A POSTERIORI ERROR ANALYSIS FOR THE
CAHN-HILLIARD EQUATION

STIG LARSSON' AND ALI MESFORUSH

ABSTRACT. The Cahn-Hilliard equation is discretized by a Galerkin fi-
nite element method based on continuous piecewise linear functions in
space and discontinuous piecewise constant functions in time. A posteri-
ori error estimates are proved by using the methodology of dual weighted
residuals.

1. INTRODUCTION

We consider the Cahn-Hilliard equation

u—Aw =0 1in Q x [0,77],
w+eAu— f(u) =0 in Q x [0,7],
(1.1) ou ow
5—0,5—0 on 0 x [0, 7],
u(-,0)=go inQ,

where ( is a polygonal domain in R% d = 1,2,3, u = u(x,t),w = w(z,t),
A= 25:1 86722’ U = %:f, v is the exterior unit normal to 0f2, and € > 0 is a

small parameter. The Cahn-Hilliard equation is a model for phase separation
and spinodal decomposition [3]. The nonlinearity f is the derivative of a
double-well potential. A typical example is f(u) = u3 — u.

We discretize (1.1) by a Galerkin finite element method, which is based
on continuous piecewise linear functions with respect to x and discontinuous
piecewise constant functions with respect to . This numerical method is the
same as the implicit Euler time stepping combined with spatial discretization
by a standard finite element method.

We perform an a posteriori error analysis within the framework of dual
weighted residuals [2]. If J(u) is a given goal functional, this results in an
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error estimate essentially of the form

N
() = JO) <30 Y {ourwur + pugwni )+ R,
n=1KeT,

where U denotes the numerical solution and T,, is the spatial mesh at time
level t,,. The terms py, g, pw,x are local residuals from the first and second
equations in (1.1), respectively. The weights wy, g, wy, Kk are derived from the
solution of the linearized adjoint problem. The remainder R is quadratic in
the error.

There is an extensive literature on numerical methods for the Cahn-
Hilliard equation; see, for example, [5] and [4] for a priori error estimates.
Adaptive methods based on a posteriori estimates are presented in [1] and
[6]. However, these estimates are restricted to spatial discretization. We are
not aware of any completely discerete a posteriori error analysis.

2. PRELIMINARIES

Here we present the methodology of dual weighted residuals [2] in an
abstract form.

Let A(+;-) be a semilinear form; that is, it is nonlinear in the first and lin-
ear in the second variable, and J(-) be an output functional, not necessarily
linear, defined on some function space V. Consider the variational problem:
Find w € V such that

(2.1) Aw; ) =0 VeV,
and the corresponding finite element problem: Find w, € V}; C V such that
(2.2) Alup;pp) =0 Vipy € Vp.

We suppose that the derivatives of A and J with respect to the first variable
u up to order three exist and are denoted by

Al(u; ), A" (us ), ), A (ws €9, ),
and
I (w; ), I (w9, ), T (u;€,9, 0),
respectively, for increments ¢, ¥, £ € V. Here we use the convention that
the forms are linear in the variables after the semicolon.
We want to estimate J(u) — J(up). Introduce the dual variable z € V
and define the Lagrange functional
L(u;2) = J(u) — A(u; 2)
and seek the stationary points (u,z) € V x V of L(-;-); that is,
(2.3)  Lluiz,0,9) = J'(u;0) — A'(u;2,0) — A(u;¥) =0 Vp,9p € V.
By choosing ¢ = 0, we retrieve (2.1). By taking ¢ = 0, we identify the
linearized adjoint equation to find z € V such that
(2.4) J(u;p) — A(u;2,0) =0 Vo € V.
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The corresponding finite element problem is: Find (up, z) € Vi X V3 such
that

L' (un; zh, ns hn) = J' (un; on) — A (un; zn, n) — Alup; ¥n)
=0 Vop, Yy € Vh.

By choosing ¢, = 0, we retrieve (2.2). By taking ¢, = 0, we identify the
linearized adjoint equation to find z;, € V}, such that

(2.6) J'(un; on) — A'(up; zn, 0n) =0 Yop € Vi
We quote three propositions from [2, Ch. 6].

(2.5)

Proposition 2.1. Let L(-) be a three times differentiable functional defined
on a vector space X, which has a stationary point x € X, that is,

L'(z;y) =0 Vye X.

Suppose that on a finite dimensional subspace X; C X the corresponding
Galerkin approrimation,

L'(zpsyn) =0 Vyn € Xp,
has a solution, xp, € X};,. Then there holds the error representation
L(z) — L(zp) = §L (zh;z — yn) + R Vyn € X,

with a remainder term R, which is cubic in the error e :== x — xp,

1
R = ;/ L" (zp, + se;e,e,e)s(s — 1) ds.
0
Since
L(u;z) — L(up; zp) = J(u) — J(up),

at stationary points (u, z), (up, 21 ), Proposition 2.1 yields the following result
for the Galerkin approximation (2.2) of the variational equation (2.1).

Proposition 2.2. For any solutions u and up, of equations (2.1) and (2.2)
we have the error representation

J(u) — J(up) = 3p(ups z — on) + 30" (uns zp,u — ¥n) + R Voop, 4y, € Vi,
where z and zp, are solutions of the adjoint problems (2.4) and (2.6) and
plun;-) = —A(up; ),
p*(un; zn, ) = T (un; ) — A'(ups 2, ),
and, with e, = u — up, €, = z — zp, the remainder is
1
RG) = %/ (J'"(uh + 8ey; eu, ey, eu) — A" (up, + sey; zn + €, ey, ey, ey)
0
— 3A" (up, + seu; ey, ey, ez))s(s —1)ds.

The forms p(+;-), p*(-; -, ) are the residuals of (2.1) and (2.4), respectively.
The remainder R is cubic in the error. The following proposition shows
that the residuals are equal up to a quadratic remainder.
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Proposition 2.3. With the notation from above, we have

p*(un; z2n,w — Yp) = p(up; 2 — @n) +0p  Vou, y € Vi,
with

1
Sp = / (A”(uh + s€u; 2 + Ses, ey, ey) — J (g + sey; ey, eu)> ds.
0
Moreover, we have the simplified error representation

J(u) = J(up) = plun; 2 — o) + R Ve, € Vi,

with quadratic remainder

1
R — / (A"(uh + 8€u; 2, €y ) — J" (up + s€y; ey, eu)> ds.
0

3. GALERKIN DISCRETIZATION AND DUAL PROBLEM

In this section, we apply the dual weighted residuals methodology to the
Cahn-Hilliard equation (1.1). We denote I = [0,7], Q@ = Q x I, and

ot = [ owdz, ol = [ 2
D D

for subsets D of @ or ) with the relevant Lebesgue measure dz. Let V =
HY(Q) and W = C([0,T], V). By multiplying the first equation by 1, € V
and the second equation by ¥, € V, integrating over 2 and using Green’s
formula, we obtain the weak formulation: Find u,w € W such that u(0) = go
and

<Utawu>§2 + <vw)ku>ﬂ =0 vd}u € V, te [O,T],
(w, Yo — (Vu, Viby)a — (f(u), bw)o =0 Yo, €V, t € [0,T].

Split the interval I = [0, 7] into subintervals I,, = [t,_1,t,) of lengths k,, =
tn - tn—la

(3.1)

O=to<ti < - <tp < ---<ty=1T.

For each time level ¢,,n > 1, let V,, be the space of continuous piecewise
linear functions with respect to regular spatial meshes T, = {K}, which
may vary from time level to time level. By extending the spatial meshes
T,, as constant in time to the time slab  x I,,, we obtain meshes 7}, of the
space-time domain @ = Q x I, which consist of (d + 1)-dimensional prisms
Q% = K x I,,. Define the finite element space

V.= {SOQ —R: w(at)‘ﬁ € Vna te Inv SD(‘T7 )’In € H07 S Q}

Here 11y denotes the polynomials of degree 0. For functions from this space
and their continuous analogues, we define

vf =limv(t), v, =uv, =limo(t), [v],=v —v,.

n
tltn tTtn
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For all w, w, ¥y, 1, € V or W, consider the semilinear form

N

Awswivhutn) = Y [ {(wndo + (Fu, Ve + (0.0
n=1v"n
— e(Vu, Ve )o = (f(u) Yu)a } dt

N
+ Z<[u]n—17w1—:n_1>9 + <'LL8_ — 90, %—r@)ﬂ
n=2

Solutions u,w € W of (1.1) satisfy the variational problem

(3'2) A(uaw§¢m¢w) =0 Vu, Y €W
and the finite element problem can formulated: Find U, W € V such that
(3'3) A(U, Wby, Ql)w) =0 Vu, Py € V.

We now show that this is a standard time-stepping method. Since U (t) =
U,=U; =U" |, W(t)=W, for t € I,, we have

n—1°

N
A(U’W;¢ua¢w) :Z/I {<VWn7ku>Q + <Wn’7/)w>ﬂ
n=1 n

(3.4) — (VU Vibu)a = (f(Un) ) } dt
N
+ ) (Un = Un-1, ¥ 10 + (U1 = go, ¥ o
n=2
By taking
Xu € Vn, tE€I, Xw € Vn, tel,,
ul(t) = w(t) =
Yult) {0, otherwise, Yult) {0, otherwise,

we see that (3.3) amounts to the implicit Euler time-stepping,
(Uo = go, xu)a =0 Vxu € Vi,
En(VWi, Vxu)a + (Un = Un—1,xu)0 =0 YXy € Vp,n > 1,
Wi, Xw)e — €(VUn, Vxw)a — (f(Un); Xw)o =0 Vxw € Vn,n > 1.
Now take a goal functional J(u), which depends only on u, and set
L(v;z) = J(u) — A(v; 2),
where v = (u,w), z = (2y, 2w). With © = (@u, Yw), ¥ = (Yy, V), stationary
points are given by
L'(v;z,0,9) = J'(u;00) — A'(v;2,0) = A(v;9) =0 Y, € W x W,

With ¢ = 0 we obtain A'(v; z,¢) = J'(u; @), the adjoint problem. So we
should compute A’(u, w; 2y, 2w, Pu, Pw) and J'(u; @,). To this end we write

A(“? W; Py, 7/}10) = <uta ¢U>Q =+ <Vwa v¢u>Q + <wv ¢w>Q - 6<Vu, v'¢w>Q
— (f(u), Yw)q + (u(0) — go, Yu(0))a-
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Hence,
Al w3 2u; 2y Pus Pw) = (Puts 20)Q + (Vow, Vzu)g + (Pws 2u)Q
— €(Vou, V2u)g — (Pu, 2w)@ + (pu(0), 24(0))q.
By integration by parts in ¢,

(Puts 20)Q = —{(Pus 2u,t) @ + (Pu(T), 2u(T)) 2 — (pu(0), 24(0)) 0,
we obtain
A’ (u, w; 2y, 2w, Pus Pw) = —(Pus zu)Q + (Vow, Vau)q
+ {Puw; 2w)Q + €(Vou, Vaw)
— {pu, f,(u)zw>Q + (pu(T), 2u(T)) -
The adjoint problem is thus to find z,, z,, € W such that
(Pus —2ut) @ — €(Vou, Vau)
(3.5) — (pu, ['(W2w)q + {pu(T), 2u(T))e
+ (Vow, Vzuw) g + (Pw, 2w)g = J (W5 0u)  Vepu, puw € W.
We now specialize to the case of a linear goal functional of the form
J(u) = (u,9)q + (w(T), gr)e,
for some g € L2(Q), gr € L2(€2). Then
(3.6) J'(uspu) = {Pu, 9)q + (u(T), g1)0-
The adjoint problem then becomes: Find z,, z,, € W such that
(bu, —2zug — [ (W20 — 9)@ — €{Vipu, Vzu)q
(3.7) +(ou(T), 2u(T) — gr)a =0 Vo, €W,
(Pws 2w)@ + (Vew, Vzu)g =0 Yo, € W.
The strong form of this is
—Oyzy + €Dz — f(W)z =g inQ,
Zw— Dz, =0 in Q,

(3.8) 0zy, 0z
— =0, — = Qx 1
ey 0, ey 0 ond2xI,
z2u(T) =gr in Q.
4. A POSTERIORI ERROR ESTIMATES
From Proposition 2.3 we have the error representation
(4.1) J(u) — J(U) = =AU, W; 2y — T2y, 2 — T20) + RP),

where z = (zy, 2y ) is the solution of the adjoint problem (3.5) and 7z, w2, €
VY are appropriate approximations to be defined below. The remainder is
quadratic in the error.
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In order to write this as a sum of local contributions we must rewrite
AU, W; 1)y, 1) in (3.4). First we compute fln<VVV, Vi )q dt. By using

Green’s formula elementwise, we have

/ (VW, Vip,)q dt = > VW, Vi) k dt
In In geT,

/1 AW¢uKdt+/ > (0, u)ox dt,

" KeT, "KGT

where 9,WW = v - VIW. We divide the boundary 0K € T, into two parts:
internal edges, denoted by £7, and edges on the boundary 02, denoted by
E5q- So we get, with [ | denoting the jump across the edge,

/I S (O, puorc dt

n KeT,
/ >« aw¢uEdt+/ > (0, W, ) g dt
I, EeEp ”EGE"
- [ 2 MWL vdacomdt+ [ 3 @ borandt

n KeT, ”KGTn

Let 0, denote the spatial boundary and define 0,Q = 0Q x I and 0,Q% =
OK x I,. Hence,

/1 (VIV, Vipy ) dt = Z { — (AW, Yu)gr — 50, W], Yu)a,qrra.0

KeT,

+ (O, W, ¢u>8IQ’;(ﬂazQ}a

and in the same way

¢ [ FUTiadr= 3 { - AUy ~ 30U oz
In KeT,
+ €<61/U7 Qpw>(’9ggQ”KﬁazQ}'

Note that AW = AU = 0 on Q% for piecewise linear functions, but we find
it instructive to keep these terms. Inserting this into (3.4) and noting that

[ Wtiadi= 3 Wby,
In KeT,

and

[ @i badadt="Y (7@ vla

In KeT,
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gives

N
AU W Y, ) =D Y {— (AW, Yu)gn

n=1KeT,
+ (AU + W — f(U), %)@y — 3{[0.W], Yu)a,0m 0.0

+ 3€{[00U], Yw) a,Qz\0,0 + (O W ¥u)0,Qpn0.Q
— €(0,U, Yw)a,qp.n0,q@ + ([Uln-1, ¢In_1>K},

where we have set U, = go for simplicity. Hence (4.1) becomes

N
J(u) — J(U) :Z Z {(Ru,zu — mzu)Qy + (Ruw, 20 — T2uw) Q.
n=1 KGTn

+ (Tus 2u — T2u)0,Q7 + (Tws 2w — T2w)a,Qn
~{Uln1s (e = w2 )i | + R,
with the interior residuals

R, =AW, Ry,=—€eAU—-W + f(U),

(4.2)

the edge residuals

o {—;e[ayv], I C 0:Qf \ :Q.
w|l =

0, otherwise,

1 n
T’u|F = {Q[OVW]’ I'c a’EQK \a’EQv

0, otherwise,
and the boundary residuals

{68,,U, I C 9,Q% Nd.Q,
7’w‘l“ =

0, otherwise,

{—ayw, I C 0:Q% N:Q,
Tu’F =

0, otherwise.

Here the subscript u refers to residuals from the first equation in (3.1) and
the subscript w to residuals from the second equation.
We now define 7z, 7z, € V. Let

1

(Pa)(t) = - |

v(s)ds

be the orthogonal projector onto constants. Let m,: C(Q) — V, be the nodal
interpolator; that is, it is defined by

(mv)(a) = v(a),
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for all nodal points a in T,,. Then we define 7: C(Q) — V by 7v|;, = P,myv.
Since Ry, Ry, 7y, and ry, are piecewise constant in ¢, we have

J(u) — J(U)

_Zz{Ru,p — Tnzu))Qy + (Ruws Pa(20 — Tnzw)) @y,

(4.3) n=1KeT,
+ (Tus Pl(zu — anu»BIQ}L( + (rw, Po(zw — anw»azQ}L(

~ {[Uln-1, (20 = 727 ) | + R,
Applying the Cauchy-Schwartz inequality to each term gives
N
) = J@) <30S {IRulag | Palzu = mnz)llag
n=1KeT,

_1 1
‘|'hK2”TuH8xQK hie || P (20 _anu)”f)m@’}(
+ [[Ruwll@p 1 Pa (2w — mzw)llop,

+ hK2 |!Tw||axQ}zh?<HPn(Zw — Tnzw)llo,.Qn

k0T ki 2 )l o+ (RO
Here hy = diam(K). For a,b,c,d > 0 we have

(ab+ cd) < (a2 + )2 (b2 + d?)3.

We use this inequality for each term in the previous inequality and set

1
2

puc = (1Rl + bl Il )

D=

1Pa(zu = mnza) g, + il P = mnz) B0y )
1

1 2
|Rulidy, + bz Irullbop )

N

(
=
waic = (1Pl = Tnz)lly, + Al Palzw = Tnzu) By, )
(
(

Note that, since R, = AW = 0 for piecewise linear functions, the first term
in py,x and w, x can actually be removed. So we have

N
7)) = JO) <303 {ourwui + pu e + prrc f + R
n=1 KGTTL

We have proved the following theorem:
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Theorem 4.1. We have the a posteriori error estimate

N
(44) S —J0) <3 % {pu,Kwu,K + oKWK + pKwK} R,
n=1KeT,

Note that on each space-time cell Q%, the terms p, rwy x and py, KWy, K
can be used to control the spatial mesh and the term pgwg to control the
time step k, in an adaptive algorithm; see [2]. We do not pursue this here.

In the following we want to obtain a weight free a posteriori error estimate
where the weights in (4.4) are replaced by a global stability constant. We
need the following interpolation error estimate, see [2, Lemma 9.4].

Lemma 4.2. With © and m, as defined as before, there holds
1
(4.5) | P2 — 77712)”62}‘( + hf{HPn(Z - WnZ)HBzQ’}( < Ch%(HD2ZHQ?(7

1
(4.6)  llz(tn-1) = Puzllx < Ckil|0iz]lqy-

1
Here HDzzHQrf( denotes the seminorm (Z|a|:2 HDazHé,;{) ’

In the following we assume that J(-) is a linear functional given by (3.6)

and 2 is such that we have the elliptic regularity estimate
0
(4.7) ID%v|lq < Cl|Av]le Yo € H2(Q) with al _=o.
v

We also assume a global bound for f/(u), which is reasonable since it is
known that |lu|z () < C (c.f. [5]).

In particular, with

9= w-U)/||lu—-"Ullg and gr = (un — Un)/|lun — Unlla
the following theorem provides bounds for the norms of the error, |ju — Ul|g

and [[uy — Un||q-

Theorem 4.3. Assume that || f'(u)||1., < B and that (4.7) holds. Let z,, zy
be the solutions of (3.8). Then there is C = C(8) such that the following a
posteriori error estimates hold.

(i) Let g € Lo(Q) with ||gllo =1 and gr = 0. Then

(4.8) - i Lo L2 V2 R
<CCs Y 30 kbl + ps) + (W + k2)ok |7 + IR,
n=1 KeT,
where
1
(D221, + 9ezall?y + D223
Cs = sup

9€L2(Q) lgllo
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(ii) Let gr € Lo(Q) with ||gr|lo =1 and g =0. Then

[(u— U, gr)al

[NIE

N
(4.9) <CCsY > {h%((PZ,K +o, ok + o k) + kia‘lp%}
n=1KeT,

+ R,
where o(t) =T —t,

o(ty) =T —t,, n=1,---,N—1,
Op =
kn, n =N,

and

Cg= sup (eilmaXquH%—i—eilewHQQ
gr€L2() 4

1
1 1 2
+ D24 + llo 2 Bezully + 62||U§D22w||23) “/lgrllo.

Proof. Part (i). From Theorem 4.2 we have

ol

wurc = (I1Pazu = Tnz)lly, + hicl Pz = i) 3,0p.)
SCh ”DQZu”Q"

-

wuie = (I1Pa(z = Tnz) Iy, + b | Pz = mzu)llBgp )

< Ch¥|D*zulqn ,
and
wic = k2] (20— o)l

< KE 1 Pa(2u — mnzllic + K2t 1) — Pazulli

< Ch%ID22 gy, + Challdrzullgy, + IR,
Hence

(u—U,g)qg S Z {pu,Kwu,K + P, KWw, K + pKwK}
eT,

IN

iMZ IIMZ

~
3

{Ch pui |ID?zull @y + Chicpu i |D* 2wl gp.
Ke

+ K(Chﬁ(unwm + ChallOizally,) }
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and the desired estimate (4.8) follows by the Cauchy-Schwartz inequality

Z Z h3 PuKHD zUHQ"

n— 1K€Tn
1 N L
2 2
(XX 1) (25 Ml
n=1 KeT, n=1KeT,
N 1
2
(Z S kot D%l < €s( Y Hkotik) sl
n=1KeT, n=1KeT,

and similarly for the other terms.
Part (ii). The previous bound for Zivzl > KeT, PuKWu ik applies here
also. Consider then

Z 3wk < Z 3 puxChID*zullon + S pukwuk

n=1KeT, n=1 KeT, KeTy

Here,

Z 3" puxChi|D2ullgn

n—= lKeTn
N-1 L
=Y > purChillo202D%2, gy
n=1 KeT,
N-1
<C Z Pu,kon > hic||02D 20| Qn
n=1 KeT,
-1 1 N-1 L 1
2 = 2
<o(3 3 ket )’ ( o2 D222, )
n=1 KeTn n=1 KeT,
N-1 1 1
Lo
< C( o Rl K> loaD?zu g
n=1 KGTn
N-1 1
_ 2
< 050 o et i) llgrla
n=1 KeT,

The term with n = N is special. We go back to (4.3) and replace it by

> (Runzw —anzu)oy = <Rw,(I—7rN)/ zwdt>K

KeTxn KeTy In

< D? wdtH
> 1RulOn| / awdt]

KeTyn
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Here, by the regularity estimate (4.7), €Az, = 0r2y + f'(u)2y from the first
equation in (3.8), and || f'(u)||r., < 3, we have

(e e el e
In K In K

_Ce_lH ’ (@zu—{—f'(u)zw)dtH

< 0 (llautem)llx + lzultn-1)llx + BEGl1zulgy ).
1
Hence, since pu,x = [|Rullgy = kyl[Ruwl x, we have

Z <Rwazw - TFNZw>QII¥

KeTyn
< 3 IRullxClie (Ilulin) e + lzultn-a) e + Kilzully )
KeTynN
1 _1 9 1
=Cet > ki Wpu (12 ()l + zultn) Ik + KRl gy )
KeTn
1
ce (X khertre) (utn) o+ lzulin—n)la+ KR 2l
KeTyn
1
<Ce'Cslgrlla( Y onthkrb)’

KeTy

where we have used oy = kxn. So we have

[N

N N
(410) 3 Y puscwnne < CCsllgrlla( Y X onthkot i)

Now we compute ZnN:1 ZKETn prwr. For K € Ty we use

1
WK = kva(Zu —mzu) N4l
1
<k MIPN (2w — v zu) |k + kR llzu(tn—1) — Pnzullk
1
= HPN(Z — WNZu)HQN + k]QVHZU(tN,Q — PNZuHK

< Chj HDQZullQN+k [zu(tn-1) = Pnzul &
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Then we have

N
> D rrwk
n—lKETn
N-1
—CZ Z PKh ”DQZuHQK“‘CZ Z prcknon? ||0'26tzuHQ”
n=1KeT, n=1 KeT,
1
+ > prckilzu(tn-1) = Pyzullx
KETN
N-1 T
— 2 =
C(Z S Heok ) 0%+ 0(X X sekion!) ot aslo
n=1KeT, n=1 KeT,
1
+C( Y kvk) lzultn 1) = Pyzalle.
KeTyn

Using o = ky and
lzu(tn-1) — Prnzullo < 2 max [zulle < 2Cs||gr o,

gives

N

> pKwK§C(Z 3 thK)lcsugTHQ

n=1KeT, n=1KeT,

N-1 1 1
+0( X Y ko) Csllgrlia+C( Y ko) Cslgrllo
N

n=1 KeT, KeTy

1 1
—CCS<Z Z thK) HQTHQ—l-Ccs(Z Z PKk?zUEl)QHQTHQ'
€Ty

n—= 1K€Tn

This completes the proof.

Finally, we prove a priori bounds for the stability constants Cg.

Theorem 4.4. Assume that || f'(u)l|L.o < B and € € (0,1] and that (4.7)

holds. Then the solution of (3.8) admits the following a priori bounds, where
C=0C(p). If gr =0, then

(4.11) ID?2u[13 + 10:2ulll + €120 (15 < Cllgllipe™
If g =0, then, with o(t) =T — t,
_ 1 1
e’ max Izalld + l1z0lld + ID?2ullg + 02002l + €]l D201

(4.12) °
< Cegr|ge "
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Proof. We first estimate sz||22 To this end we use Az, = z, from the
second equation of (3.8) to get

<Azw72u>ﬂ = <Z’LU7AZU>Q = ||Zw||?2
Then we multiply the first equation of (3.8) by z,, and integrate over [¢,T7],

T T T T
/ (—Bhzus 2)ads +e / 213 ds — / U ()20, 200 ds = / (g, 2a)r ds.
t t t t

By assumption we know that || f'(u)||L o, < B, so we have

T
Y2 = LT3 + ¢ / 213 ds
T T
< / 17 @)z ol zwllallzulle ds + / lgllallzdlla ds
T T
2
< / (B lzald + Sllzwll3) ds + / (Elgl3 + L lul2) ds

T T T
2
<2 / lzallBds + £ / lz0l2 ds + / Sl + Llzul) ds.

£

Hence, with 2z, (7") = gr and ¢ = 37>

T
Izl + ¢ / 2ull3 ds
t
€ 2 2 2 1 r 2
< Sllslly +llorlfy + 26% / a2 ds

T
< Clgl +llorl+Ce™ [l ds.
Define
2 g 2
O(t) = [lzu(®) I +€/t 12w (s) [l ds.
Obviously we have [|2,(s)||3 < ®(s), so that
T
B(t) < Cellgl?, + lgrll3 + Ce_l/ B(s) ds.
t
We apply Gronwall’s lemma to get
e N (T—
o(t) < Clellglly + llgrlia)e T2
This means
T
e N(T—
()8 + 6/t l2ul& ds < Clellglly + llgrlia)e 2.

We conclude »
max |zalld < Clellglld + llgrlid)e ™.

- 1
(4.13) lzwlll < CClglg + € Hgrlé)e™
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From the second equation we know z,, = Az,. So, by (4.7) and (4.13),
(4.14) D23 < ClAz|E = Cllzully < CUlglG + € Hlgrlla)e”
This takes care of the first terms in (4.11) and (4.12).

Now assume that gr = 0. Consider the dual problem (3.8) and multiply
the first equation by —d;z, and integrate over @) to get

(4.15)  (Orzu, Orzu) g — (A2, Or2u) g — (' (W) 2w, Orzu) @ = — (g, Orzu)o-

So, by using z, = Az, from the second equation, we get

T
d
(Ao, )@ = (2 B2 = (A2, DA 2,) g = ;/ Az d.
0
By putting this in (4.15) and using that || f'(u)|[z_(q) < B, we have

10czullgy — SI1AZu (TG + 511 Az (0)]13
<N (Wl Lo l2wllQllFzullg + lglllidezullq
2
< Lzl + £l102ulll + Sllald + £110rzull-

Put ¢ = 2 and kick back H('?tzuHé to get, with z,(T) = gr =0,
sl0zallgy + 511824 (0)[3, < B2 l20llG + 9113
Hence, by (4.13) with C' = C(p) ,
-1
@16) [0l < Cllzully + Cllgly < Cllallbe ™.

It remains to bound ||D2zw|]2Q. From the first equation of (3.8) we get
€Azy = g+ Opzy + f'(u)zy. Taking norms and using (4.7), (4.13), and (4.16)
gives

D%z, < ECI Az} = Cllg + Bhz + F(w)zul
< C(lglly + 10zl + 1F @13 o l2ull?)
< Cllglige”
This completes the proof of (4.11)

Now let g = 0 and set o(t) = T' — ¢t. Multiply the first equation of (3.8)

by —o0.z, to get

(Orzu, 001 2u) @ — €(A 2y, 00L2y)Q — (f' (u) 2, 00izu)g = 0.
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Here, since z, = Az, and o'(t) = —1,

(Azy, 00 20) @ = (2w, 0 A0 2u)Q
= (Azy, 0A024)Q

=1 Tﬂ Az, ||3)dt — L T’A 2 dt
=3 dt(all zullQ) 5 o'[|Azy||G
0 0

T
édTWA%HN%%UWMA%@m%+§A 20 |2 di
= — 1722, 0) I3 + $l2ull3
Hence,

1 1 1
lo20ezulfy + 182 (0) 1 < 5llzwllgy + 1 (W)lzac o2 20llQllo2 Dezullo

3
1
3(e+ B D)llzwllfy + 3llo2 Oezullly-

IA

So by (4.13) we have
1 _ —1
lo20rzullq < (e + B°T) |z |HCe HlgrlGe™ .
Finally, from (4.7) and €Az, = Oz + f/(u)2y we get
1 1 1
e02D%2u g < ECll0Z Azy[ll = Cllo? (2w + f'(w)20) 1)
1

< C(llotduzally + Tllzu3)
< O grlae® .

This completes the proof of (4.12). O
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