x0) − Dieuj

(xT )| ≤
m
∑

ℓ=0

|Dieuj
(x+

ℓ ) − Dieuj
(x−

ℓ+1)|

+

m
∑

ℓ=1

|Dieuj
(x−

ℓ ) − Dieuj
(x+

ℓ )|.

(2.13)

For each term in the first sum above we may now proceed as in the proof of Lemma
2.2. By Sobolev’s and the triangle inequalities we get

|Dieuj
(x+

ℓ ) − Dieuj
(x−

ℓ+1)| ≤Cργ‖Dieuj
‖C0,γ(B(x0,ρ/2)∩Tℓ)

≤Cργ‖eu‖2,q,Tℓ

≤Cργ
(

‖u‖2,q + ‖uh‖2,q,Tℓ

)

.

By Theorem 1.3 we have

‖u‖2,q ≤ C
(

‖f‖q + |g|1,q

)

,

and by the inverse estimate (1.18) and the inf-sup condition (1.14)

‖uh‖2,q,Tℓ
≤ Ch

−1+n(1/q−1/2)
Tℓ

‖uh‖1,2,Tℓ
≤ Ch

−1+n(1/q−1/2)
min

(

‖f‖−1,q + ‖g‖q

)

,

since q > n.
Thus, with (2.10) and for Tℓ ∈ BT we obtain the uniform estimate

|Djeui
(x+

ℓ ) − Djeui
(x−

ℓ )| ≤ Chβ
min

(

‖f‖q + |g|1,q

)

, (2.14)
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where β = γσ − 1 + n(1/q − 1/2) may be chosen arbitrarily large by taking σ large.
As for the terms in the second sum in (2.13) and for Tℓ ∈ BT we use the following

uniform estimate

|Djeui
(x−

ℓ ) − Djeui
(x+

ℓ )| ≤ max
T∈T

‖[∂νuh]‖∞,∂T\∂Ω. (2.15)

Finally, (2.13) – (2.15) in (2.12) concludes the proof.
Lemma 2.4. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the solution

to (1.1) with data as in Theorem 1.3 is continuous in the sense that (u, p) ∈ W2,q,
for some q > n. Let ep be such that

∫

Ω ep dx = 0 and let x0 ∈ Ω be such that
‖ep‖∞ = |ep(x0)|. Then there is a constant C such that

‖ep‖∞ ≤ |(ep, δ)| + Chβ
min

(

‖f‖q + |g|1,q

)

,

where δ = δx0,ρ/2 is the regularized Dirac distribution (2.9) and β may be chosen
arbitrarily large.

We note that the lemma is meaningful since with additional constraints on the
domain Ω as in Remark 1.2 there is q > n such that ep ∈ W 1,q(Ω) so that ep ∈ L∞(Ω).

Proof. The idea of the proof is the same as for Lemma 2.2. By assumption
ep ∈ W 1,q(Ω) for q > n and hence it follows by Sobolev’s imbedding theorem that ep

is continuous. Consequently, by the mean value theorem there is x1 ∈ B(x0, ρ/2)∩ Ω
such that (ep, δ) = ep(x1) and thus

‖ep‖∞ ≤ |(ep, δ)| + |ep(x0) − ep(x1)|.

We estimate the last term above. By Sobolev’s inequality

|ep(x0) − ep(x1)| ≤ Cργ‖ep‖C0,γ(B(x0,ρ/2)∩Ω) ≤ Cργ‖ep‖1,q.

By the triangle inequality

‖ep‖1,q ≤ ‖p‖1,q + ‖ph‖1,q,

and Theorem 1.3

‖p‖1,q ≤ C
(

‖f‖q + |g|1,q

)

,

and by the inverse estimate and the inf-sup condition (1.14)

‖ph‖1,q ≤ Ch
−1+n(1/q−1/2)
min ‖ph‖2 ≤ Ch

−1+n(1/q−1/2)
min

(

‖f‖−1,q + ‖g‖q

)

.

Thus with (2.10) we obtain

|ep(x0) − ep(x1)| ≤ Chβ
min

(

‖f‖q + |g|1,q

)

,

where β = γσ− 1 + n(1/q− 1/2) may be chosen arbitrarily large by taking σ large.

3. A priori estimates of the dual solution. We consider the dual problem
(1.4) for specific choices of data so that we may estimate the scaling of the constants
in (1.6) and (1.10) as q ↓ 1. For (1.6) we will consider (f̃ , g̃) = (Diδej , 0) or (f̃ , g̃) =

(0, δ−|Ω|−1) and for (1.10) we will consider (f̃ , g̃) = (δei, 0), where δ is the regularized
Dirac distribution (2.11). We proceed as in [16, Theorem 3.1] and [4, Lemma 2.2]. The
analysis relies on the explicit knowledge of how the constant in Sobolev’s inequality
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scales as q ↓ 1, which can be estimated by using the the best constant in the Sobolev
inequality, where the dependence on the dimension n and the exponent q appear
explicitly. We quote Sobolev’s inequality from [10, Theorem 7.10, p. 155]. Let ω be
a bounded domain in Rn, n = 2, 3. Then there is a constant C such that for any
v ∈ W 1,s

0 (ω)d, d = 1, . . . , n, and for 1 ≤ s < n

‖v‖ns/(n−s),ω ≤ C|v|1,s,ω , (3.1)

where C = C(n, s) scales like

C ≤ γ

(

n
s − 1

n − s

)1−1/s

, (3.2)

and where γ = γ(n, s) < ∞ as s ↑ n.
In the analysis below we will find it useful to have (3.1) and (3.2) formulated

somewhat differently. By rearranging the exponents in (3.1) and estimating the

constant (3.2) accordingly we conclude that, for any v ∈ W
1,nr/(n+r)
0 (ω)d and for

n/(n − 1) ≤ r < ∞,

‖v‖r,ω ≤ Cr1−1/n|v|1,nr/(n+r),ω. (3.3)

The following lemma is a consequence of (3.3).
Lemma 3.1. Let ω ⊂ Rn, n = 2, 3, be a bounded domain. Then there is a

constant C such that, if v ∈ Lq(ω)d, d = 1, . . . , n,

‖∇k−1v‖−k,q̃,ω ≤ C(q − 1)−1+1/n‖v‖q,ω, (3.4)

for q̃ = nq/(n − q) and 1 < q ≤ n.
Proof. By integration by parts and with Hölder’s inequality in the definition of

the dual norm (1.2) we estimate

‖∇k−1v‖−k,q̃,ω = sup
ϕ∈C∞

0
(ω)d

|〈v,∇k−1ϕ〉|

‖ϕ‖k,q̃′,ω

≤ ‖v‖q,ω sup
ϕ∈C∞

0
(ω)n

|ϕ|k−1,q′,ω

‖ϕ‖k,q̃′,ω
.

(3.5)

Since 1 < q ≤ n implies n/(n − 1) ≤ q′ < ∞, we may use Sobolev’s inequality (3.3)
to estimate,

|ϕ|k−1,q′,ω ≤ Cq′1−1/n|ϕ|k,q̃′,ω, (3.6)

because nq′/(n + q′) = q̃′. Thus, inserting (3.6) in (3.5) concludes the proof.
As in [16, 4] we introduce a dyadic partition of Ω. Let dj = 2jρ for j ∈ N and

d−1 = 0. Define the partition of Ω,

Aj = {x ∈ Ω : dj−1 ≤ |x − x0| ≤ dj}, (3.7)

and the supersets to Aj ,

Bj = {x ∈ Ω : 2−1dj−1 ≤ |x − x0| ≤ 2dj}. (3.8)

From this definition we get the simple estimate

|Bj | ≤ Cdn
j = C2jnρn. (3.9)
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Moreover, let ηj ∈ C∞
0 (Bj) be a mollifier such that, ηj = 1 in a neighborhood of

Aj and such that for s ∈ [1,∞],

|ηj |k,s,Bj
≤ Cd

n/s−k
j . (3.10)

Generalizing the last estimate in [16, Proof of Theorem 3.1] we get. For a > 1
and as q ↓ 1 we have,

∞
∑

j=0

2−ja(1−1/q) =
1

1 − 2−a(1−1/q)
≤

C

q − 1
. (3.11)

Finally, we recall the following two generalizations of Hölder’s inequality. Let 1 ≤ q ≤
∞, q ≤ r ≤ ∞ and q ≤ s ≤ ∞ such that

1

q
=

1

r
+

1

s

and let u ∈ Lr(ω) and v ∈ Ls(ω). Then uv ∈ Lq(ω) and

‖uv‖q,ω ≤ ‖u‖r,ω‖v‖s,ω. (3.12)

In the second generalization we estimate the duality pairing. For a vector space V let
u ∈ V ′ and v ∈ V . Then

|〈u, v〉| ≤ ‖u‖V ′‖v‖V . (3.13)

In particular, when u ∈ W−k,q(ω) and v ∈ W k,q′

0 (ω) we get

|〈u, v〉| ≤ ‖u‖−k,q,ω‖v‖k,q′,ω. (3.14)

3.1. W1,q-estimates as q ↓ 1. In the following theorem we assume that we have
the higher regularity in Remark 1.2.

Theorem 3.2. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the
solution to (1.4) with data as in Theorem 1.3 is continuous in the sense that (ũ, p̃) ∈
W2,q for some q > n. Then for 1 < q < 2 there is a constant C such that the solution
(ũ, p̃) to (1.4) with (f̃ , g̃) = (Diδej , 0) or (f̃ , g̃) = (0, δ−|Ω|−1) satisfies the inequality

‖ũ‖1,q + ‖p̃‖Lq/R ≤ C(q − 1)−2+1/nρ−n(1−1/q).

Proof. Let Aj , Bj and ηj be as in (3.7)–(3.10). Choose a fixed value q̃ = n/(n−1).
Let p̄ = p̃ + c for a fixed c ∈ R. By Hölder’s inequality

‖ũ‖1,q + ‖p̃‖Lq/R ≤
∞
∑

j=0

(

‖ũ‖1,q,Aj
+ ‖p̄‖q,Aj

)

≤
∞
∑

j=0

(

‖ηjũ‖1,q,Bj
+ ‖ηj p̄‖q,Bj

)

≤
∞
∑

j=0

|Bj |
1/q−1/q̃

(

‖ηj ũ‖1,q̃,Bj
+ ‖ηj p̄‖q̃,Bj

)

.

(3.15)
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Notice that ηj ũ and ηj p̄ satisfy (1.4) in Ω with right hand side f̃ = f̃j = ∆(ηj ũ) +

∇(ηj p̄) and g̃ = g̃j = ∇ · (ηj ũ), where f̃j and g̃j vanish outside Bj . Hence, for each
term in (3.15) we can apply Theorem 1.1,

‖ηjũ‖1,q̃,Bj
+ ‖ηj p̄‖q̃,Bj

= ‖ηjũ‖1,q̃,Ω + ‖ηj p̄‖q̃,Ω

≤ C
(

‖∆(ηj ũ) + ∇(ηj p̄)‖−1,q̃,Bj
+ ‖∇ · (ηj ũ)‖q̃,Bj

)

≤ C
(

‖ηj(∆ũ + ∇p̄) + 2∇ηj · ∇ũ + ∆ηj ũ + ∇ηj p̄‖−1,q̃,Bj

+ ‖∇ηj · ũ + ηj∇ · ũ‖q̃,Bj

)

≤ C
(

‖ηj f̃‖−1,q̃,Bj
+ ‖ηj g̃‖q̃,Bj

+ ‖∇ηj p̄‖−1,q̃,Bj

+ ‖∇ηj · ũ‖q̃,Bj
+ ‖2∇ηj · ∇ũ + ∆ηj ũ‖−1,q̃,Bj

)

,

(3.16)

where C = C(n, q̃, Ω).
We estimate the right hand side of (3.16) in a few steps. By integration by parts

‖2∇ηj · ∇ũ + ∆ηj ũ‖−1,q̃,Bj
≤ ‖∇ηj · ∇ũ‖−1,q̃,Bj

+ sup
ϕ∈C∞

0
(Bj)n

(∇ηj , ũ · ∇ϕ)Bj

‖ϕ‖1,q̃′,Bj

.

Since (∇ηj p̄, ϕ) ≤ ‖p̄‖W 1,n(Bj)′ |∇ηj · ϕ|1,n,Bj
, notice that the dual exponent to q̃

is q̃′ = n,

‖∇ηj p̃‖−1,q̃,Bj
≤ ‖p̄‖W 1,n(Bj)′ sup

ϕ∈C∞

0
(Bj)n

|∇ηj · ϕ|1,n,Bj

‖ϕ‖1,n,Bj

,

and since (∇ηj · ∇ũ, ϕ) = −(ũ,∇ · (∇ηjϕ)),

‖∇ηj · ∇ũ‖−1,q̃,Bj
≤ ‖ũ‖q̃,Bj

sup
ϕ∈C∞

0
(Bj)n

|∇ηj · ϕ|1,n,Bj

‖ϕ‖1,n,Bj

.

Now by Hölder’s inequality

|∇ηj · ϕ|1,n,Bj
≤ |ηj |1,∞,Bj

|ϕ|1,n,Bj
+ ‖∇2ηjϕ‖n,Bj

,

and moreover by (3.12) with s such that 1/n = 1/s + 1/q′, (3.3), and Hölder’s in-
equality

‖∇2ηjϕ‖n,Bj
≤|ηj |2,s,Bj

‖ϕ‖q′,Bj

≤C(q′)1−1/n|ηj |2,s,Bj
|ϕ|1,nq′/(n+q′),Bj

≤C|Bj |
1−1/q(q − 1)−1+1/n|ηj |2,s,Bj

|ϕ|1,n,Bj
.

(3.17)

Finally, by Hölder’s inequality

‖∇ηj · ũ‖q̃,Bj
+ sup

ϕ∈C∞

0
(Bj)n

(∇ηj , ũ · ∇ϕ)

‖ϕ‖1,q̃′,Bj

≤ 2|ηj |1,∞,Bj
‖ũ‖q̃,Bj

.

Thus, with the above estimates in (3.16) we obtain

‖ηj ũ‖1,q̃,Bj
+ ‖ηj p̄‖Lq̃(Bj)/R ≤ CI‖ηj f̃‖−1,q̃,Bj

+ CII‖ηj g̃‖q̃,Bj

+ CIII

(

|ηj |1,∞,Bj
+ |Bj |

1−1/q(q − 1)−1+1/n|ηj |2,s,Bj

)

×
(

‖ũ‖q̃,Bj
+ ‖p̄‖W 1,n(Bj)′

)

= Ij + IIj + IIIj .

(3.18)

With (3.18) we now estimate (3.15) in three steps. Recall (3.9) that will repeatedly
be used in the estimates below.
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I. For data f̃ = Diδeℓ and by integration by parts we obtain by the same argu-
ment as in (3.17) and with the same exponents

‖ηjDiδeℓ‖−1,q̃,Bj
≤ C‖δ‖q̃,Bj

sup
ϕ∈C∞

0
(Bj)n

|ηjϕ|1,n,Bj

‖ϕ‖1,n,Bj

≤ C‖δ‖q̃,Bj

(

‖ηj‖∞,Bj
+ |Bj |

1−1/q(q − 1)−1+1/n|ηj |1,s,Bj

)

.

Since supp(δ) ∩ Bj = ∅ for j ≥ 1 and with (2.11) and for ρ sufficiently small

∞
∑

j=0

|Bj |
1/q−1/q̃Ij ≤ Cρn(1/q−1/q̃)(q − 1)−1+1/n‖δ‖q̃

≤ Cρ−n(1−1/q)(q − 1)−1+1/n,

(3.19)

where we used n/q − n/q̃ + n(1 − 1/q) + n/s − 1 = −n(1/q − 1/q̃).

II. For data g̃ = δ − |Ω|−1 and since supp(δ) ∩ Bj = ∅ for j ≥ 1 and with (3.1)
and (2.11)

∞
∑

j=0

|Bj |
1/q−1/q̃IIj ≤ Cρn/q−n/q̃‖∇δ‖1 ≤ Cρ−n(1−1/q), (3.20)

where we used n/q − n/q̃ − 1 = −n(1 − 1/q).

III. By Hölder’s inequality and since q < 2

|Bj |
1/q−1/q̃IIIj ≤ Cd

n/q−n/q̃
j

(

|ηj |1,∞,Bj
+ d

n(1−1/q)
j (q − 1)−1+1/n|ηj |2,s,Bj

)

×
(

‖ũ‖q̃,Bj
+ ‖p̄‖W 1,n(Bj)′

)

≤ Cd
−n(1−1/q)
j

(

1 + (q − 1)−1+1/n
)(

‖ũ‖q̃,Bj
+ ‖p̄‖W 1,n(Bj)′

)

≤ Cd
−n(1−1/q)
j (q − 1)−1+1/n

(

‖ũ‖q̃,Bj
+ ‖p̄‖W 1,n(Bj)′

)

,

where we used n/q − n/q̃ − 1 = −n(1 − 1/q) and n/q − n/q̃ + n − n/q + n/s − 2 =
−n(1 − 1/q).

Adding all the terms and by Hölder’s inequality in the sum with exponent q̃,
with conjugate exponent q̃′ = n, estimating the geometric sum as in (3.11) and by
Corollary 1.4

∞
∑

j=0

|Bj |
1/q−1/q̃IIIj ≤ C(q − 1)−1+1/n

(

∞
∑

j=0

d
−n2(1−1/q)
j

)1/n

×

(

∞
∑

j=0

(

‖ũ‖q̃,Bj
+ ‖p̄‖W 1,n(Bj)′

)q̃

)1/q̃

≤ Cρ−n(1−1/q)(q − 1)−1
(

‖ũ‖q̃ + ‖p̃‖W 1,n(Ω)′/R

)

≤ Cρ−n(1−1/q)(q − 1)−1
(

‖f̃‖−2,q̃ + ‖g̃‖W 1,n(Ω)′
)

,

(3.21)

since p̄ = p + c for arbitrary c ∈ R we may take the infimum over all c.
For f̃ = Diδej and since ‖Diδej‖−2,q̃ ≤ C‖Diδej‖−2,nq/(n−q) we obtain by

Lemma 3.1,

‖Diδej‖−2,q̃ ≤ C(q − 1)−1+1/n‖δ‖q ≤ Cρ−n(1−1/n)(q − 1)−1+1/q, (3.22)
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For g̃ = δ − |Ω|−1 we note that (δ − |Ω|−1, ϕ) = (δ, ϕ − ϕ0) where ϕ0 =
|Ω|−1

∫

Ω ϕ dx. Using Sobolev’s inequality as in the proof of Lemma 3.1

‖δ − |Ω|−1‖W 1,n(Ω)′ ≤ Cρ−n(1−1/n)(q − 1)−1+1/n. (3.23)

Collecting the results in (3.19)–(3.23) concludes the proof.
Corollary 3.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that

the solution to (1.4) with data as in Theorem 1.3 is continuous in the sense that
(ũ, p̃) ∈ W2,q for some q > n. Then there is a constant C such that the solution,
(ũ, p̃) to (1.4) with (f̃ , g̃) = (Diδej , 0) or (f̃ , g̃) = (0, δ−|Ω|−1) satisfies the inequality,

‖ũ‖1,1 + ‖p̃‖L1/R ≤ C|log ρ|2−1/n.

Proof. By Hölder’s inequality,

‖ũ‖1,1 + ‖p̃‖L1/R ≤ |Ω|1/q′(

‖ũ‖1,q + ‖p̃‖Lq/R

)

.

Thus, with Theorem 3.2, taking q − 1 = 1/| log ρ|, we finish the proof.

3.2. W2,q-estimates as q ↓ 1. Theorem 3.4. Let Ω ⊂ Rn, n = 2, 3, be a
polyhedral domain. Then for q ∈ (1, 4/3] there is a constant C such that the solution
(ũ, p̃) to (1.4) with (f̃ , g̃) = (δei, 0) satisfies the inequality

‖ũ‖2,q + ‖p̃‖W 1,q/R ≤ C(q − 1)−αnρ−2(n+1)(1−1/q)

where α2 = 2, α3 = 4/3.
Proof. We proceed as in the proof of Theorem 1.1. Let Aj , Bj and ηj be as in

(3.7)–(3.10). Let p̄ = p̃+ c for a fixed c ∈ R. Choose a fixed value q0 ∈ (1, 4/3]. Then
for 1 < q < q0 by Hölder’s inequality

‖ũ‖2,q + ‖p̃‖W 1,q/R ≤
∞
∑

j=0

(

‖ũ‖2,q,Aj
+ ‖p̄‖1,q,Aj

)

≤
∞
∑

j=0

(

‖ηj ũ‖2,q,Bj
+ ‖ηj p̄‖1,q,Bj

)

≤
∞
∑

j=0

|Bj |
1/q−1/q0

(

‖ηjũ‖2,q0,Bj
+ ‖ηj p̄‖1,q0,Bj

)

.

(3.24)

We note that ηj ũ and ηj p̄ satisfy (1.4) in Ω with f̃ = f̃j = ∆(ηj ũ) + ∇(ηj p̄) and

g̃ = g̃j = ∇ · (ηj ũ), where f̃j and g̃j vanish outside Bj for each j. Hence, for each
term in (3.24) we can apply Theorem 1.3,

‖ηj ũ‖2,q0,Bj
+ ‖ηj p̄‖1,q0,Bj

= ‖ηj ũ‖2,q0,Ω + ‖ηj p̄‖1,q0,Ω

≤ C
(

‖∆(ηj ũ) + ∇(ηj p̄)‖q0,Bj
+ |∇ · (ηj ũ)|1,q0,Bj

)

≤ C
(

‖ηj(∆ũ + ∇p̄) + 2∇ηj · ∇ũ + ∆ηj ũ + ∇ηj p̄‖q0,Bj

+ |∇ηj · ũ + ηj∇ · ũ|1,q0,Bj

)

≤ CI‖ηjδei‖q0,Bj
+ CII‖∇

2ηj ũ‖q0,Bj

+ CIII

(

‖∇ηj · ∇ũ‖q0,Bj
+ ‖∇ηj p̄‖q0,Bj

)

= Ij + IIj + IIIj ,

(3.25)
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where C = C(n, q0, Ω) and with −∆ũ −∇p̄ = δei and ∇ · ũ = 0, and where we also
used |∇ηj · ũ|1,q0,Bj

≤ ‖∇2ηj ũ‖q0,Bj
+ ‖∇ηj · ∇ũ‖q0,Bj

.
With (3.25) we now estimate (3.24) in three steps. Recall (3.9) that will repeatedly

be used in the estimates below.

I. Since supp(δ) ∩ Bj = ∅ for j ≥ 1 and with (2.11)

∞
∑

j=0

|Bj |
1/q−1/q0Ij ≤ Cρn/q−n/q0‖δ‖q0

≤ Cρ−n(1−1/q). (3.26)

II. By Hölder’s inequality with exponent q̃ = q/(q−2/n) and s such that 1/q0 =
1/s + 1/q̃ and with (3.10)

|Bj |
1/q−1/q0IIj ≤ Cd

n/q−n/q0

j |ηj |2,s,Bj
‖ũ‖q̃,Bj

≤ Cd
−(n+2)(1−1/q)
j ‖ũ‖q̃,Bj

,

where we used n/q − n/q0 + n/s − 2 = −(n + 2)(1 − 1/q).
Adding all the terms and by Hölder’s inequality in the sum with exponent q̃, with

conjugate exponent q̃′ = nq/2, and estimating the geometric sum as in (3.11)

∞
∑

j=0

|Bj |
1/q−1/q0IIj

≤ C

(

∞
∑

j=0

d
−(n+2)(1−1/q)nq/2
j

)2/nq( ∞
∑

j=0

‖ũ‖q̃
q̃,Bj

)1/q̃

≤ Cρ−(n+2)(1−1/q)(q − 1)−2/nq‖ũ‖q̃.

(3.27)

With (3.3), Hölder’s inequality (nq̃/(n + q̃) ≤ nq/(n − q)), Theorem 1.1, Lemma 3.1
and (2.11)

‖ũ‖q̃ ≤Cq̃1−1/n‖ũ‖1,nq̃/(n+q̃)

≤Cq̃1−1/n‖δ‖−1,nq/(n−q)

≤Cq̃1−1/n(1 − q)−1+1/n‖δ‖q

≤Cρ−n(1−1/q)(q − 2/n)−1+1/n(1 − q)−1+1/n,

(3.28)

where we remark that

2n/(n + 1) ≤ nq/(n − q) ≤ 2n/(n − 1),

for n = 2, 3 and 1 < q < 4/3 and thus we may use Theorem 1.1.
Collecting the estimates in (3.27) and (3.28) we obtain

∞
∑

j=0

|Bj |
1/q−1/q0IIj ≤ Cρ−2(n+1)(1−1/q)(q − 2/n)−1+1/n(q − 1)−1−1/n. (3.29)

III. By Hölder’s inequality with exponent q̃ = n/(n− 1) and s such that 1/q0 =
1/s + 1/q̃

|Bj |
1/q−1/q0IIIj ≤ Cd

n/q−n/q0

j |ηj |1,s,Bj

(

‖ũ‖1,q̃,Bj
+ ‖p̄‖q̃,Bj

)

≤ Cd
−n(1−1/q)
j

(

‖ũ‖1,q̃,Bj
+ ‖p̄‖q̃,Bj

)

,
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where we used n/q − n/q0 + n/s − 1 = −n(1 − 1/q).
Adding all the terms and by Hölder’s inequality in the sum with exponent q̃, with

conjugate exponent q̃′ = n, and estimating the geometric sum as in (3.11)

∞
∑

j=0

|Bj |
1/q−1/q0IIIj

≤ C

(

∞
∑

j=0

d
−n2(1−1/q)
j

)1/n( ∞
∑

j=0

(

‖ũ‖1,q̃,Bj
+ ‖p̄‖Lq̃(Bj)

)q̃

)1/q̃

≤ Cρ−n(1−1/q)(q − 1)−1/n
(

‖ũ‖1,q̃ + ‖p̃‖Lq̃/R

)

,

(3.30)

since p̄ = p + c for arbitrary c ∈ R we may take the infimum of all c.
With Theorem 1.1, Hölder’s inequality (q̃ ≤ nq/(n − q)), Lemma 3.1 and (2.11)

‖ũ‖1,q̃ + ‖p̃‖Lq̃/R ≤C‖δ‖−1,q̃

≤C(1 − q)−1+1/n‖δ‖q

≤Cρ−n(1−1/q)(1 − q)−1+1/n,

(3.31)

where Theorem 1.1 is applicable in analogy to the remark at (3.28).
Collecting the estimates in (3.30) and (3.31) we obtain

∞
∑

j=0

|Bj |
1/q−1/q0IIIj ≤ Cρ−2n(1−1/q)(q − 1)−1. (3.32)

Finally adding (3.26), (3.29) and (3.32) concludes the proof.
Corollary 3.5. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Then there is a

constant C such that the solution, (ũ, p̃) to (1.4) with f̃ = δei and g̃ = 0 satisfies the
inequality,

‖ũ‖2,1 + ‖p̃‖W 1,1/R ≤ C| log ρ|αn ,

with αn as in Theorem 3.4.
Proof. See the proof of Corollary 3.3.

4. Main results. We now make a precise statement of the main results and
begin with the pointwise error estimate of the velocity field.

Theorem 4.1. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Suppose the data
to (1.1) is as in Theorem 1.1 for some q > n. Then the error eu in the finite element
solution to (1.13) satisfies

‖eu‖∞ ≤ C| log hmin|
αnη2,∞,

where α2 = 2, α3 = 4/3 and with η2,∞ as in Lemma 2.1 and where β can be chosen
arbitrarily large.

Proof. Let x0 ∈ Ω and i be such that ‖eu‖L∞ = |eui
(x0)| and let (ũ, p̃) be the

solution to (1.4) with data f̃ = δei and g̃ = 0. With Lemma 2.2, the identity (2.8),
Lemma 2.1 with q = ∞, and Corollary 3.5, we obtain

‖eu‖∞ ≤ (eu, δei) + C1η2,∞

≤ |R((uh, ph), (ũ, p̃))| + C1η2,∞

≤ Cη2,∞

(

‖ũ‖2,1 + ‖p̃‖W 1,1/R

)

+ C1η2,∞

≤ C| log ρ|αnη2,∞.
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Choosing ρ = hσ
min for σ sufficiently large such that β becomes large as in Lemma 2.2

concludes the proof.
For the gradient of the velocity field and the pressure we only obtain pointwise

error estimates on a restricted class of polyhedral domains, namely convex domains
when n = 2 and under an inner angle condition when n = 3, see Remark 1.2.

Theorem 4.2. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the
solution to (1.1) with data as in Theorem 1.3 is continuous in the sense that (u, p) ∈
W2,q for some q > n. Then the error ∇eu in the finite element solution to (1.13)
satisfies

‖∇eu‖∞ ≤ C| log hmin|
2−1/nη1,∞ + C1h

β
min,

with η1,∞ as in Lemma 2.1 and where β can be chosen arbitrarily large.
Proof. Let x0 ∈ Ω, i and j be such that ‖∇eu‖∞ = |Dieuj

(x0)| and let (ũ, p̃) be

the solution to (1.4) with data f̃ = Diδej and g̃ = 0. With Lemma 2.3, the identity
(2.8), Lemma 2.1 with q = ∞, and Corollary 3.3, we obtain

‖∇eu‖∞ ≤ (eu, Diδej) + C1h
β
min

(

‖f‖q + |g|1,q

)

+ C2 max
T∈T

‖[∂νuh]‖∞,∂T\∂Ω

≤ |R((uh, ph), (ũ, p̃))| + C1h
β
min + C2 max

T∈T
‖[∂νuh]‖∞,∂T\∂Ω

≤ Cη1,∞

(

‖ũ‖1,1 + ‖p̃‖L1/R

)

+ C1h
β
min + C2 max

T∈T
‖[∂νuh]‖∞,∂T\∂Ω

≤ C| log ρ|2−1/nη1,∞ + C1h
β
min.

Note that the jump term [∂νuh] from Lemma 2.3 is incorporated into the error esti-
mator η1,∞ in Lemma 2.1.

Choosing ρ = hσ
min for σ sufficiently large such that β becomes large as in Lemma

2.3 concludes the proof.
Theorem 4.3. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain such that the

solution to (1.1) with data as in Theorem 1.3 is continuous in the sense that (u, p) ∈
W2,q for some q > n. Then the error ep in the finite element solution to (1.13)
satisfies

‖ep‖∞ ≤ C| log hmin|
2−1/nη1,∞ + C1h

β
min,

with η1,∞ as in Lemma 2.1 and where β can be chosen arbitrarily large.
Proof. Let x0 ∈ Ω be such that |ep(x0)| = ‖ep‖L∞ and let (ũ, p̃) be the solution

to (1.4) with data f̃ = 0 and g̃ = δ − |Ω|−1. With Lemma 2.4, the identity (2.8) and
choosing ep such that

∫

Ω
ep dx = 0, Lemma 2.1 with q = ∞, and Corollary 3.3, we

obtain

‖ep‖∞ ≤ (ep, δ) + C1h
β
min

(

‖f‖q + |g|1,q

)

≤ |R((uh, ph), (ũ, p̃))| + C1h
β
min

≤ Cη1,∞

(

‖ũ‖1,1 + ‖p̃‖L1/R

)

+ C1h
β
min

≤ C| log ρ|2−1/nη1,∞ + C1h
β
min.

Choosing ρ = hσ
min for σ sufficiently large, such that β becomes large as in Lemma

2.4 concludes the proof.
Finally we obtain Lq-estimates of the velocity gradient and the pressure.
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Theorem 4.4. Let Ω ⊂ Rn, n = 2, 3, be a polyhedral domain. Suppose the data
to (1.1) is as in Theorem 1.1 for some 2n/(n + 1) ≤ q ≤ 2n/(n− 1). Then the error
(eu, ep) in the finite element solution to (1.13) satisfies

‖eu‖1,q + ‖ep‖Lq/R ≤ Cη1,q,

where η1,q is as in lemma 2.1.
Proof. With Corollary 1.2, the identity (2.4), and Lemma 2.1 we get

‖(eu, ep)‖Wq ≤ C sup
(φ,λ)∈Wq′

|L((eu, ep), (φ, λ))|

‖(φ, λ)‖Wq′

= C sup
(φ,λ)∈Wq′

|R((uh, uh), (φ, λ))|

‖(φ, λ)‖Wq′

≤ Cη1,q sup
(φ,λ)∈Wq′

‖φ‖1,q′ + ‖λ‖Lq′/R

‖(φ, λ)‖Wq′

≤ Cη1,q.
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