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Pattern formation and the Cahn-Hilliard equation

1. Steady states. There are many two component systems in which phase separation can
be induced by rapidly cooling the system. Thus, if a two component system, which is spa-
tially uniform at temperature T1, is rapidly cooled to a second sufficiently lower temperature
T2, then the cooled system will separate into regions of higher and lower concentration. A
phenomenological description of the behavior of such systems can be obtained by energy
arguments. The claim would be that there exists a critical temperature Tc, such that for
T > Tc the free energy F (c, T ) of the system is a single welled function of the concentration
c of one of the species, whereas for T < Tc the free energy is double welled. Referring to
Figure 1, a system which was spatially uniform at temperature T1, when cooled to temper-
ature T2, would find it energetically preferrable to separate itself into two systems, one at
concentration cA and one at concentration cB.

To be more specific consider now the system at temperature T < Tc. Assume that the
free energy F (c) per unit volume (Gibbs free energy or Landau-Ginzburg free energy) of the
spatially homogeneous system has the convex/concave shape indicated in Figure 2. More
precisely F is concave in the spinodal interval cs

A < c < cs
B and convex elsewhere. The

points cA and cB where the supporting tangent touches the graph are sometimes referred
to as the binodal points. The derivative f(c) = F ′(c) is depicted in Figure 3.

The free energy of a spatially heterogeneous system would then be given by

(1.1) F(c) =

∫

Ω

F (c(x)) dx,

where Ω ⊂ R3 is the spatial domain in which the system is confined.
The steady states of this system are obtained as the minimizers of the free energy func-

tional F under the constraint of prescribed mass

(1.2)
1

|Ω|

∫

Ω

c(x) dx = r.

Here the average concentration r is a given real number. This problem is easily solved with
the aid of the auxiliary functional

(1.3) F̃(c) =

∫

Ω

F (c(x)) dx − σ

∫

Ω

c(x) dx,

where σ is a Lagrange multiplier. Any critical point of F̃ must satisfy the Euler-Lagrange
equation

f(c) = σ
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at points of continuity of c. It follows that solutions are either constant (single phase)

c(x) = r, x ∈ Ω,

or piecewise constant (two phase)

c(x) =

{

cA, x ∈ ΩA,

cB, x ∈ ΩB = Ω \ ΩA,

where cA, cB and σ are determined by

(1.4)
F (cB) − F (cA) = σ(cB − cA),

σ = f(cA) = f(cB).

Indeed, with σ equal to the slope of the supporting tangent of the graph of F (see Figure 2),

the function F̃ (c) = F (c) − σc has the form shown in Figure 4 and any piecewise constant

function with values at the minima of F̃ will be a global minimizer of F̃ .
The conditions (1.4) can also be phrased as Maxwell’s rule: The coexistence concentra-

tions cA and cB and the multiplier σ are determined by the condition that the shaded regions
in Figure 3 have equal areas.

Applying (1.2) we find that

|ΩA| =
cB − r

cB − cA
|Ω|, |ΩB| =

r − cA

cB − cA
|Ω|,

and it follows that a two phase solution is admissible only if cA < r < cB.
It is clear from the convex/concave nature of F that uniform states c(x) = r are global

minimizers if r ≤ cA and if r ≥ cB, they are local maxima in the spinodal region cs
A ≤ r ≤ cs

B,
and they are local but not global minimizers in the remaining intervals.

Thus, if a system is prepared with an average concentration r in the spinodal region,
then it will eventually end up in a final state with separated phases. But there are infinitely
many such states. Are any of these two-phase solutions—in some physical sense—preferred?
Experiments show that cooled systems first separate themselves rapidly into some configura-
tion of alternately high and low concentration (spinodal decomposition). Then, slowly, the
system sorts itself out, and larger and larger regions become dominated by a single phase.
This points to the importance of interfacial energy.

One way to take into account the energy of the interfaces between phases is to include a
gradient energy contribution in the definition of the free energy:

(1.5) F(c) =

∫

Ω

(

F (c) +
1

2
κ|∇c|2

)

dx.

Here F (c) corresponds to the homogeneous free energy as above and κ is a positive coefficient.
Note that the additional gradient energy term penalizes the formation of phase interfaces.

Steady states are obtained by minimizing F over H1(Ω) subject to the constraint (1.2).
The Euler-Lagrange equation now becomes a semilinear Neumann problem:

(1.6)

−κ∆c + f(c) = σ in Ω,

∂c

∂n
= 0 on ∂Ω,

1

|Ω|

∫

Ω

c(x) dx = r,
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where again σ is a Lagrange multiplier.
This problem was studied in the one-dimensional case Ω = (−L, L) by Carr, Gurtin and

Slemrod [6], who showed that for cA < r < cB

(1) when κ > 0 is small enough F has a unique (modulo reversal, i.e. c(x) → c(−x))
global minimizer cκ(x);

(2) cκ(x) is strictly monotone;
(3) as κ → 0, cκ(x) (or its reversal) approaches the single-interface solution

c0(x) =

{

cA, −L < x < −L + lA

cB, −L + lA < x < L
;

(4) nonmonotonic solutions to (1.6) for any κ > 0 are unstable in the sense that they
cannot even be local minimizers of F .

The single-interface solutions are therefore preferred in the sense that they represent limits,
as κ → 0, of solutions within a more general theory.

2. Dynamics. The dynamics of phase separation can be deduced from the above energy
minimization principle, if one assumes that the mass flux is proportional to the gradient of
the chemical potential,

j = −M∇J,

where M > 0 is the mobility. Setting, for simplicity, M = 1 and defining the chemical
potential as the functional derivative of F ,

∫

Ω

J(x)v(x) dx = F ′(c)v for all v ∈ H1(Ω),

i.e., J(c) = f(c), conservation of mass now leads to the differential equation

(2.1) ct = ∆f(c) in Ω,

together with a no flux boundary condition

∂

∂n
f(c) = 0 on ∂Ω.

(Note that this reduces to the usual diffusion equation when f(c) = c.) Here ∆f(c) =
f ′(c)∆c + f ′′(c)|∇c|2. Referring again to Figure 3 we note that f ′(c) is negative in the
spinodal region. Equation (2.1) is therefore ill-posed—it behaves as a backwards/forwards
heat equation.

Including the gradient energy term in F we have instead J(c) = f(c) − κ∆c, where we
have applied the natural boundary condition from the free energy functional. This leads to
the Cahn-Hilliard equation

(2.2) ct = ∆(f(c) − κ∆c) in Ω

with the boundary conditions

(2.3)
∂

∂n
c = 0,

∂

∂n
(f(c) − κ∆c) = 0 on ∂Ω.

Now the leading term is the fourth order elliptic operator κ∆2. Thus, mathematically
speaking, the inclusion of the gradient energy in F serves to regularize the ill-posed equation
(2.1).
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3. A normalization. We shall now derive a normalized version of the Cahn-Hilliard
equation (2.2)-(2.3). Taking F to be a general quartic polynomial, its derivative is

f(c) = b0 + b1c + b2c
2 + b3c

3,

or with u = c − c∗

f(c) = f(c∗) + f ′(c∗)u +
1

2
f ′′(c∗)u2 +

1

3
f ′′′(c∗)u3.

Choosing c∗ = −b2/3b3, so that f ′′(c∗) = 0, we have f ′(c∗) = b1 − b2
2/3b3, f ′′′(c∗) = 3b3.

Thus, if b3 > 0 and b1 < b2
2/3b3 (we also need b2 < 0 to guarantee that the interesting stuff

occurs for c > 0), then f can be written in the normalized form

f(c) = f(c∗) − αu + βu3

with α, β > 0, which conforms with Figure 3. Taking, for simplicity, α = β = κ = 1, the
substitution u = c − c∗ thus yields

(3.1)

ut = ∆
(

−∆u + u3 − u
)

for x ∈ Ω, t > 0,

∂u

∂n
= 0,

∂

∂n

(

−∆u + u3 − u
)

= 0 for x ∈ ∂Ω, t > 0,

u(·, 0) = u0 in Ω,

where we have added an initial condition. In compact notation we also write

(3.2)

ut = ∆J(u) for x ∈ Ω, t > 0,

∂u

∂n
= 0,

∂J(u)

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(·, 0) = u0 in Ω,

where J(u) = −∆u + u3 − u.
Remark 1. Retaining a concentration dependent mobility M = M(u) > 0 the derivation

in Section 2 leads to

(3.3)

ut = ∇ · (M(u)∇J(u)) for x ∈ Ω, t > 0,

∂u

∂n
= 0,

∂J(u)

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(·, 0) = u0 in Ω.

Remark 2. In applications to pattern formation one might also consider periodic boundary
conditions

u(x + Lei, t) = u(x, t), i = 1, 2, 3,

with L being the size of a typical pattern cell and ei the unit vector in the direction of the
xi axis.

Remark 3. Conservation of mass. Integrating over Ω using the boundary condition we
have

d

dt

∫

Ω

u dx =

∫

Ω

ut dx =

∫

Ω

∆J(u) dx =

∫

∂Ω

∂J(u)

∂n
ds = 0,

so that

(3.4)
1

|Ω|

∫

Ω

u(x, t) dx =
1

|Ω|

∫

Ω

u0(x) dx, t > 0.
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4. A Ljapunov functional. We shall now demonstrate that the free energy functional
serves as a Ljapunov function for the Cahn-Hilliard equation. We prefer to work with the
normalized equation (3.1). Thus

(4.1) F(v) =

∫

Ω

(

1

4
v4 − 1

2
v2 +

1

2
|∇v|2

)

dx =
1

4
‖v‖4

L4
− 1

2
‖v‖2 +

1

2
‖∇v‖2,

where ‖·‖ is the norm in L2(Ω). Since H1(Ω) ⊂ L4(Ω) for n ≤ 3, we see that F is continuous
in H1(Ω).

We must show that

(1) F is bounded from below on H1(Ω);
(2) any solution u(t) of (3.1) is bounded in H1(Ω) for all time, so that F(u(t)) is defined;
(3) F(u(t)) is nonincreasing with time for any solution u(t) of (3.1).

Observing that

(4.2) F(v) =
1

2
‖∇v‖2 +

1

4

∫

Ω

(

v2 − 1
)2

dx − 1

4
|Ω|,

we see that F is bounded from below. Next, multiplying the differential equation in (3.1)
by J(u) = −∆u + u3 − u and integrating by parts over Ω, we have

(ut, J(u)) + ‖∇J(u)‖2 = 0.

Since d
dtF(u) = (ut, J(u)), this implies

d

dt
F(u) ≤ 0,

so that F(u(t)) is nonincreasing and

(4.3) F(u(t)) ≤ F(u0), t ≥ 0.

Using (4.2) this implies

1

2
‖∇u(t)‖2 +

1

4

∫

Ω

(

u(t)2 − 1
)2

dx ≤ 1

2
‖∇u0‖2 +

1

4

∫

Ω

(

u2
0 − 1

)2
dx,

so that H1 boundedness follows, viz.

(4.4) ‖∇u(t)‖ ≤ ‖∇u0‖ +
1√
2

(∫

Ω

(

u2
0 − 1

)2
dx

)1/2

, t ≥ 0.

Remark. The above argument works also in the case (3.3) of a concentration dependent
mobility.

5. The Viscous Cahn-Hilliard equation. Other regularizations are possible. In some
systems, such as polymer-polymer systems, viscosity can be important. Novick-Cohen and
Pego derive the following Viscous Cahn-Hilliard Equation in an attempt to incorporate both
viscous and gradient energy effects:

(5.1)

ut = ∆(f(u) + νut − κ∆u) for x ∈ Ω, t > 0,

∂

∂n
(f(u) + νut − κ∆u) = 0,

∂u

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(·, 0) = u0 for x ∈ Ω,
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where ν is a positive viscosity coefficient and f(u) = βu3 − αu. Without gradient energy
effects (κ = 0) (5.1) reduces to the Viscous Diffusion Equation:

(5.2)

ut = ∆(f(u) + νut) for x ∈ Ω, t > 0,

∂

∂n
(f(u) + νut) = 0 for x ∈ ∂Ω, t > 0,

u(·, 0) = u0 for x ∈ Ω.

Now note that with J = f(u) + νut − κ∆u we have ut = ∆J and −ν∆J + J = f(u)− κ∆u,
so that, setting v = J − κ

ν u, (5.1) is equivalent to

(5.3)

νut − κ∆u = v − f(u) + κ
ν u for x ∈ Ω, t > 0,

−ν∆v + v = f(u) − κ
ν u for x ∈ Ω, t > 0,

∂u

∂n
=

∂v

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(·, 0) = u0 for x ∈ Ω.

Similarly, (5.2) becomes

(5.4)

νut = v − f(u) for x ∈ Ω, t > 0,

−ν∆v + v = f(u) for x ∈ Ω, t > 0,

∂v

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(·, 0) = u0 for x ∈ Ω.

Or, in terms of the solution operator T = (−ν∆ + I)−1 of the Neumann problem, these
problems can be written as

(5.5)

νut − κ∆u = (T − I) (f(u) − κ
ν u) for x ∈ Ω, t > 0,

∂u

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(·, 0) = u0 for x ∈ Ω,

and

(5.6)
νut = (T − I) f(u) for x ∈ Ω, t > 0,

u(·, 0) = u0 for x ∈ Ω.

Thus, (5.1) can be viewed as a semilinear heat equation with a nonlocal nonlinearity and
(5.2) is a nonlocal ordinary differential equation.

Existence of solutions

6. Introduction. In this chapter we shall be concerned with proving existence of solutions
to the Cahn-Hilliard equation (3.1). Replacing the nonlinear boundary condition by an
equivalent linear one, we have

(6.1)

ut + ∆2u = ∆f(u) for x ∈ Ω, t > 0,

∂u

∂n
= 0,

∂∆u

∂n
= 0 for x ∈ ∂Ω, t > 0,

u(·, 0) = u0 in Ω.
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We shall assume that Ω is a bounded smooth domain in Rn, n ≤ 3. We recall the a priori
bound (4.4): For any possible solution u of (6.1) with ‖u0‖H1 ≤ ρ we have

(6.2) ‖u(t)‖H1 ≤ C(ρ), 0 ≤ t < ∞.

Note that the H1 norm is a rather weak norm in the context of our fourth order equation—
we need four derivatives to make sense of the equation (or two derivatives for the weak form
of the equation)—and also in the context of applying the Sobolev inequality—the maximum
norm cannot be bounded in terms of the H1 norm in two or three dimensions.

Nevertheless we shall see that the a priori bound (6.2) will lead to global existence. We
shall describe two kinds of existence results:

(1) Global existence for smooth initial data, essentially u0 ∈ H4(Ω), by a standard
technique.

(2) Global existence for non-smooth initial data, u0 ∈ H1, by a method of von Wahl.

Note also that (6.2) was proved by the energy method. We shall now abandon energy
methods and work with semigroup techniques.

7. An analytic semigroup. Let X be a Hilbert space with norm ‖ · ‖ and inner product
(·, ·) and let A be an unbounded, closed and densely defined linear operator in X with
domain D(A). We assume that A is self-adjoint and positive definite and has a compact
inverse. Then we have at our disposal all the power of the spectral theorem. In particular,
A generates an analytic semigroup {e−tA}t≥0. In fact, e−tA is the solution operator of the
linear homogeneous evolution problem

ut + Au = 0, t > 0,

u(0) = v,

and we have

u(t) = e−tAv =

∞
∑

j=1

e−tλj v̂jϕj ,

where {λj , ϕj}∞j=1 are the eigenvalues and normalized eigenvectors of A and v̂j = (v, ϕj).
We define, also by spectral theory, the fractional powers of A and we set for α ∈ R

(7.1)

Xα = D(Aα),

‖v‖α = ‖Aαv‖ =





∞
∑

j=1

λ2α
j |v̂j |2





1/2

.

It follows that {Xα} is a scale of Hilbert spaces and in particular we have

D(A) = X1 ⊂ Xβ ⊂ Xα ⊂ X0 = X

with continuous and compact imbeddings for 0 < α < β < 1.
We easily find that for 0 ≤ α ≤ β

(7.2) ‖e−tAv‖β ≤ Cα,βt−(β−α)e−ct‖v‖α, t > 0,

where Cα,β and c are positive numbers, or in terms of the operator norm

(7.3) ‖e−tA‖α,β ≤ Cα,βt−(β−α)e−ct, t > 0.

We also have the moment inequality or interpolation inequality

(7.4) ‖u‖α ≤ C‖u‖θ
β‖u‖1−θ

γ , α = θβ + (1 − θ)γ, 0 ≤ θ ≤ 1.

Note that θ = α−γ
β−γ , 1 − θ = β−α

β−γ . See Pazy [18], Theorem 2.6.10.
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8. An abstract evolution equation. Assume that for some α ∈ [0, 1) M : Xα → X is a
nonlinear operator that satisfies a local Lipschitz condition: If ‖u‖α, ‖v‖α ≤ ρ, then

(8.1) ‖M(u)− M(v)‖ ≤ g(ρ)‖u − v‖α.

Consider the problem

(8.2)
ut + Au = M(u), t > 0,

u(0) = u0,

A solution of (8.2) on the interval [0, T ] is a function u ∈ C([0, T ], Xα)∩C1((0, T ), X) with
u(t) ∈ D(A) for 0 < t ≤ T and which satisfies (8.2).

By the variation of constants formula any solution of (8.2) satisfies the integral equation

(8.3) u(t) = e−tAu0 +

∫ t

0

e−(t−τ)AM(u(τ)) dτ, t ≥ 0.

The contrary is also true: If u ∈ C([0, T ], Xα) is a solution of (8.3), then it is also a solution
of (8.2) on the interval [0, T ]. See, e.g., Pazy [18], the proof of Theorem 6.3.1.

We now have the following standard local existence theorem.

Theorem 8.1. For any ρ ≥ 0 there is a T = T (ρ) > 0 such that (8.2) has a unique solution
on the interval [0, T ] for all u0 ∈ Xα with ‖u0‖α ≤ ρ.

Proof. Let ‖u0‖α ≤ ρ. We shall apply Banach’s fixed point theorem to the mapping G
defined by

G(v)(t) = e−tAu0 +

∫ t

0

e−(t−τ)AM(v(τ)) dτ.

Let Y = C([0, T ], Xα) and
‖u‖Y = max

0≤t≤T
‖u(t)‖α.

and set
B = {u ∈ Y : ‖u‖Y ≤ R}.

The numbers T and R are to be determined so that the mapping G is a contraction of B
into itself.

If v ∈ B, then by (8.1)

‖M(v(τ))‖ ≤ ‖M(0)‖ + ‖M(v(τ)) − M(0)‖ ≤ ‖M(0)‖ + g(R)R = K(R),

so that, in view of (7.3),

‖G(v)(t)‖α ≤ ‖e−tA‖α,α‖u0‖α +

∫ t

0

‖e−(t−τ)A‖0,α‖M(v(τ))‖ dτ

≤ Cα,αρ + C0,αK(R)

∫ t

0

(t − τ)−αdτ

= Cα,αρ + C0,αK(R)
T 1−α

1 − α
,

for 0 ≤ t ≤ T . We set R = Cα,αρ + 1 and choose T such that C0,αK(R)T 1−α/(1 − α) ≤ 1
2 .

Then ‖G(v)‖Y < R so that G maps B into B.
If u, v ∈ B, then we have in a similar manner

‖G(u)(t) − G(v)(t)‖ ≤
∫ t

0

‖e−(t−τ)A‖0,α‖M(u(τ)) − M(v(τ))‖ dτ

≤ C0,αg(R)
T 1−α

1 − α
‖u − v‖Y

for 0 ≤ t ≤ T . Requiring also that C0,αg(R)T 1−α/(1 − α) ≤ 1
2 , we have a contraction.
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Corollary 8.2. For each u0 ∈ Xα there is a T ∗ = T ∗(u0) ∈ (0,∞] such that (8.2) has a
unique solution on the interval [0, T ] for any T < T ∗. Moreover, if T ∗ < ∞, then

(8.4) lim
t↑T∗

‖u(t)‖α = ∞.

Proof. By Theorem 8.1 we have a solution on some (possibly short) interval [0, T1]. Since
u(T1) ∈ Xα, the solution can be continued to a second (possibly shorter) interval [T1, T2]
and so on. Let T ∗ = sup{T : (8.2) has a solution on [0, T ]} be the maximal interval of
existence. If T ∗ < ∞ and (8.4) fails, then there is a number R and a sequence {ti} with
limi ti = T ∗ and ‖u(ti)‖α ≤ R. It now follows from Theorem 8.1 that the solution can be
continued beyond T ∗. This contradicts the maximality of T ∗.

Theorem 8.1 (or its corollary) immediately leads to the following global existence theorem.

Theorem 8.3. If for some u0 ∈ Xα and some T and R we have an a priori bound

‖u(t)‖α ≤ R, 0 ≤ t ≤ T,

for a possible solution of (8.2), then a unique solution exists on the interval [0, T ].

9. Application to the Cahn-Hilliard equation. Smooth initial data. In order
to formulate the Cahn-Hilliard equation (6.1) in the abstract setting of Section 8 we set
X = L2(Ω) and define

A1u = −∆u + u, D(A1) = {u ∈ H2(Ω) :
∂u

∂n

∣

∣

∣

∣

∂Ω

= 0}.

Then A1 satisfies all the assumptions of Section 7. In particular, the spectral theorem yields
fractional powers of A1 and we define

A = A2
1 = ∆2 − 2∆ + I, M(u) = ∆f(u) − 2∆u + u.

It turns out that

X1 = D(A1) = D(A2
1) = {u ∈ H4(Ω) :

∂u

∂n

∣

∣

∣

∣

∂Ω

=
∂∆u

∂n

∣

∣

∣

∣

∂Ω

= 0},

X3/4 = D(A3/4) = D(A
3/2
1 ) = {u ∈ H3(Ω) :

∂u

∂n

∣

∣

∣

∣

∂Ω

= 0},

X1/2 = D(A1/2) = D(A1) = {u ∈ H2(Ω) :
∂u

∂n

∣

∣

∣

∣

∂Ω

= 0},

X1/4 = D(A1/4) = D(A
1/2
1 ) = H1(Ω).

We also have equivalence of norms

(9.1) c‖u‖m/4 ≤ ‖u‖Hm ≤ C‖u‖m/4, u ∈ Xm/4, m = 1, 2, 3, 4.

In addition, we shall need the following Sobolev type inequalities for 0 ≤ α ≤ 1

(9.2)
‖u‖W m

p
≤ C‖u‖α, m − n

p
< 4α − n

2
, 2 ≤ p ≤ ∞,

‖u‖Cν ≤ C‖u‖α, 0 ≤ ν < 4α − n

2
.

See Theorem 8.4.3 in Pazy [18].
The following result shows that M(u) satisfies the local Lipschitz condition (8.1) with

α = 1
2 .
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Lemma 9.1. For u, v ∈ X1/2 we have

‖∆(f(u) − f(v))‖ ≤ C
(

1 + ‖u‖2
1/2 + ‖v‖2

1/2

)

‖u − v‖1/2.

Proof. Since f(u) − f(v) =
∫ 1

0 f ′(su + (1 − s)v) ds (u − v) = w(u − v), Hölder’s inequality
implies

‖∆(f(u) − f(v))‖ = ‖w∆(u − v) + 2∇w · ∇(u − v) + ∆w(u − v)‖
≤ ‖w‖L∞

‖∆(u − v)‖ + 2‖∇w‖L3
‖∇(u − v)‖L6

+ ‖∆w‖ ‖u − v‖L∞
.

Writing for simplicity us = su + (1 − s)v, we have here

‖w‖L∞
= ‖

∫ 1

0

f ′(us) ds‖L∞
= ‖

∫ 1

0

(6u2
s − 1) ds‖L∞

≤ C

(

1 +

∫ 1

0

‖us‖2
L∞

ds

)

.

Since, by Sobolev’s inequality (recall that n ≤ 3) and (9.1),

‖us‖L∞
≤ C‖us‖H2 ≤ C‖us‖1/2,

this shows

‖w‖L∞
≤ C

(

1 + ‖u‖2
1/2 + ‖v‖2

1/2

)

.

Similarly,

‖∇w‖L3
= ‖

∫ 1

0

f ′′(us)∇us ds‖L3
= ‖6

∫ 1

0

us∇us ds‖L3

≤ C

∫ 1

0

‖us‖L6
‖∇us‖L6

ds ≤ C
(

‖u‖2
1/2 + ‖v‖2

1/2

)

,

because
‖us‖L6

‖∇us‖L6
≤ C‖us‖2

H2 ≤ C‖us‖2
1/2.

By the same token

‖∆w‖ = ‖
∫ 1

0

(f ′′(us)∆us + f ′′′(us)|∇us|2) ds‖ = ‖6
∫ 1

0

(us∆us + |∇us|2) ds‖

≤ C

∫ 1

0

(‖us‖L∞
‖∆us‖ + ‖∇us‖2

L4
) ds ≤ C

(

‖u‖2
1/2 + ‖v‖2

1/2

)

.

Further, we have

‖∆(u − v)‖ ≤ C‖u − v‖H2 ≤ C‖u − v‖1/2,

‖∇(u − v)‖L6
≤ C‖u − v‖H2 ≤ C‖u − v‖1/2,

‖u − v‖L∞
≤ C‖u − v‖H2 ≤ C‖u − v‖1/2.

This completes the proof.

We thus have local existence for initial data u0 ∈ X1/2 and we would have global existence
provided we could prove an a priori bound in X1/2. But so far we have only a bound in the

weaker norm of H1(Ω) = X1/4, see (6.2). The solution can be estimated a priori in H2 by
the energy method, see e.g. [12], but we shall stick to the integral formulation (8.3) of our
problem. Our aim is to obtain an a priori bound in Xα for some α ≥ 1

2 . We shall use our

H1 bound together with an appropriate growth condition on the nonlinear term. We begin
with the bound for M .
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Lemma 9.2. For u ∈ X3/4 we have

‖∆f(u)‖ ≤ C
(

1 + ‖u‖2
1/4

)

‖u‖3/4.

Proof. We have

‖∆f(u)‖ = ‖f ′(u)∆u + f ′′(u)|∇u|2‖
≤ ‖f ′(u)‖L3

‖∆u‖L6
+ ‖f ′′(u)‖L6

‖∇u‖2
L6

≤ C
(

1 + ‖u‖2
L6

)

‖∆u‖L6
+ C‖u‖L6

‖∇u‖2
L6

≤ C
(

1 + ‖u‖2
H1

)

‖u‖H3 + C‖u‖H1‖∇u‖2
H2

≤ C
(

1 + ‖u‖2
1/4

)

‖u‖3/4 + C‖u‖1/4‖u‖2
1/2

≤ C
(

1 + ‖u‖2
1/4

)

‖u‖3/4,

since by the moment inequality ‖u‖1/2 ≤ C‖u‖1/2
1/4‖u‖

1/2
3/4. The lemma is proved.

Thus, M satisfies for F = X1/4, α = β = 3
4 , γ = 1 the hypotheses of the following

theorem.

Theorem 9.3. Let 0 ≤ α < 1, 1 ≤ γ < 1
α , β = γα and let F be a Banach space with

continuous imbeddings

(9.3) Xα ⊂ F ⊂ X

and assume that M : Xα → X is such that ‖u‖F ≤ ρ implies

(9.4) ‖M(u)‖ ≤ g(ρ) (1 + ‖u‖γ
α) .

If u ∈ C([0, T ], Xα) is a solution of (8.3) with u0 ∈ Xβ and

‖u(t)‖F ≤ R, 0 ≤ t ≤ T,

for some R and T , then

‖u(t)‖β ≤ C(R, T ) (1 + ‖u0‖β) , 0 ≤ t ≤ T.

Proof. Note that 0 ≤ α ≤ β < 1. By the moment inequality we have

‖u‖α ≤ C‖u‖1−α/β‖u‖α/β
β ,

so that, since F ⊂ X ,

‖u‖γ
α ≤ C‖u‖γ−1‖u‖β ≤ C‖u‖γ−1

F ‖u‖β.

Hence

‖u(t)‖β ≤ ‖e−tA‖β,β‖u0‖β +

∫ t

0

‖e−(t−τ)A‖0,β‖M(u(τ))‖ dτ

≤ Cβ,β‖u0‖β + C0,βg(R)

∫ t

0

(t − τ)−β
(

1 + CRγ−1‖u(τ)‖β

)

dτ

≤ C(R, T ) (1 + ‖u0‖β) + C(R)

∫ t

0

(t − τ)−β‖u(τ)‖β dτ

and the result follows from the generalized Grönwall lemma.

In view of the bound (6.2) we may thus apply Theorem 8.3 with α = 3
4 . The result is

global existence for smooth initial data, i.e., for u0 ∈ Xα, α ≥ 3
4 .
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Theorem 9.4. For any u0 ∈ {u ∈ H4(Ω) : ∂u
∂n

∣

∣

∂Ω
= ∂∆u

∂n |∂Ω = 0} the Cahn-Hilliard

equation (6.1) has a unique solution for all time.

10. Non-smooth initial data. We shall now describe a method of von Wahl [22] which
can be used to prove existence of solutions to (8.2) with non-smooth initial values. We first
replace the Lipschitz condition (8.1) by a more general one. Let 0 ≤ α ≤ β < 1. Assume
that the nonlinear operator M : Xβ → X satisfies the Lipschitz condition: If u, v ∈ Xβ with
‖u‖α, ‖v‖α ≤ ρ, then

(10.1) ‖M(u) − M(v)‖ ≤ g(ρ)
(

‖u − v‖β + (1 + ‖u‖β + ‖v‖β) ‖u − v‖α

)

.

Under this condition we have local existence.

Theorem 10.1. For any ρ ≥ 0 there is a T = T (ρ) > 0 such that (8.2) has a unique
solution on the interval [0, T ] for all u0 ∈ Xα with ‖u0‖α ≤ ρ.

Proof. Let ‖u0‖α ≤ ρ and set δ = β − α. Note that 0 ≤ δ < 1. We shall apply Banach’s
fixed point theorem to the mapping G defined by

G(v)(t) = e−tAu0 +

∫ t

0

e−(t−τ)AM(v(τ)) dτ.

We let Y be the Banach space

Y = C([0, T ], Xα) ∩ C((0, T ], Xβ)

with norm
‖u‖Y = max{ sup

0≤t≤T
‖u(t)‖α, sup

0<t≤T
(tδ‖u(t)‖β)}

and set
B = {u ∈ Y : ‖u‖Y ≤ R}.

The numbers T and R are to be determined so that the mapping G is a contraction of B
into itself.

If v ∈ B, then by (10.1)

‖M(v(τ))‖ ≤ ‖M(0)‖ + ‖M(v(τ)) − M(0)‖
≤ ‖M(0)‖ + g(R)(R + Rτ−δ + R2τ−δ) ≤ K(R)(1 + τ−δ),

Using the formula

∫ t

0

(t − τ)−ατ−βdτ = cα,β t1−α−β , 0 ≤ α, β < 1,

we have for 0 ≤ t ≤ T, α ≤ γ ≤ β

‖G(v)(t)‖γ ≤ ‖e−tA‖α,γ‖u0‖α +

∫ t

0

‖e−(t−τ)A‖0,γ‖M(v(τ))‖ dτ

≤ Cα,γρ + C0,γK(R)

∫ t

0

(t − τ)−γ(1 + τ−δ) dτ

= Cα,γρ + C0,γK(R)cγ,δ(t
1−γ + t1−γ−δ)

= t−(γ−α)
(

Cα,γρ + C0,γK(R)cγ,δ(t
1−α + t1−β)

)

≤ t−(γ−α)
(

C1ρ + C2(R)(T 1−α + T 1−β)
)

.
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We set R = C1ρ +1 and choose T such that C2(R)(T 1−α + T 1−β) ≤ 1
2 . Then application of

the above with γ = α and γ = β shows that ‖G(v)‖Y < R, so that G maps B into B.
If u, v ∈ B, then we have in a similar manner

‖G(u)(t) − G(v)(t)‖γ ≤
∫ t

0

‖e−(t−τ)A‖0,γ‖M(u(τ)) − M(v(τ))‖ dτ

≤ C0,γg(R)

∫ t

0

(t − τ)−γ (‖u(τ) − v(τ)‖β + (1 + ‖u(τ)‖β + ‖v(τ)‖β) ‖u(τ) − v(τ)‖α) dτ

≤ C(R)

∫ t

0

(t − τ)−γ(1 + τ−δ) dτ ‖u − v‖Y ≤ t−(γ−α)C3(R)(T 1−α + T 1−β) ‖u − v‖Y

for 0 ≤ t ≤ T and α ≤ γ ≤ β. Requiring also that C3(R)(T 1−α + T 1−β) ≤ 1
2 , we have a

contraction.

Corollary 10.2. For each u0 ∈ Xα there is a T ∗ = T ∗(u0) ∈ (0,∞] such that (8.2) has a
unique solution on the interval [0, T ] for any T < T ∗. Moreover, if T ∗ < ∞, then

(10.2) lim
t↑T∗

‖u(t)‖α = ∞.

Proof. See the proof of Corollary 8.2.

Theorem 10.1 (or its corollary) immediately leads to the following global existence theorem.

Theorem 10.3. If for some u0 ∈ Xα and some T and R we have an a priori bound

‖u(t)‖α ≤ R, 0 ≤ t ≤ T,

for a possible solution of (8.2), then a unique solution exists on the interval [0, T ].

11. Application to the Cahn-Hilliard equation. Non-mooth initial data. We must
show that M(u) = ∆f(u) − 2∆u + u satisfies a Lipschitz condition of the form (10.1).

Lemma 11.1. Let 3
4 < β < 1. For u, v ∈ X1/4 we have

‖∆(f(u) − f(v))‖ ≤ C
(

1 + ‖u‖2
1/4 + ‖v‖2

1/4

)

‖u − v‖β

+ C
(

‖u‖1/4 + ‖v‖1/4

)

(‖u‖β + ‖v‖β) ‖u − v‖1/4.

Proof. Take β ∈ (3
4 , 1). Since f(u) − f(v) =

∫ 1

0
f ′(su + (1 − s)v) ds (u − v) = w(u − v),

Hölder’s inequality implies

‖∆(f(u) − f(v))‖ = ‖w∆(u − v) + 2∇w · ∇(u − v) + ∆w(u − v)‖
≤ ‖w‖L3

‖∆(u − v)‖L6
+ 2‖∇w‖L∞

‖∇(u − v)‖ + ‖∆w‖L3
‖u − v‖L6

.

Writing for simplicity us = su + (1 − s)v, we have here

‖w‖L3
= ‖

∫ 1

0

f ′(us) ds‖L3
= ‖

∫ 1

0

(6u2
s − 1) ds‖L3

≤ C

(

1 +

∫ 1

0

‖us‖2
L6

ds

)

.

Since, by Sobolev’s inequality (recall that n ≤ 3) and (9.1),

‖us‖L6
≤ C‖us‖H1 ≤ C‖us‖1/4,



14 STIG LARSSON

this shows

‖w‖L3
≤ C

(

1 + ‖u‖2
1/4 + ‖v‖2

1/4

)

.

Similarly,

‖∇w‖L∞
= ‖

∫ 1

0

f ′′(us)∇us ds‖L∞
= ‖6

∫ 1

0

us∇us ds‖L∞

≤ C

∫ 1

0

‖us‖L∞
‖∇us‖L∞

ds.

Using (9.2) and (7.4) we have for 4σ > n
2

‖us‖L∞
‖∇us‖L∞

≤ C‖us‖σ‖us‖σ+1/4 ≤ C‖us‖1−θ
1/4 ‖us‖θ

β · ‖us‖1−γ
1/4 ‖us‖γ

β,

where θ = 4σ−1
4β−1 and γ = 4σ

4β−1 . Choosing σ = β
2 (which is possible since β > 3

4 and n ≤ 3)

so that θ + γ = 1, we thus have

‖∇w‖L∞
≤ C

(

‖u‖1/4 + ‖v‖1/4

)

(‖u‖β + ‖v‖β) .

By the same token

‖∆w‖L3
= ‖

∫ 1

0

(f ′′(us)∆us + f ′′′(us)|∇us|2) ds‖L3
= ‖6

∫ 1

0

(us∆us + |∇us|2) ds‖L3

≤ C

∫ 1

0

(‖us‖L6
‖∆us‖L6

+ ‖∇us‖2
L6

) ds.

Now
‖us‖L6

‖∆us‖L6
≤ C‖us‖1/4‖us‖3/4

and
‖∇us‖2

L6
≤ C‖us‖1/2 ≤ C‖us‖1/4‖us‖3/4

so that
‖∆w‖L3

≤ C
(

‖u‖1/4 + ‖v‖1/4

)

(‖u‖β + ‖v‖β) .

Finally, we have

‖∆(u − v)‖L6
≤ C‖u − v‖H3 ≤ C‖u − v‖3/4,

‖∇(u − v)‖ ≤ C‖u − v‖H1 ≤ C‖u − v‖1/4,

‖u − v‖L6
≤ C‖u − v‖H1 ≤ C‖u − v‖1/4.

This completes the proof.

In view of the a priori bound (6.2), we can now apply Theorem 10.3 with α = 1
4 and

some β ∈ (3
4 , 1).

Theorem 11.2. For any u0 ∈ H1(Ω) the Cahn-Hilliard equation (6.1) has a unique solution
for all time.

Remark. The above results can be obtained under more general conditions on the function
f . In the proof of Lemma 11.1 we actually only need the fact that

|f (j)(u)| ≤ C
(

1 + |u|3−j
)

, j = 1, 2, 3.

In von Wahl [22] f is allowed to grow like |u|5−ε for n = 3 and like an arbitrary polynomial
for n = 2. There is no growth restriction for n = 1. The argument is essentially the same
as the one given here. In the proof of the a priori bound (6.2) we need

F (u) =

∫ u

0

f(s) ds ≥ −c, u ∈ R.
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