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Abstract. In this paper parabolic random partial differential equations and parabolic sto-
chastic partial differential equations driven by a Wiener process are considered. A deter-
ministic, tensorized evolution equation for the second moment and the covariance of the
solutions of the parabolic stochastic partial differential equations is derived. Well-posedness
of a space-time weak variational formulation of this tensorized equation is established.

1. Introduction

With general results on existence and uniqueness of solutions of stochastic partial differen-
tial equations being available (see, e.g., [5] and the references there), the numerical solution of
stochastic partial differential equations has received increasing attention in recent years. The
most widely used numerical solution approaches are based on combinations of time stepping,
space discretization, and sample path simulation. If the parabolic stochastic partial differen-
tial equation is linear and driven by Q-Wiener noise, the linearity of the stochastic partial
differential equation and of the mathematical expectation can be exploited to show that the
expectation of the square integrable random solution satisfies the corresponding determinis-
tic, parabolic evolution equation. In the present paper we show that the covariance operator
of the square integrable random solution of a parabolic stochastic partial differential equation
satisfies a deterministic, tensorized evolution equation with a measure-valued, nonseparable
forcing term. We establish the well-posedness of this equation in tensor products of Bochner
spaces via a novel, tensorized space-time variational formulation of this evolution equation.
This variational formulation, while being of interest in its own right, can serve as starting
point for space-time compressive, adaptive Galerkin discretization techniques as outlined in
[7, 8, 1].

The outline of this paper is as follows: In Section 2 we introduce the required notation,
and recapitulate basic results which are needed in the sequel. We review, in particular,
the space-time variational formulation of linear, parabolic evolution problems from [9], and
show how this can be tensorized by taking the tensor product of two such problems. In
Section 3 we review the theory of stochastic partial differential equations of Itô type as
stochastic differential equations in Hilbert spaces as presented in [3]. In Section 4 we first
present a tensorized, linear evolution equation for the second moment of the solution of a
random evolution partial differential equation. We then state and prove the main result that
the covariance operator of the mild solution of the stochastic parabolic partial differential
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equation driven by Q-Wiener noise can be obtained as a weak, variational solution of a
tensorized, deterministic parabolic evolution problem.

2. Variational formulation of tensorized partial differential equations

Let us review weak variational formulations of partial differential equations and solutions
of tensorized equations in this section. Accordingly, we let (H, 〈·, ·〉H) denote a separable
real Hilbert space and A : D(A) ⊂ H → H be a linear operator, which we assume to be
densely defined, self-adjoint, positive definite, and not necessarily bounded but with compact
inverse. Then there exists an increasing sequence of real numbers (αk, k ∈ N), which tends to
infinity, and an orthonormal basis (ek, k ∈ N) of H such that Aek = αkek. The domain of A
is characterized by

D(A) :=
{
φ ∈ H,

∞∑
k=1

α2
k〈φ, ek〉2H < +∞

}
.

Furthermore, −A is the generator of an analytic semigroup of contractions S = (S(t), t ∈ R+)

and we are able to define the square root of the operator A. This operator A1/2 : D(A1/2)→ H
is given by

A1/2φ :=
∞∑
k=1

α
1/2
k 〈φ, ek〉H ek,

for all φ ∈ D(A1/2), where

D(A1/2) :=
{
φ ∈ H, ‖φ‖2V :=

∞∑
k=1

αk〈φ, ek〉2H < +∞
}
,

and V := D(A1/2) together with the norm ‖ · ‖V becomes a Hilbert space. The norm satisfies

that ‖φ‖V = ‖A1/2φ‖H , for all φ ∈ V . Let us define the bilinear form a : V × V → R by

a(φ, ψ) := 〈A1/2φ,A1/2ψ〉H ,

for all φ, ψ ∈ V . It is symmetric, continuous, coercive, and injective. In the following, let V ∗

denote the dual of V . By the Riesz representation theorem we identify H with its dual and
have the Gelfand triplet V ⊂ H ∼= H∗ ⊂ V ∗. Then the linear operator A : D(A) ⊂ H → H
can be interpreted as a bounded linear operator A : V → V ∗, A ∈ L(V ;V ∗), via the bilinear
form

V ∗〈Aφ,ψ〉V = a(φ, ψ) = V 〈φ,A
∗ψ〉V ∗ ,

for φ, ψ ∈ V , where V ∗〈·, ·〉V denotes the dual pairing between V and V ∗. Note that, although
we assume that A = A∗ is self-adjoint, here and below we write A∗ when the operator appears
as an adjoint operator. The operator A ∈ L(V ;V ∗) is boundedly invertible by the properties
of a and the Lax–Milgram lemma, and its norm is bounded by

‖A‖L(V ;V ∗) ≤ 1.

Let us fix the time interval T := [0, T ], for some T < +∞, and define the Hilbert spaces

X := L2(T;V ) and Y := L2(T;V ) ∩H1
0,{T}(T;V ∗),

where

H1
0,{T}(T;V ∗) := {φ ∈ H1(T;V ∗), φ(T ) = 0}.
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Let X ∗ and Y∗ denote the adjoint spaces with respect to the pivot space L2(T;H), i.e.,

X ∗ = L2(T;V ∗) and Y∗ = L2(T;V ∗) +H−1(T;V ).

In this framework, let us consider the parabolic partial differential equation

(2.1) (∂t +A)u = f

with initial condition u(0) = u0 ∈ H, i.e., we want to solve the weak variational problem to
find, for given u0 ∈ H and f ∈ Y∗, an element u ∈ X such that for all v ∈ Y

(2.2) B(u, v) = Y∗〈f, v〉Y + 〈u0, v(0)〉H ,

where

B(u, v) :=

∫ T

0
(V 〈u(t),−∂tv(t)〉V ∗ + a(u(t), v(t))) dt =

∫ T

0
V 〈u(t), (−∂t +A∗)v(t)〉V ∗ dt.

It is shown in Theorem 2.6 in [9] that the variational problem (2.2) admits a unique solution
u ∈ X and that the operator B := ∂t +A : X → Y∗ is an isomorphism.

Let us consider the tensor spaces

X (2) := X ⊗ X ∼= L2(T;R)(2)⊗̃V (2)

and

Y(2) := Y ⊗ Y.
Since (X (2))∗ = (X ∗)(2), we use the abbreviation X (2)∗ and we similarly define Y(2)∗, which
can be rewritten as

Y(2)∗ = (L2(T;V ∗) +H−1(T;V ))(2)

∼= L2(T;R)(2)⊗̃V (2)∗ +H−1(T;R)(2)⊗̃V (2)

+ L2(T;V ∗)⊗H−1(T;V ) +H−1(T;V )⊗ L2(T;V ∗).

Here, we denote by ⊗̃ the tensor product which separates the spaces with respect to time and
space. Let us define the tensorized bilinear form

B(2)(u, v) :=

∫ T

0

∫ T

0
V (2)〈u(t, t′), (−∂t +A∗)(2)v(t, t′)〉V (2)∗ dt dt′

= X (2)〈u, (−∂t +A∗)(2)v〉X (2)∗ ,

for all u ∈ X (2) and v ∈ Y(2). Then since B = ∂t + A is an isomorphism so is B(2), and the
weak variational problem to find, for given u0 ∈ H(2) and f ∈ Y(2)∗, an element u ∈ X (2)

such that

(2.3) B(2)(u, v) = Y(2)∗〈f, v〉Y(2) + 〈u0, v(0, 0)〉H(2) ,

for all v ∈ Y(2), admits a unique solution. The corresponding strong form of the tensorized
partial differential equation (2.3) reads

(∂t +A)(2)u = f,

(∂t +A)⊗ Iu(·, 0) = 0,

I ⊗ (∂t +A)u(0, ·) = 0,

u(0, 0) = u0.
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In Section 4 we will show that second moments and covariances of stochastic and random
partial differential equations are solutions of the tensorized partial differential equation (2.3)
with u0 and f chosen appropriately.

3. Stochastic partial differential equations

In this section, we consider stochastic partial differential equations and their mild solutions
in the framework of [3] and [5].

Let (Ω,A, (Ft)t≥0, P ) be a filtered probability space that satisfies the “usual conditions”.
Furthermore, let (H, 〈·, ·〉H) be a separable real Hilbert space with corresponding norm de-
noted by ‖ · ‖H . The Lebesgue–Bochner space L2(Ω;H) is the space of all square integrable,
H-valued random variables, i.e., the space of all H-valued random variables X such that

‖X‖2L2(Ω;H) := E[‖X‖2H ] < +∞.

For all X ∈ L2(Ω;H), the second moment of X

M(2)X := E[X(2)] = E[X ⊗X]

is well-defined as an element of H(2) since

‖M(2)X‖H(2) ≤ E[‖X(2)‖H(2) ] = E[‖X‖2H ] = ‖X‖2L2(Ω;H).

Furthermore, we define the covariance Cov(X) of X ∈ L2(Ω;H) by

Cov(X) := M(2)(X − E[X]),

i.e., Cov(X) is the centered second moment of X.
Let us denote by L+

N (H) the space of all nonnegative, symmetric, nuclear operators on H.

Then there exists a unique operator Q ∈ L+
N (H) such that

〈Cov(X), ϕ⊗ ψ〉H(2) = 〈Qϕ,ψ〉H ,

for all ϕ,ψ ∈ H. The operator Q is called the covariance operator of X.
For Q ∈ L+

N (H), the H-valued stochastic process W := (W (t), t ∈ R+) is called a Q-Wiener
process if it starts in zero P -almost surely, it has P -almost surely continuous trajectories, the
increments are independent, and for s < t, the increment W (t)−W (s) is Gaussian distributed
with expectation zero and covariance operator (t − s)Q. Let us denote by q the covariance

in H(2) that corresponds to Q, i.e., q is uniquely defined by the condition

〈q, ϕ⊗ ψ〉H(2) = 〈Qϕ,ψ〉H ,

for all ϕ,ψ ∈ H. Since Q ∈ L+
N (H), there exists an orthonormal basis (en, n ∈ N) of H

consisting of eigenvectors of Q. Therefore, we have the representation Qen = γnen, where
γn ≥ 0 is the eigenvalue corresponding to en, for n ∈ N. Then the square root of Q is defined
as

Q1/2ψ :=
∑
n∈N

γ1/2
n 〈ψ, en〉H en,

for ψ ∈ H, and Q−1/2 denotes the pseudo inverse of Q1/2. Let us denote by (H, 〈·, ·〉H)

the Hilbert space defined by H := Q1/2(H) endowed with the inner product 〈ψ, φ〉H :=

〈Q−1/2ψ,Q−1/2φ〉H , for ψ, φ ∈ H. Let LHS (H;H) refer to the space of all Hilbert–Schmidt
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operators from H to H, and by ‖ ·‖LHS (H;H) we denote the corresponding norm. It holds that
q has an expansion with respect to the eigenvalues and eigenvectors of Q given by

(3.1) q =
∑
n∈N

γn en ⊗ en.

Furthermore, W admits a Karhunen–Loève expansion, i.e., for all t ∈ T, it holds that

W (t) =
∑
n∈N
〈W (t), en〉H en =

∑
n∈N

γ1/2
n Wn(t) en,

where (Wn, n ∈ N) is a sequence of independent, real-valued Brownian motions.
For t ∈ T, let us denote by ∫ t

0
Φ(s) dW (s)

the stochastic integral with respect to Φ ∈ L2
H,T(H) with

E
[∫ T

0
‖Φ(s)‖2LHS (H;H) ds

]
< +∞.

Here, L2
H,T(H) := L2(Ω× T;LHS (H;H)) denotes the space of integrands with respect to the

measure space (Ω×T,PT, P ⊗λ), where PT is the σ-algebra of predictable sets in Ω×T and
λ denotes the Lebesgue measure.

Then the stochastic integral satisfies the Itô isometry

(3.2) E
[∥∥∫ t

0
Φ(s) dW (s)

∥∥2

H

]
= E

[∫ t

0
‖Φ(s)‖2LHS (H;H) ds

]
,

for all t ∈ T. For an introduction to stochastic integrals with respect to Hilbert-space-valued
stochastic processes, the reader is referred to [2, 3, 5, 6].

We define the weak stochastic integral by∫ t

0
〈Ψ(s),Φ(s) dW (s)〉H :=

∫ t

0
Φ̃Ψ(s) dW (s),

for t ∈ T, with Φ̃Ψ(s) ∈ H∗, s ∈ T, such that for all u ∈ H

Φ̃Ψ(s)u := 〈Ψ(s),Φ(s)u〉H ,

where Ψ is an H-valued, continuous, adapted stochastic process and Φ ∈ L2
H,T(H). The weak

stochastic integral is well-defined (cf. [5]). Since the stochastic integral is a martingale (cf.
Theorem 4.12 in [3]), it satisfies for t ∈ T that

(3.3) E
[∫ t

0
〈Ψ(s),Φ(s) dW (s)〉H

∣∣∣∣F0

]
= E

[∫ t

0
Φ̃Ψ(s) dW (s)

∣∣∣∣F0

]
= 0.

Furthermore, the weak stochastic integral satisfies a general Itô isometry, which is shown in
the following lemma.

Lemma 3.1. Let v1, v2 ∈ C0(T;H) and Φ ∈ L2
H,T(H). Then the weak stochastic integral

satisfies

E
[∫ t

0
〈v1(s),Φ(s) dW (s)〉H

∫ t

0
〈v2(s′),Φ(s′) dW (s′)〉H

]
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=

∫ t

0
〈v1(s)⊗ v2(s),E[Φ(s)⊗ Φ(s)]q〉H(2) ds.

Proof. Let t ∈ T be fixed. Using the Karhunen–Loève expansion of W , we rewrite the weak
stochastic integral∫ t

0
〈v1(s),Φ(s) dW (s)〉H =

∞∑
n=1

γn
1/2

∫ t

0
〈v1(s),Φ(s)en〉H dWn(s).

Then the independence as well as the martingale property of the real-valued Wiener pro-
cesses Wn, n ∈ N, implies that

E
[∫ t

0
〈v1(s),Φ(s) dW (s)〉H

∫ t

0
〈v2(s′),Φ(s′) dW (s′)〉H

]
=

∞∑
n,m=1

γ1/2
n γ1/2

m E
[∫ t

0
〈v1(s),Φ(s)en〉H dWn(s)

∫ t

0
〈v2(s′),Φ(s′)em〉H dWm(s′)

]

=
∞∑
n=1

γn E
[∫ t

0
〈v1(s),Φ(s)en〉H dWn(s)

∫ t

0
〈v2(s′),Φ(s′)en〉H dWn(s′)

]

=

∞∑
n=1

γn E
[∫ t

0
〈v1(s),Φ(s)en〉H〈v2(s),Φ(s)en〉H ds

]
,

where we applied an Itô isometry for real-valued Wiener processes (see Proposition 1.2 in [4])
in the last step. By the definition of the tensor product and of q in (3.1), we get that

∞∑
n=1

γn E
[∫ t

0
〈v1(s),Φ(s)en〉H〈v2(s),Φ(s)en〉H ds

]
=

∫ t

0
E

[〈
v1(s)⊗ v2(s),

∞∑
n=1

γn(Φ(s)en)⊗ (Φ(s)en)
〉
H(2)

ds

]

=

∫ t

0
〈v1(s)⊗ v2(s),E[Φ(s)⊗ Φ(s)]q〉H(2) ds,

which finishes the proof. �

Having introduced some properties of Hilbert-space-valued random variables and the sto-
chastic integral with respect to a Q-Wiener process, we start the discussion of the stochastic
partial differential equation

(3.4) dX(t) +AX(t) dt = dW (t)

with F0-measurable initial condition X(0) = X0 ∈ L2(Ω;H), for t ∈ T. Here, W is a Q-
Wiener process and A satisfies the assumptions that were made in Section 2, i.e., A is a linear
operator that is densely defined, self-adjoint, positive definite, and not necessarily bounded
but with compact inverse. Then (3.4) admits a unique mild solution X, i.e., X is a predictable
process that satisfies supt∈T ‖X(t)‖L2(Ω;H) < +∞ and

X(t) = S(t)X0 +

∫ t

0
S(t− s) dW (s),
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for all t ∈ T. Furthermore, this solution is equal to the unique weak solution, i.e., X is a
predictable process that satisfies supt∈T ‖X(t)‖L2(Ω;H) < +∞ and for all ϕ ∈ D(A∗) and t ∈ T

〈ϕ,X(t)〉H = 〈ϕ,X0〉H −
∫ t

0
〈A∗ϕ,X(s)〉H ds+ 〈ϕ,W (t)〉H .

Recall that, although A = A∗ is self-adjoint, we write A∗ when the operator appears as an
adjoint operator. The solution X of (3.4) has certain properties. In the following lemma, we
establish another weak formulation. There we use the space of test functions

C1
0,{T}(T;D(A∗)) := {φ ∈ C1(T;D(A∗)), φ(T ) = 0}.

Lemma 3.2. Let X be the mild solution of the stochastic partial differential equation (3.4).
Then X satisfies for all ϕ ∈ C1

0,{T}(T;D(A∗)) P -almost surely that

〈X, (−∂t +A∗)ϕ〉L2(T;H) = 〈X0, ϕ(0)〉H +

∫ T

0
〈ϕ(t),dW (t)〉H .

Proof. The lemma is a direct consequence of (9.20) in [5], where we use that ϕ(T ) = 0 by
definition. �

Furthermore, we prove regularity of the second moment of the solution.

Lemma 3.3. The second moment M(2)X of the mild solution X of (3.4) is an element

of X (2).

Proof. We first observe that

‖M(2)X‖X (2) ≤ E[‖X(2)‖X (2) ] = E[‖X‖2X ].

Using the definition of the norm and the independence of the stochastic integral of F0, we
obtain that

E[‖X‖2X ] =

∫ T

0
E
[∥∥∥A1/2S(t)X0 +A1/2

∫ t

0
S(t− s) dW (s)

∥∥∥2

H

]
dt

= E
[∫ T

0
‖A1/2S(t)X0‖2H dt

]
+

∫ T

0
E
[∥∥∥ ∫ t

0
A1/2S(t− s) dW (s)

∥∥∥2

H

]
dt.

For the first term we use that for v ∈ H

(3.5)

∫ T

0
‖A1/2S(t)v‖2H dt ≤ 1

2‖v‖
2
H ,

which is easily proved by the spectral representation of S(t). Hence, the first term is bounded
by 1

2‖X0‖2L2(Ω;H). To the second term we apply the Itô isometry (3.2), the definition of the

Hilbert–Schmidt norm, and again (3.5) to get

E
[∥∥∥ ∫ t

0
A1/2S(t− s) dW (s)

∥∥∥2

H

]
=

∫ t

0
‖A1/2S(t− s)‖2LHS (H;H) ds

=
∑
n∈N

γn

∫ t

0
‖A1/2S(t− s)en‖2H ds ≤ 1

2 Tr(Q).

This leads to
‖M(2)X‖X (2) ≤ 1

2

(
‖X0‖2L2(Ω;H) + T Tr(Q)

)
< +∞

by our assumptions on X0 and Q. �
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4. Covariance partial differential equation

In this section we calculate second moments and covariances of two different classes of
stochastic evolution partial differential equations. First, we look at random partial differential
equations, where the initial condition and the right hand side of (2.1) are random variables.
In a second step we deal with mild solutions of the parabolic stochastic partial differential
equation (3.4). We show that second moments and covariances of the equations are equal to
the unique solution of the tensorized partial differential equation (2.3), where the parameters
u0 and f in (2.3) have to be chosen according to the random or stochastic partial differential
equation.

4.1. Random partial differential equation. In the framework of Section 2, let us consider
in a first step the random partial differential equation

(4.1) (∂t +A)U = F

on the time interval T with initial condition U(0) = U0 ∈ L2(Ω;H) and F ∈ L2(Ω;Y∗). For
almost every fixed ω ∈ Ω, it holds that U0(ω) ∈ H and F (ω) ∈ Y∗ and it was shown in
Section 2 that the weak variational problem

(4.2) B(u, v) = Y∗〈F (ω), v〉Y + 〈U0(ω), v(0)〉H
has a unique solution u ∈ X that depends on ω and that we denote by U(ω) := u. Further-
more, since ∂t+A is an isomorphism with bounded inverse, U is an X -valued random variable
that is in L2(Ω;X ) by the properties of U0 and F . Therefore, U is a solution of (4.1) in the
sense that U ∈ L2(Ω;X ) and U(ω) satisfies the weak variational problem (4.2) for almost
every ω ∈ Ω.

Since U ∈ L2(Ω;X ), the second moment M(2)U of the variational solution U of the random

partial differential equation (4.1) is well-defined. Furthermore, M(2)U satisfies for v1, v2 ∈ Y
that

B(2)(M(2)U, v1 ⊗ v2) = E[B(U, v1)B(U, v2)]

= E[(Y∗〈F, v1〉Y + 〈U0, v1(0)〉H)(Y∗〈F, v2〉Y + 〈U0, v2(0)〉H)]

= Y(2)∗〈M(2)F, v1 ⊗ v2〉Y(2) + 〈M(2)U0, (v1 ⊗ v2)(0, 0)〉H(2)

+ E[Y∗〈F, v1〉Y 〈U0, v2(0)〉H ] + E[〈U0, v1(0)〉H Y∗〈F, v2〉Y ].

The two summands in the last line will be equal to zero if we assume that F and U0 are
independent and that E(F ) = 0 or E(U0) = 0. This implies that M(2)U solves the weak

variational problem (2.3) with u0 := M(2)U0 and f := M(2)F , if F and U0 are independent
and if E(F ) = 0 or E(U0) = 0.

Let us next look at the covariance Cov(U) = M(2)(U − E[U ]) of the solution U of (4.1). It
satisfies for v1, v2 ∈ Y that

B(2)(Cov(U), v1 ⊗ v2) = E[B(U − E[U ], v1)B(U − E[U ], v2)]

= Y(2)∗〈 Cov(F ), v1 ⊗ v2〉Y(2) + 〈Cov(U0), (v1 ⊗ v2)(0, 0)〉H(2)

+ E[Y∗〈F − E[F ], v1〉Y 〈U0 − E[U0], v2(0)〉H ]

+ E[〈U0 − E[U0], v1(0)〉H Y∗〈F − E[F ], v2〉Y ],

since

B(E[U ], v) = E[B(U, v)] = E[Y∗〈F, v〉Y + 〈U0, v(0)〉H ] = Y∗〈 E[F ], v〉Y + 〈E[U0], v(0)〉H ,
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for all v ∈ Y. Therefore, Cov(U) solves the weak variational problem (2.3) with u0 := Cov(U0)
and f := Cov(F ), provided that F and U0 are independent.

We have thus seen that, under additional assumptions concerning the independence and
the expectation of the data U0 and F , the second moment and the covariance of the random
partial differential equation (4.1) are the unique solutions of the tensorized partial differential
equation (2.3) with appropriately chosen data u0 and f . We will see in the next section
that such assumptions are naturally met by the data of the stochastic partial differential
equation (3.4).

4.2. Stochastic partial differential equation. In this subsection we consider the second
moment M(2)X of the mild solution X of the stochastic partial differential equation (3.4) with
initial condition X0 ∈ L2(Ω;H) and show that it is equal to the unique solution of the weak

variational problem (2.3), where u0 = M(2)X0 and f = δ⊗̃q. Here, δ is a Dirac distribution δ
to be introduced next.

To describe the temporal correlation of the Q-Wiener process W , we define the distri-
bution δ in the sense of L. Schwartz as functional acting on test functions φ ∈ C∞0 (T2;R)
by

〈δ, φ〉L2(T;R)(2) =

∫ T

0
φ(s, s) ds.

Therefore, δ is a measure which is supported on the diagonal of T2. By Lemma 3 in [10],

δ ∈ H−s,−s(T2;R) ∼= H−s(T;R)(2), for s > 1/4. In the following lemma we prove that an
additional spatial regularity assumption on the covariance operator Q combined with the
low temporal regularity of the Wiener process implies that the tensor product δ⊗̃q is in
H−1(T;V )(2) and therefore in Y(2)∗.

Lemma 4.1. Let Tr(AQ) < +∞. Then δ⊗̃q ∈ Y(2)∗.

Proof. We first remark that Tr(AQ) < +∞ implies by (3.1) that

‖q‖V (2) =
∥∥∥ ∞∑
n=1

γnen ⊗ en
∥∥∥
V (2)
≤
∞∑
n=1

γn‖en ⊗ en‖V (2) = Tr(AQ) < +∞,

and hence that q ∈ V (2). It remains to show that δ ∈ H−1(T;R)(2) to finish the proof. This

is true since δ ∈ H−s(T;R)(2), for all s > 1/4 by Lemma 3 in [10]. �

Having shown some regularity of the expression δ⊗̃q, we are now able to state and prove
the main result of the paper.

Theorem 4.2. Let X be the mild solution of the stochastic partial differential equation (3.4)
with F0-measurable initial condition X0 ∈ L2(Ω;H). Moreover, assume that Tr(AQ) < +∞.

Then the second moment M2X solves the weak variational problem (2.3) with u0 := M(2)X0

and f := δ⊗̃q.

Proof. First, we remark that the embedding C1
0,{T}(T;D(A∗)) ⊂ Y is continuous and dense.

Therefore, it is sufficient to show (2.3) for v1 ⊗ v2 with v1, v2 ∈ C1
0,{T}(T;D(A∗)). So, let

v1, v2 ∈ C1
0,{T}(T;D(A∗)). Then using the definition of the bilinear form B(2), we obtain that

B(2)(M2X, v1 ⊗ v2) = X (2)〈M2X, (−∂t +A∗)(2)(v1 ⊗ v2)〉X (2)∗

= E[X 〈X, (−∂t +A∗)v1〉X ∗ X 〈X, (−∂t +A∗)v2〉X ∗ ].
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Furthermore, the regularity of v1 and v2 implies that

E[X 〈X, (−∂t +A∗)v1〉X ∗ X 〈X, (−∂t +A∗)v2〉X ∗ ]

= E[〈X, (−∂t +A∗)v1〉L2(T;H)〈X, (−∂t +A∗)v2〉L2(T;H)].

The application of Lemma 3.2 leads to

E[〈X, (−∂t +A∗)v1〉L2(T;H)〈X, (−∂t +A∗)v2〉L2(T;H)]

= E[〈X0, v1(0)〉H〈X0, v2(0)〉H ] + E
[
〈X0, v1(0)〉H

∫ T

0
〈v2(t),dW (t)〉H

]
+ E

[∫ T

0
〈v1(t), dW (t)〉H〈X0, v2(0)〉H

]
+ E

[∫ T

0
〈v1(t), dW (t)〉H

∫ T

0
〈v2(t), dW (t)〉H

]
.

The second and third terms on the right hand side are equal to zero by (3.3) and since X0

is F0-measurable. We apply Lemma 3.1 to the fourth term and the definition of the tensor
product to the first and the fourth terms to derive

E[〈X, (−∂t +A∗)v1〉L2(T;H)〈X, (−∂t +A∗)v2〉L2(T;H)]

= 〈M2X0, (v1 ⊗ v2)(0, 0)〉H(2) + 〈δ⊗̃q, v1 ⊗ v2〉L2(T;H)(2) .

The desired assertion now follows, since

〈δ⊗̃q, v1 ⊗ v2〉L2(T;H)(2) = Y(2)∗〈δ⊗̃q, v1 ⊗ v2〉Y(2) ,

due to Lemma 4.1 and the properties of v1 and v2. �

Corollary 4.3. Under the assumptions of Theorem 4.2, the covariance Cov(X) of the mild
solution X of (3.4) satisfies

B(2)(Cov(X), v) = Y(2)∗〈δ⊗̃q, v〉Y(2) + 〈Cov(X0), v(0, 0)〉H(2) ,

for all v ∈ Y(2), and therefore it solves the weak variational problem (2.3) with u0 := Cov(X0)
and f := δ⊗̃q.

Proof. For all t ∈ T, it holds that

X(t)− E[X(t)] = S(t)X0 +

∫ t

0
S(t− s) dW (s)− S(t)E[X0]

= S(t)(X0 − E[X0]) +

∫ t

0
S(t− s) dW (s),

i.e., if X is a mild solution of (3.4) with initial condition X0, then X − E[X] is mild solu-
tion of (3.4) with initial condition X0 − E[X0]. The assertion follows by an application of
Theorem 4.2 to the transformed equation. �

References

[1] N. Chegini and R. Stevenson. Adaptive wavelet schemes for parabolic problems: Sparse matrices and
numerical results. SIAM Journal on Numerical Analysis, 49(1):182–212, 2011.

[2] P.-L. Chow. Stochastic Partial Differential Equations. Chapman & Hall/CRC Applied Mathematics and
Nonlinear Science Series. Boca Raton, FL: Chapman & Hall/CRC, 2007.

[3] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions, volume 44 of Encyclopedia of
Mathematics and Its Applications. Cambridge: Cambridge University Press, 1992.

[4] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, volume 24 of North-
Holland Mathematical Library. Amsterdam: North-Holland; Tokyo: Kodansha Ltd., 2 edition, 1989.



COVARIANCE STRUCTURE OF PARABOLIC SPDES 11

[5] S. Peszat and J. Zabczyk. Stochastic Partial Differential Equations with Lévy Noise, volume 113 of En-
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