AN ADAPTIVE FINITE ELEMENT METHOD FOR
NONLINEAR OPTIMAL CONTROL PROBLEMS
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ABSTRACT. Lagrange’s method in the calculus of variations is applied to
a nonlinear optimal control problem. The optimality conditions are dis-
cretized by a finite element method. The methodology of dual weighted
residuals is used to derive an a posteriori error estimate. This is com-
bined with Newton iterations in an adaptive multilevel method, which
is implemented and tested on model problems.

1. INTRODUCTION

We consider optimal control problems with a nonlinear system of ordinary
differential equations as state equations. The system of differential equations
has boundary values at the initial and final times, and the final time is fixed.
The goal functional is nonlinear, although in practice it is often quadratic.
The optimality conditions are derived by Lagrange’s method in the calculus
of variations and the resulting differential /algebraic equations are discretized
by a finite element method. The purpose is to investigate the potential of
adaptive finite element methods for the numerical solution of this type of
problem.

The finite element method has been widely used for spatial discretization
of optimal control problems for partial differential equations [, [8, 11}, 12].
The use of finite element methods for temporal discretization is not as com-
mon but it has been used in |2}, 3 4] [5], 6].

The Lagrange framework requires the solution of a linearized adjoint sys-
tem of the same size as the equations of state. In the previous work [3 [4] [6]
all equations are merged into one large system, which is solved by an adap-
tive finite element method. The theoretical basis is the standard duality
argument for proving a posteriori error estimates. This requires the solution
of the linearized adjoint of the new system, thereby doubling the number of
variables.

The dual weighted residuals methodology [I] for a posteriori error analysis
is formulated within the Lagrange framework and is therefore well suited
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for optimal control problems. No additional adjoint problem is introduced.
The procedure provides a representation formula for the error in the goal
functional. The formula can be expanded into an error estimator, which is
an elementwise sum of dual weighted residuals. Each of these consist of a
residual from the state equation multiplied by a weight computed from the
adjoint solution and a residual from the adjoint equation multiplied by a
weight from the state equation.

In our previous work [5] we developed this approach for optimal control
problems with quadratic goal function and linear state equations. In the
present work we extend this to fully nonlinear problems. Discretization by
the finite element method results in an nonlinear algebraic problem, which is
solved by Newton’s method. The error estimator includes terms representing
the approximate solution of the algebraic equations. The Newton iteration
is combined with the adaptive refinement iteration into a multilevel adaptive
method, which is implemented and tested on model problems.

The outline of the article is: In Section [2] the mathematical setting of the
optimal control problem is done, the Lagrange framework is presented, the
optimality conditions are derived and the Newton method for the solution
of the nonlinear equations is described. In Section [ the discretization is
described and in Section Ml a representation formula for the error is proved
and the computation of the resulting error estimate is discussed. The im-
plementation of the multilevel adaptive finite element solver is described in
Section[5l The last section contains two numerical examples and a discussion
of the performance of the solver.

2. A NONLINEAR OPTIMAL CONTROL PROBLEM

We consider optimal control problems of the form: Determine states x(t) €
R? and controls u(t) € R™, which

T
minimize J(z,u) = 1(x(0),z(T)) + /0 L(x(t),u(t))dt,

subject to  #(t) = f(z(t),u(t)), 0<t<T,
I()iL‘(O) = 2o, ITZE(T) = XT.

(2.1)

Here

I: R x R - R,

L:RYxR™ 5 R,

f: R x R™ — RY,
are smooth functions and Iy and I7 are binary diagonal matrices, and z¢ €
R(Iy), x7 € R(IT), where R(A) denotes the range of a matrix A.

2.1. Lagrange framework. In order to set the optimal control problem in
the Lagrange framework we introduce some function spaces. Let C* denote k
times continuously differentiable functions and let H' denote functions with
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square integrable derivative. Further, Cfl)w denotes piecewise continuously
differentiable functions [0,7] — R? more precisely, functions that are C!
except at a finite number of points in [0, 7] and with left and right limits
w(t™) = limgy w(s), w(tt) = limgy w(s) for all points ¢ € [0, 7.
We introduce the function spaces
W =R’ x Chy ([0, T],R?) x RY;
W = R(I — Iy) x Cqw([0,T],R?) x R(I — Ir)
- {w eEW: Tow(07) = 0, Ipw(T™) = o};

v =H'([0,T],R");

U= H(0,T],R™).
The two factors R? in W are used to accomodate the boundary values w(0™)
and w(TT). These spaces are linear spaces. For some # € W such that
Io2(07) = xp and Ip&(T") = xr, we also define the affine space

W::TH—W:{wEW:w—:%GW}.
The weak formulation of the state equation in (2.1)) is: Given uw € U find
x € W such that
(2.2) Flx,u;0) =0 Vo eV,
Here, the functional
F:WxUXxYV — R,

is defined by

N tn N
23) Fawe) =3 / (= £, w),9) At + S ([ 9ltn),
n=1 n=0

tn—1

where (-,-) denotes the scalar product in R?, [z], = x(t}) — z(t;), and
the sum is taken over all points {t,}"_, of discontinuity of x, and to = 0,
ty = T. Although z is expected to be smooth, the functional F is defined for
piecewise differentiable functions x € W with & written as a weak derivative
in order to admit also piecewise smooth finite element functions. We use the
notation that functionals depend arbitrarily on the arguments before the
semicolon and linearly on the arguments after the semicolon.

2.2. Necessary conditions for optimality. In order to derive the opti-
mality conditions, we introduce the Lagrange functional

(2.4) L(x,u;2) = T(x,u) + Flx,u;2), (x,u,z) € WXUXV,

where z is a Lagrange multiplier. In order to find minima we seek (x,u, z) €
W x U x V such that

(2.5) L(z,u;2,0) =0 YoeWxUxV.
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Taking partial derivatives of the Lagrangian in (2.4) gives

(2.6a) Loz, us2,00) = To(@,u5.00) + Folw,u; 2,00) =0 Vo, €W,
(2'6b) E;(az,u;z,cpu) zjqi(a:,u;cpu)—l-f;(a;,u;z,cpu) =0 Vo, €U,
(2.6c) Ll(z,u3z,9:) = F(z,u;0.) =0 Vo, € V.
Expanding (2.6a)-(2.6d) and using integration by parts in (Z6al) gives

T
(2.7a) /0 (0uy—2 — fi(x,u)*z + L (z,u))dt

+ (p3 n2n + (g, 7))
+ ((10;,07 —z0 + l,1($(;7$]4\_f)) =0 V‘Pw € W7

T
(2.7h) / (us (2, 10) — £, w)*2) dt = 0 Viu €U,
0

(2.7¢) Z (@ — f(z,u),¢z) dt+z Tlp, Pzn) =0 Vo, €V,
n=0

tn—1
(2.7d) ono =g, Irzth=uar,
where x5 = z(t), vi, = ¢z(tF), @zn = @:(tn), and I{ and Ij denote
derivative with respect to the first and the second variable. .
Here we have differentiated the term

f(x,u; Z) = (f($vu)’ Z)v

and identified the derivatives with matrices f.(z,u), f,(z,u) by means of
the Riesz representation theorem:

fé(x7ua Z, (1012) = (fé($7u)(10:m ) - ((,Dm,fé(ﬂf,U)*Z),
fol@,us 2, 00) = (fo(@,w)pu, 2) = (us fr(z,u)"2).

Similarly, we defined the vectors L (x,u), li(x, :17}), 1=1,2.

(2.8)

2.3. Newton’s method. We use Newton’s method to solve the nonlinear
equations in (27). Given an approximate solution (z,u, z) it yields a new
approximate solution (Z,4, 2) by

(2.9) (2,4,2) = (2,u,2) + a(bz, 6u, 02),

where a € R is a parameter and the increment § = (04, dy,9,) € WxUXY
is the solution of

(2.10) L' (z,u;2,0,0) = =L (x,u;2,0) Yo W xUx V.

To clarify the following equations we identify matrices f2 (z,u; 2), f2,(z,u; 2),
" (x,u; 2) by further differentiation in (2.8):

:g:c(x,UQ 2, Pz, Yz) = (f;/m(ﬂj,u; 2) P, Yu) = (90907 (33 u; 2) ),
(U3 2, 0, 0u) = (far (0,45 2) 005 0u) = (0, fru(@,u3 2) 00),
f{fu(%u; 2, quﬂ/)u) = (f&'u(x,u; Z)‘pw¢u) = (‘puyf (33 Uu; Z)¢u)
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and similarly for derivatives of L and I.
~ Writing (2.10) explicitly yields the following equations: Find (dz, u,d2) €
W x U x V satistying

[ b By (o) — otz
(o) - Fa(eue) )6 dt
+ (03§ 02 + 15y (20, 28) 050 + 12 (20, 23)0; )
+ (@200 =020 + 11 (zg , x})é;o + 13’2(9:679«’%)5&)
- _ /OT(cpx, —% — fi(z,u) 2+ L (x,u))dt
— (¢t an + (g k) — (9r0, —20 + (25, 2%)) Voo € W,
/ o (L) — (s )3
(o) — Fla(e ) ) — f )6 de

T
= —/ (ou, L, (x,u) — fl(z,u)*2)dt Yo, €U,
0
N tn . N
3 /t (o — £, )00 — Fos )0 02) dt £ S (62, 02m)
n=1"Ytn-1 n=0
N, N
== [7 - fen) =3 () Ve €.
n=1"Yin-1 n=0

3. DISCRETIZATION

The optimality conditions and the Newton equations derived in the pre-
vious section are discretized by a finite element method and solved.

3.1. A finite element problem. The equations in (2.6a)-(2.6c) are dis-
cretized by a finite element method based on the mesh 0 =ty < t; < tg <
... <ty =T with steps h,, = t,, — t,—1 and intervals .J,, = (t,,—1,t,). With
P* denoting polynomials of degree k, we introduce some function spaces.
Let W), denote a space of discontinuous piecewise constant vector-valued
functions, that is,

Wy, = R? x {w;wyjn € P°(J,,RY), n = 1,...,N} x RY,
Wi = R(I — Ip) x {w Lw]y, € PO(J,,RY), n = 1,...,N} x R(I — Ir)
= {wEWh:IOwO_ =0, ITU}]—*\—[:O}.

In the definition of W = & + W we may choose £ € W, and define
Wh =7+ W,
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The spaces V}, and U}, consist of continuous piecewise linear functions and
defined as

Vi = {v e C([0,T],RY) : v, € Pl(Jn,Rd)} ,
Uy, = {v e C([0,T],R™) : v|;, € Pl(Jn,]R{m)}.

Then we have W, C W, W, C W, Wy, C W, Up CU, and V, C V.
The finite element problem now reads: Find (xp, up, 2p) € Wi X Up X Vp
such that

(3.1a) T, un; ) + FolTh, un; 20, 0xn) =0 Yprn € Wi,
(3.1b) To(@hyun; Pup) + Fo(Th, Uns zn, Pup) =0 Voun € Up,
(3.1c) F(xp, un;0zn) =0 Voo n € Vi

3.2. Newton’s method. We solve this nonlinear system by Newton’s method.
For a given approximate solution (zp,up,zp) € Wy X Up X Vp, find 6 =
(5ac,ha 5u,ha 5z,h) € Wy, x Uy, x V, such that

(3.2) L (zn,un; 2y 0ny 6n) = —L' (@, un; 2n,0n)  Vior, € Wi x Uy x V.
Then set

(3.3) (Th, Un, 2n) = (T, un, 20) + (Ozhs Ouhs 02,h)-

The equation (B.2]) has the same form as the corresponding equations in
Subsection 2.3l By using standard finite element basis functions we obtain a
linear system of equations as follows. The piecewise constant basis functions
{pn}NA) are defined by ¢,,(t) = 0 except for

¢0(t) = 1, t < 0,
On(t) =1, th_1 <t<ty,
dn1(t) =1, t>tn,

and the piecewise linear basis functions {gpn}nNzo are defined by

0, ift ¢ JpUJpg,
onlt) = { 2=, ift e Jp,
L it € T
We make the Ansatz
N+1

5:(37h(t) = Z 5m,i¢i(t)’ 5:2,@' S Rd’
=0
N

Sun(t) = Suipi(t), Oui€R™
=0

N
5z,h(t) = Z 5z7i()0i(t)7 5z,i S Rd-
=0
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When inserted into (B.2) this gives rise to a linear symmetric system of
equations of the form

Ave A, ALl |6z F,

This is of saddle point form provided that

Awu Auu

is positive definite.

4. A POSTERIORI ERROR ANALYSIS

4.1. A representation formula for the error. The error can be mea-
sured in various ways. The dual weighted residuals methodology yields a
representation formula for the error in the goal functional 7.

Theorem 4.1. Let (z,u,z) € W x U x V be a solution to the optimality
conditions in ([Z0) and (Zp, Un, 2n) € Wi X Up X V), denote an approzimate

solution of the discrete problem in [B.I). Then the error in the objective
functional J satisfies

(4:].) j(ﬂ?,U) — j(ih,ah) = %px + %pu + %Pz + ]:(jhaﬂiw éh) + R,
with the residuals

pz = Tu(&nybp;x — ) + Fo(Zp, Gps 2y T — 21),
pu = To(&n, Upyu — dp) + F (Zn, Gn; 2n,u — dp),

pz = F(Zn, Un; 2 — 2p),
and the remainder
1
" A ~ A A A
R= %/ <J (xp, + Séy, up + S€y; €, €, €)
0
£ F (g + 864, fip, + $Eu; 2 + 565, 6,8, é))s(s ~1)ds,

where é = (64, éq,6.) = (x — &p,u — Gpy 2 — 2) EW XU X V.

Proof. The definition of £ in (24]) and the fact that F(x,u;z) = 0 from
(Z6d) gives
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T (x,u) — T (Zn, )
= L(x,u;2) — F(x,u; 2) — L(Zn, s 2n) + F(Zn, Un; 2n)
= £($,U7 Z) - ﬁ(jhvah; ih) + ]:(jh,’&h; ih)
1
= / L' (Zp + 86y, Uy + 8643 2n + 865, 8) ds + F(Zp, 0n; 2n)
0
= 3L (&p, Gn; 2n, €) + 3L (2,45 2,€) + R+ F(&, n; 2n)
= 3L (&h, Un; Zn, €) + F(&n, Gn; 2) + R

We used the trapezoidal rule with remainder R for the integral and £'(x, u; 2, é) =
0 by (Z.5). The remainder term R is readily computed from

1 1
/ f(s)ds = L(£(0) + F(1)) + / £"(s)s(s — 1) ds.
0 0
This completes the proof. O

4.2. An a posteriort error estimate. In order to develop the error for-
mula into an error estimator we need to take further steps. The first is the
following a posteriori error estimate.

Corollary 4.2. We have
(43) [T (@, uw) = T (@n, )| < 5(pe + pu + pe) + | F(Zn, @n; 20)| + | R,
where (with hg = hy41 =0)

N
=3 [ ol ) — i £ 2l
n=1 JIn

+llen — & vl (&, 0 27 5) + 2N

+ |0 — i’};oH”lll(xhp’xitN) = Zn,l|

N
=3 / = a1 G tn) — £y )" 2)] dt
n=1 Jn

N
ﬁz :Z‘/ (.’f}h—f(:f:h,ﬁh),z—ﬁh)dt
n=1 n

hn . .
+ m([fﬂh]n_l yZn—1 — th—l)
+ P ([Zr],, s 2n — Zhn)
hn + hn—i—l hln s 4n hmn)|-

Proof. The result follows directly from applying the triangle inequality in
(#1) using the expressions in (2.7)) after a symmetric distribution of the
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jump terms over the mesh intervals according to a calculation of the form
hn +h Ly
Z W= Z
h + hn+1 hy + hn+1

hn,
Z(h +hn+1 i hn_1+hna”_1)'

O

The functions z, u, z that appear in the error estimate are not computable.
We compute them approximately by solving the necessary conditions for
optimality on a much finer mesh to obtain Zfe, Ufine, 2fne. 1hen we replace
x by xfne and so on in the error estimate. We also replace &5, by x5 and so
on. The remainder is formally cubic in é and is neglected.

In this way we obtain an error estimator in the form of an elementwise
sum of dual weighted residuals. So, for example, we see that p, is a sum
of residuals from the adjoint equation weighted by ||z — || from the state
equation, and p, contains residuals from the state equation with weights
from the adjoint equation. The term |F(&p,Up; Z,)| measures how well the
discretized state equation is satisfied and is computed similarly to p..

The terms p,, py, and p, are associated with the discretization error, while
the “algebraic residual” |F(Zp, Gp; 2)| is related to the error in the nonlinear
equations solver, that is, the Newton iteration.

5. DESCRIPTION OF THE SOLVER

In the following section the implementation of the solver is described.

5.1. The Newton solver. Solving the linear system (3.3) yields a search
direction for one Newton iteration. In order to decide how far to go in this
direction, a simple line search is performed. We compute (xp, up, 25 )new for
various « € [0, 1] according to

(5.1) (@, Uk, Zn)new = (Th, Uy 2h)old + ®(Oz,hs Ouhs O21),

and the «a that gives the smallest right hand side of (8.2)) is chosen.

5.2. The adaptive solver. An adaptive finite element solver based on the
error estimate in Corollary (42 has been implemented. After solving the
problem on a coarse mesh, the discretization part of the error estimate is
computed. The intervals that give the largest contribution to the total error
are refined. The procedure is iterated until the tolerance of the discretization
error is reached.
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5.3. A multilevel algorithm. Following [7] we combine the Newton loop
and the refinement iteration into an adaptive multilevel algorithm.

The algorithm generates a sequence (Wh X Up X Vi) C (Wh XUp X Vp)1 C
- C (Wh X Uy, x Vp,)n of finite element spaces based on adaptively refined
meshes, and a sequence of approximate solutions (&, tp, 2p)n € (Wh X Uy, X
Vi)n- A solution (Zp, Gp, Zn)o € (Wh X Up, X Vi) is computed on the coarsest
mesh. This solution can either be achieved by iterating a fixed number of
times or until the algebraic solution has reached a given tolerance. The
coarse mesh is then refined using the adaptive algorithm in Subsection (5.2
The solution on the coarse mesh is extrapolated to the refined mesh and
used as a starting guess for the Newton iteration on the refined mesh. This
procedure is iterated until the total error, that is, the discretization plus
algebraic error, has reached the desired tolerance. In practice, only a few
Newton iterations on each mesh seem to be sufficient.

6. NUMERICAL EXAMPLES

In this section we present numerical examples which have been solved with
the method derived in previous sections.

6.1. A hyper-sensitive optimal control problem. The folloving exam-
ple is taken from [9]:

T
. 2 2
Minimize /0 (x(t)” 4+ u(t)®)dt

subject to
@(t) = —23(t) +ut), 0<t<T,
z(0)=1, =(T)=1.

The example is solved with 7' = 25 and the error tolerance 1072, The state
and control can be found in Figure 6.1l The adaptive multilevel algorithm
starts on a coarse mesh with 10 nodes and two Newton iterations are done
on each mesh, except for the last, where the solver is iterated until tolerance
of 1072, The adaptively refined mesh is in Figure We can see that
many nodes are inserted close to the boundaries while only a few nodes are
needed in the middle of the time interval. In Figure the performance of
the adaptive solver is compared to the same solver using uniform refinement.
With an adaptive refinement the number of nodes needed to reach a certain
precision is substantially lower. The solution has been validated against
PROPT [10] with very good agreement.
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FIGURE 6.1. The optimal state and control for the hyper-
sensitive optimal control problem.
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FIGURE 6.2. The adaptively refined mesh. The adaptive
solver has inserted nodes at the ends of the interval.

6.2. Rayleigh. The following example is taken from the manual of PROPT
[10].

T
. 2 2
Minimize /0 (x1(t)* 4+ u(t)”)dt
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10 T
o * O Uniform refinement
*  Adaptive refinement
—10° O* 1
—
§ *0O
< * 0
Bt .
*
O
> 10 * o A
8] * o
Ny M, %o
=2 O
10°F 9%* ° 5 E
10_4 Il Il

10° 10° 10
Number of nodes

FIGURE 6.3. The error on an adaptively refined mesh com-
pared to the error on a uniformly refined mesh.

subject to

—x1+ 1.4z — 0.141‘%’ + 4u

a:l(O - -5 xl(T) . 0
z2(0)|  [=5|7 |x(T)| |O]"

The result can be found in Figures [6.4H6.61 In Figure the optimal
states, computed with the adaptive finite element solver, are plotted together
with the states from Propt. As we can see the solutions coincide. The optimal
control is plotted in Figure [6.5l The refined mesh can be found in Figure
[6.6] In this example the initial mesh consists of five nodes and the tolerance
of the total error is 1073.

|- 2 | o<rer
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