FINITE ELEMENT APPROXIMATION OF VARIATIONAL
INEQUALITIES IN OPTIMAL CONTROL

KARIN KRAFT AND STIG LARSSON

ABSTRACT. The optimal control of a linear system of ordinary differen-
tial equations with quadratic goal functional and inequality constraints
is considered. Lagrange’s method in the calculus of variations leads
to necessary conditions for optimality in the form of a system of vari-
ational inequalities, which are discretized by a finite element method.
An a posteriori error estimate based on an augmented Lagrangian is
derived by means of the methodology of dual weighted residuals. An
adaptive algorithm is implemented and tested on model problems.

1. INTRODUCTION

We consider the optimal control of systems whose state equation is a linear
system of ordinary differential equations together with boundary conditions
at the initial and final times. The goal functional is assumed to be quadratic
and we allow inequality constraints on the state and control variables. We
call such problems quadratic/linear with inequality constraints. After suffi-
cient regularization we apply Lagrange’s method in the calculus of variations,
which leads to necessary conditions for optimality in the form of a system
of variational inequalities. Our goal is to develop and analyze an adaptive
finite element method for the numerical solution of such problems.

The use of finite elements for spatial discretization of optimization and
optimal control problems for partial differential equations goes back to [17]
and was more recently developed together with a posterior: error analysis in
[1L[16] and many other works. The use of finite element methods for temporal
discretization of optimal control problems is less common [6] 7, 5 12} 10} [11].

The dual weighted residuals approach [I] for a posteriori error analysis is
very suitable for optimal control problems because it is formulated using the
Lagrangian framework. In our previous work [10} [I1] we exploited this idea
for quadratic/linear and nonlinear problems without inequality constraints.
However, inequality constraints on state and control variables are important
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in practice. The present work therefore includes inequality constraints but
it is limited to quadratic/linear problems.

A posteriori error estimation based on dual weighted residuals for vari-
ational inequalities for partial differential equations has been studied in [2]
and [I6]. The main difficulty is that an inequality is solved instead of an
equation, so that the residual of the finite element solution is no longer
orthogonal to the finite element space, that is, we have no Galerkin orthog-
onality. This leads only to a one-sided bound for the error. In order to
overcome this, we follow the approach of [16], which is based on using an
augmented Lagrange functional with additional Lagrange multipliers for the
inequality constraints.

The outline of the article is as follows. Section [ contains the mathe-
matical setting of the optimal control problem. The Lagrange framework
is presented and the optimality conditions are derived. The next section,
Section Bl includes the discretization of the problem and the derivation of
a projected algorithm for solving the resulting algebraic complementarity
equations. In the following Section Ml the a posteriori error estimate is de-
rived, the computation of the error estimator is discussed, and the adaptive
algorithm is briefly described. In Section [ presents numerical examples: a
lane change maneuver from vehicle dynamics and a simple problem display-
ing Fuller’s phenomenon. The last section contains a discussion of the results
and presents some directions for future research.

2. AN OPTIMAL CONTROL PROBLEM

2.1. Setting of the problem. We consider a quadratic/linear optimal con-
trol problem with inequality constraints on the controls u(t) € R™ and states
z(t) € R%:

Minimize  J(z,u) = 5[2(0) — 2ol[g, + 3llz(T) — 2713,

T
3 [ (et = 501 + u(t) — (o)) .
such that x(t) = A(t)z(t) + B(t)u(t), fort e [0,T],
Inz(0) = zg, Irz(T) =z,
lu@)| < 7w, (2@ <72y for t € 0,71,

where Qo, Qr, Q(t) € R¥*? and R(t) € R™*™ are symmetric positive defi-
nite matrices, A(t) € R¥™¢ and B(t) € R™*?. The matrices Iy, It € R4
are binary diagonal matrices and zg, z7, Zo, T, Z(t) € R?, @(t) € R™, ry,
Ty, € R are given parameters such that ||zo|| < 7, and ||z7| < ry. Here (-,-)
and ||-|| denote the scalar product and norm in R? or R™, and ||z[|4 = (=, Sz),
for any positive definite symmetric matrix S. In cases where the matrices
Qo, Qr, Q(t), and R(t) are not positive definite in the original problem, a
regularization has to be done by adding positive terms to the goal functional.
We assume that the given data depend continuously on .
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Inequality constraints of the box form wumin < u;(t) < Umax, ¢ = 1,...,m,
t € [0,7], (similarly for z) can also be treated by the methods that we
consider here, see [16]. We choose to study constraints of the above circular
type in order to allow some specific applications from vehicle dynamics, see
Section [, but also to deviate from the presentation in [16].

2.2. Lagrange framework. In order to set the optimal control problem in
the Lagrange framework we introduce some function spaces. Let C* denote
k times continuously differentiable functions and H' denote functions with
square integrable derivative. Further, Cfl)w denotes piecewise continuously
differentiable functions [0,7] — R? more precisely, functions that are C!
except at a finite number of points in [0,7] and with left and right lim-
its w(t™) = limgy w(s), w(t™) = limgy w(s) for all points ¢ € [0,7]. We
introduce the function spaces

W =R’ x Chy ([0, T],R?) x RY,
W = R(I5) x Cow ([0, T],R?) x R(I7)
={weW: Iw(0") =0, Irw(Tt) =0},

U =H'([0,T],R™),

Y = H'([0,T],R).
Here R(I5) and R(I7) denote the ranges of the matrices If = I — Iy and
I = I—1I7. The two factors R? in W are used to accomodate the boundary
values w(07) and w(T"). The space W will contain the state variable z,
which is expected to be smooth. But here we anticipate that W will also
contain its finite element approximation xj, which is only piecewise smooth.
Therefore, W is defined to be a space of piecewise differentiable functions.

These spaces are linear spaces. For some & € W such that Ipz(07) = xg
and IT#(T") =z, we also define the affine space

W:£+W:{w€W:w—§:eW}.

Thus, functions in W satisfy the prescribed boundary conditions. In order
to incorporate the inequality constraints we define the convex sets

Ke={weW: |wt®)| <ry t€[0,T]},
Kuy={uel:|ul)] <ry tel0,T]}.

For ease of notation we write X = W xU x V and K = K, x K, x V, and
note that I is a convex subset of X.
The functional

T WxU—=R,
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is given by
J (@) = 5ll2(07) = olg, + 5ll2(TF) = 2713,
T
+ %/0 () = 2@NF + lu(t) — a(t)|7) dt,

and we define the functional

F:WxUXxYV — R,

by
N tn
Flouo) =3 [ (60) - Awu(o) - BOuO.v0) i
n=1"1tn-1
N
(2.1) + > ([l v(tn)

n=0
T
= [ (two). =50 - ateroe) - (ule). Berue)) a

+ (w(T),v(T)) — (w(07),v(0)).

Here [w], = w(t;) — w(t,,) and the sum is taken over all points {t,}_,
of discontinuity of w, and we set tg = 0, ty = T. The second form of F
is obtained by integration by parts using the fact that functions in V are
continuous.

We seek to minimize J(x,u) over K, x K, subject to F(z,u,¢) = 0 for
all o € V. We define the Lagrange functional

L:X=WxUXxYV —R,
by
(2.2) L(w,u,2) = T (w,u) + Flo,u, 2),

and assume that there is a minimizer £ = (x, u, z) € K of the Lagrangian L.
Since K is convex, we have for n € K and s € [0, 1],

0<LE+s(n—¢) = L(§) =sL(En—&) +o(s), ass— 0"

Here and below the notation £/(€, ¢) denotes the derivative of £ at £ acting
linearly on a vector ¢. By dividing by s and letting s — 07 we obtain the
necessary condition for a minimum & € K:

(2.3) L'(&n—€ >0 Vnek.

Expressed in terms of the partial derivatives and 7 = (¢g, Yu, p-) € K this
means that we need to find (z,u, z) € K such that

(2.4a) Lz, u, 2,00 —x) >0 Yo, € Ky,
(2.4b) Lo(z,u, 2,00 —u) >0 Vo, € Ky,
(2.4¢) L (x,u,2,0,) =0 Vo, €.
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These are variational inequalities; the last one reduces to an equation because
. ranges over a full vector space. Computing the derivatives, we obtain first

Elx(gj,u, Z7 (1018) = jx,(x)u7 (1018) + ]:;(x,u, Z7 (1018))
where
T
Tiauen) = [ Q=)0

+ (Qo(z(07) — Zo), p2(07))
+ (Qr(=(T") — Z7), 0. (T)),

and where F, (x,u, 2, ¢;) = F(¢z,0,2) is given by the second form of (2.I)).
Computing L] (z,u, z, 0u) = J.(x,u,z,¢4) + F(0, ¢y, z) using the second
form of F and L (z,u,z,p,) = F(x,u,p,) with the first form of F and
assuming that x is smooth, we obtain the following equations and inequalities

T
(2.5a) /0 (—2—A"24Q(x —T),p, —x)dt
+ (Qo(z(07) = Z0) = 2(0), 0 (07) — 2(07))
+(Qr(@(T) —r) + 2(T), s (TT) —2(T")) 20 Vo, € Ky,

T
(2.5b) / (R(u—1u)— B'z,¢0, —u)dt >0 Vo, € Ky,
0

T
(2.5¢) / (# — Az — Bu,¢,)dt =0 Vo, €V,
0
(2.5d) I()LL’(O_) = X, ITLL’(T_) = XT.
We note that (25d) and (2.5d) are the equations of state and that (2.5a)) is
based on the corresponding adjoint.

3. THE DISCRETE OPTIMAL CONTROL PROBLEM

3.1. The finite element method. In order to discretize the necessary con-
ditions for optimality (2.4]) we define a mesh 0 =ty <t; <ty < ... <ty =
T, with steps h,, = t,, —t,_1 and intervals J,, = (t,_1,t,). With P¥ denoting
polynomials of degree k, we introduce the function spaces

Wy = R? x {w eW:wl|;, € P°(J,,RY), n= 1,...,N} x RY,

Wi = R(IS) x {w eW:uly, € PO(J,,RY), n= 1,...,N} x R(IS)

—JweW,: Iyw(0™) =0, Irw(TH) = 0},

Uy, = {uec®(0,T),R™) : uly, € P (J,,R™), n = 1,...,N},

Vi

Il
— = =

v e C0([0,T],RY) : v];, € PY(Jp,RY), n = 1,...,N}.
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In the definition W = & + W we may choose & € W), and define
Wy, = & + W,
Then we have W;, C W, Wh C W, Wh C W, U, C U, and V;, C V.
Moreover, we define the convex sets
Kup={zn € Wy : |zn(tE)|| < 72y n=0,...,N},
Kup = {un €Up : [up(ty)|| <7y, n=0,...,N},

and

]Ch = ]Cgc,h X ]C%h X Vh.
It follows that Ky C Ky, Ky C Ky, and K, C K. We formulate the finite
element approximation of (2.4): Find (xp, up, zp) € Kp, such that

(3.1a) Lo (@, Uy 2hy Pon — Th) >0 Voup € Kyp,
(3.1b) Lo/(Thy Uy 2hy Pup — un) >0 Youn € Kyn,
(3.1c) L (xh, un, 020) =0 Ve, p € V.

Note that x, € K, C W, means that the boundary conditions (2.5d) are
also prescribed for xy,.

3.2. Implementation. In the implementation of (B.I]) we use the piecewise
constant basis functions {¢, }" 4 which are defined by ¢, (t) = 0 except for
po(t) =1, t<0,
On(t) =1, tho1 <t <ty,
on1(t) =1, t>tn,

and the piecewise linear basis functions {¢,}_, defined by ¢y, (tx) = Snk.
We make the Ansatz
N—+1

zh(t) = > Xidi(t), X; R
=0
N

un(t) =Y Uipi(t), U; €R™,
=0

N
wn(t) =Y Zipilt), Z; € R
=0

Note that
dim(Wy) = (N + 2)d,
dim(Wy) = (N + 2)d — do — dr,
dim(Vy) = (N + 1)d,
dim(Uy) = (N + 1)m,

where dy = rank(lp), dr = rank(I7).
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We now compute the matrix form of the variational inequalities [B.I]). In
order to simplify the presentation we assume temporarily that the coefficients
A(t) = A, B(t) = B, Q(t) = Q, R(t) = R are constant and that the mesh is
uniform, h, = h. We eliminate the prescribed boundary values,

Xo = IpXo + I5 Xo = x0 + 15 Xo,
Xy =Ir Xy + 15X N1 = 27 + 7 X N4
The remaining unknowns are kept in the column vector
X = [5Xo, X1,.... XN, I$ Xy [ € ROH2)d—do—dr

Similarly,
U =[Uy,...,Uy]" € RW+Im

Z =Zo,...,Zyn]F e RN+,
We first consider the case when there are no inequality constraints, that
is, Kp = Wh X Up, X V). Then ©z.n — Tp, can be chosen freely in W, and

©u,h — Up in Uy, and the variational inequalities reduce to equations. The
first equation is, c.f. (254,

T
L (Th, Un, 21y P p) = / (=2n+ A2 + Q(zy, — T), ppp) dt
0

+ (Qo(zn(07) — Zo) — 21(0), 2 n(07))
+ (Qr(zn(TT) — 1) + 20(T), e n(T1)) Yo, € W,

By taking ¢, j, = aj¢; with arbitrary ag € R(I§), aj € RY, j=1,...,N—1,
ay € R(I7), this leads to

—I5Zy + I; QoI Xo = I;QoZo — I;Qoxo,

(I-2AZy+ (-1 -3AZ +hQX,1 =Q | zdt,
J1

(I -5AYZn o+ (—1 - 5A)Zy + hQXN = Q | Zdt,
JIN

152N + I9QrIT XN+ = I9QrTr — ITQray.

In matrix form this is:

(3.2) OX+ A" Z=F
with the nodewise block matrices
[I5Q0 0 ... ... 0 7
0 hQ@ :
Q == : )
h@ 0
L 0 0 I7Q7]
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15 0 0
I—-bAr 1 LAt
a=] 0 :
0
: S VR BV
0 0 5

and where F' contains the terms on the right hand side. The second equation
is

T
L (xp, up, 2n, Ouh) = / (R(u—1u) — Bz, 0up)dt =0 Vo, € U,
0

By taking ¢, 5 = Bjpj, 7 =0,..., N, with arbitrary 5; € R, we obtain

(3.3) RU+B'Z=G
with
2R R o --- 07
R 4R R
)
- 6 0 0 )
R 4R R
| O 0 R 2R]
2BT BT 0 0 7
L BT 4B BT
BT = —g O s
BT 4Bt BT
| O 0 B 2BT]
and

T
Gj = R/ UP; dt.
0

The third equation is
N
L (T, Uny 21y P2,1) Z/ &p — Az, — Bup, ¢, ) dt
n=1 n

N
+ ) ([@hlns @op(tn)) =0 Yo € V.
n=0
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With ¢, , = 79, j = 0,...,N, arbitrary ~; € R?, and recalling that
Xo =20+ I5Xo and Xn41 = 27 + [7 X N1, we get
—BAXy + X1 — I§ Xy — 2BU, — 2BU; = x,
—BAXy) - BAX, + X, — Xy — 2BUy — 22BU, — LBU, = 0,

—BAXN + 19X N4 — XN — EBUN_1 — £BUy = —ar.

This has the matrix form

AX +BU = H.

Therefore, the three equations can be written

Q 0 A |X F
(3.4) 0o R B |U|=]|G
A B 0]z H

Since @ and R are symmetric positive definite, this system of equations has
a saddle point structure.
We now consider the inequality constraints. In this case we choose

(px,h:$h+aj¢j7 ]:077N+17
Spu,h:uh+/8j(pja j:O,...,N,

in (), where a; € R? 3; € R™ must be chosen so that ¢, € Kyp,
Oun € Kyn. We get

((QX + .ATZ - F)j, aj)
J

(RU+B"Z - G)j,5;)

>0, j=0,...,N+1,
207 j:07”’7N7

for all admissible a;, 8;. Here (QX+ATZ); € RY, (RU+B'Z~G); € R™ are
nodewise residuals from equations ([B.2) and (B.3)), respectively. If U; = U(t;)
is in contact, that is, ||Uj|| = ry, then $; must point into the ball |lul| <7,
from the contact point U; on the boundary. Hence, (RU + B'Z — G); must
be anti-parallell to Uj, that is,

(RU +BZ - G)] = —Su,jUj

for some number s, ; > 0. If U is not in contact, ||Uj|| < ry, then 8; may
point in any direction and

(RU +B'Z - G); = 0.
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We may argue similarly for the first inequality in ([B.I). Thus, we obtain the
complementarity relations

3.5a) (QX + A" Z — F)(r, — || X]|) =0,

3.5b) (RU+B"Z —G)(ry, — ||U||) =0,

3.5¢) AX +BU - H =0,

3.5d) 1 X|| < 7,

1Nl < 7u,

3.5 OX + A7 — F = —s,X,
3.5g) RU+B"Z — G = —s,U,
3.5h) 50> 0,
3.51) su > 0.

These equations should be interpreted nodewise, for example, the first equa-
tion is
N+1 N
(D2 QiiXi+ 3 AuZi— ) (ra = 1) =0, j =0, ,N+1,
i=0 i=0

where Q;;, A;;, and F} are the nodewise blocks of Q, A, and F. The matrices
sy and s, are block diagonal matrices, that is,

sy = diag(sg.0l,. .., 8z N+11),
sy = diag(su,0l, ..., SunI),

Rdxd RmXxm

where I denotes the unit matrix in respectively
3.3. Projected solver. In order to solve the complementarity equations
(B.5) a projected solver is proposed. This solver is described in Algorithm
[l In short, we start by setting s, = 0, s, = 0 and by solving the system
in (34]). The resulting states and controls may be too large, that is, violate
B.5d) or (B5e). For each node, we project large states and controls to the
boundary of the set of admissible functions, hence violating equations (3.5d),
B.51), (3-5g). By adding appropriate block diagonal matrices s, and s, to
the diagonal of the system matrix, the two latter equations are fulfilled.
However, since we take no measure to satisfy (B.5d), we must iterate the
procedure until convergence.

We claim that all complementarity conditions are fulfilled by the solution
obtained by this algorithm. In (3.5al) and (3.5D) either the left or right factor
is zero. Equations ([3.5d), (B.51), and (3-5g) are fulfilled at convergence and
the remaining equations are trivial consequences of the algorithm.

The implementation of the solver is done in Matlab [I4] and the solution
of the indefinite system of equations in Algorithm [ is done by using the
built-in Matlab operator \.
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Algorithm 1: The projected solver
set X =0, U=0

Q 0 A |X F
solve 0 R B |U|=|G
A B 0 A H

while [|([X U] — [X U]| > tol do
fori=0,...,N+1do
if || X;|| > r5 then

~ Xz
e
end
end
fori=0,...,N do
if ||U;|| > 7, then
. U,
177
end
end

fort=1,...,N+1do

s = = ||(F — A'Z — QX))
end
fori:=1,...,N do

sui = 7= ||(G = B'Z — RU),||

end
Q+ sy 0 AT [ X F
solve 0 R+s, B |U| =G
A B 0 Z H
end

4. A POSTERIORI ERROR ESTIMATE

We present an a posteriori analysis of the error in the goal functional
J based on the dual weighted residuals methodology. Due to the lack of
Galerkin orthogonality, a direct application of the methodology to the dis-
crete variational inequality leads only to a one-sided bound in Subsection
4.1l We therefore use an augmented Lagrangian in Subsection (4.2

4.1. An upper bound for the error in the objective functional. In
a previous article [I0] we adapted the dual weighted residuals methodology
of [1] to an optimal control problem without inequality constraints. This
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results in a representation formula for the error in the goal functional. In
the present situation we obtain only an upper bound for the error.

Theorem 4.1. Let (z,u, z) € K be a solution to the optimality conditions in
24) and (zp,un, zn) € Ky, be a solution to the finite element approzimation
in BI). Then the error in the goal functional satisfies

(4.1) J(z,u) — T (zp,up) < %pw+%ﬂu+%px,

with the residuals
pz = To(Th,up, v — xp) + Fo(Th, Upy 21, T — T1),
Pu = ju,(ajha Up, u — up) + ]'—QIL(ZEh, Uhy Zhy U — Up),
Pz = ]:(iL'h,uh,Z — Zh),

where Zy, € Vi, is arbitrary.

Proof. Introduce the notation e = (ey,ey,e,) = (x — xp,u — up, 2 — 2).
By the definition of £ in [22) and F(z,u,z) = 0, F(xp, up, z5) = 0, which
follow from (24cd) and [BId), we get
j(x7u) - j(f]}'h,Uh)
= E(‘Taua Z) - ‘F(‘Taua Z) - ﬁ(xh,Uh,Zh) + .F(xh,Uh, Zh)
= L(x,u,z) — L(xp,up, z1)

1

d

= / —L(xp + sey, up + Seq, zp + se,) ds
0 dS

1
= / L' (zh + ey, up + sey, 2, + se,, e)ds
0

= 1L (wp,un, zn,e) + L' (z,u, 2, €).

The last step is the trapezoidal rule for the integral. Since J is bi-quadratic
and F is tri-linear the integrand is a polynomial in s of degree 1 so that the
trapezoidal rule is exact. By (23] we have

L (z,u,z,e) = —L'(& & — &) <0,
since & = (z,u,2) € K and &, = (xp, up, z1) € K, C K. Therefore,
J(x,u) — T (xh,up) < %ﬁ'(mh,uh,zh,e)
= Lpu(Th, wny 20, @ — 1) + 3pu(@h, un, 20, u — up)
+ 502 (Th, Un, 20y 2 — ),

where we also used the Galerkin orthogonality (BId) to replace z, by an
arbitrary z, € V. O

Note that we cannot use (B.Ial)—(3.ID) as in [10] to replace also xp, and uy,
by arbitrary finite element functions, because this would give

L' (xp,up, znye) = L' (Eny & — &) = L'(€h, & — &) + L (En, & — &)
> L(n, & — &) VE, € K,
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which cannot be combined with the above inequality.

A similar argument is presented in [2] for an elliptic variational inequality.
However, they consider the error in an output quantity, which is a linear
functional J(u) of the solution u of an elliptic variational inequality. The
above argument then applies to both J and —7, yielding upper bounds for
the errors in both =7, and hence a bound for the absolute value of the error
in J. This does not work in our present situation.

4.2. An augmented Lagrangian. In order to derive a two-sided error es-
timate we introduce an augmented Lagrangian. A similar approach was used
in [16] for elliptic optimal control problems.

We introduce two additional Lagrange multipliers, o, € Z = C([0,T],R)
and o, € Z = C([0,T],R). The augmented Lagrangian, £: X x Z x Z — R,
is then defined as

L(x,u,2,04,04) = T (v,u) + F(z,u,2)
T
(42) 1 [ astol - 2 a
T
1 [ a@u? -

Then we introduce the sets w, and w,, where the constraints are active, and
the spaces Z,, Z, of functions supported in these sets,

we ={t €[0,T]: [lz(t)]| = ra},
wy =A{t €[0,T] : [Ju()]] = ru},
Z,={oc€Z:0(t)=00n[0,T]\ ws},
Zy={c€Z:0(t)=00n[0,T]\ wy}-
In order to shorten the notation, we further define
Y=XXZxXZ,
Yod =K X Z, X Z,.
We take £ = (z,u,z) € X and note that for x = (£, 04,04) € Vaq we have

L(€) = L(x)-
The necessary conditions for optimality now become, for x € Vaq,
(4.32) Lo pa) =0 Viow €W,
(4.3b) L06p) =0 Vo, €U,
(4.3¢) LLx,:) =0 Vg, €V,
(4.3d) Ly, (X, %0,) =0 Voo, € Z,,
(4.3¢) Lo, (X:00,) =0 Yo, € Zu,
(4.3f) 03,04 >0 on [0,T].
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Note that these are equations in weak form with test functions taken in linear
spaces. The equations are

T
(4.42) /0 (=2 — A2 4 Qz — 7) + op, 00) dt

+ (Qo(x(07) — @) — 2(0), ¢ (07))
+

(Qr(x(T*) — Z7) + 2(T), 9 (TT)) = 0 Y, €W,
T
(4.4Db) / (u—1) — Bz + oyu, p,)dt =0 Yo, €U,
0
T
(4.4c) / (& — Az + Bu, p,)dt =0 Vo, €V,
0

(44d)  Iox(07) =m0, Ipx(T™)=ar,
T

(4.4e) o, (| \a:|]2 )dt =0 Voo, € 2z,

(4.4f) gpgu(||u||2 r2)dt =0 Yo, € Zuy.

o\o\

Note that the former variational inequalities (2.5a)), (2.5b]) have now become
equations (£4al), (4.4D) by the introduction of the terms o,z and o, u, which
are supported in the contact sets w, and w,, respectively.

In order to identify the multipliers o, and o, we note that, by (£3al),

(E.3D),

T
L) = L3(6, 02) +/ o2 (1) ((t), pu (1)) dt =0 Vi, € W,
(4.5) 0

T
E;(X7 Spu) = ‘C;L(& Spu) +/0 Uu(t)(u(t)a (Pu(t)) dt =0 Ve, €U.

Given a solution & of the variational inequality (2.4]), these equations deter-
mine o, and oy.

4.3. Discrete augmented optimality conditions. In order to derive a
discrete version of ([A3]) we introduce the discrete versions of the active sets
and the discrete multiplier function spaces,

we,p = {t € [0,T] : [[xn(t)]| = re},
wup = {t € [0,T] : lun(@)]| = ru},

2, ={o€C([0,T|,R) : 0|;, € P (J,,R),n=1,...,N},
Zon={w € Zp:w(t)=0o0n 0,7\ wyn},
Zyn={uveZ, u(t)=00n[0,T] \ wyn}

Additionally, the sets
Vi = Xn X Zp X Zp,
Vadh = Kp X 2 X Zyp,
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are introduced and the discrete Lagrange multipliers o, , € Z; p, and o, p, €
Zy,h, are defined by, c.f. (@5,

T
/ 0w i (@, 0op) dt = =L (Th, un, 2n, Pon)  Vozrn € Wh,
0

T

Oun(Un, up) dt = =L (Th, up, 2h, Pun)  Voun € Up.
0

Once &, = (xp,up, 2zn) € Kp is found by solving the variational inequality
(1), we can solve for o5 and oy . Then xp, = (zn,un, 21, Oz by Oun) €
YVad,n satisfies

(4.6)

(4.7a) L (Xns0en) =0 Vg n € W,
(4.7b) L3, (Xhs Pup) =0 Vpun € Un,
(4.7¢) /Z(Xh, P20) =0 Yo €V,
(4.7d) oo (X» Pop) =0 Voo, n € Zup,
(4.7e) £:)'u(Xh7 Oouh) =0 Voo, n € Zyp.

4.4. An error representation formula. In order to estimate the absolute
value of the error, the one-sided error estimate in Theorem E.Ilis not enough.
Therefore we present a representation formula for the error based on the
augmented Lagrangian in (4.2)). First, we introduce the new residuals by
splitting £'(xn,¢) into partial derivatives:

ﬁm(Xha‘;%) = jx,(xhvuhv(pw) + ]:;($h7uh7zh7(p$)

T
+ / 0o (hs 0) dt Viow €W,
0
Pu(Xhs pu) = To(@h, uny 0u) + Fo(Thy Uns 21y Pu)
T
+ / Gt o) dt Viou €U,
0
ﬁz(Xhﬂ%) = .F(IEh,Uh,QDZ) V‘Pz S V7
T
P (s 90,) = 4 /0 o (a2 — 2) dt Vo, € Z,
r 2 2
Fo (s 90) = /0 o (lun]? — r2) dt Voo, € Z.

We will evaluate the last two residuals also at y, that is,

T
Fo (s 00,) = & /0 o (2]? —12)dt Vo, € 2,

T
ﬁo'u(X7 (po'u) - %/ (IDO'u HUH2 - rlzL) dt V(po'u S Z
0
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Note that p,(xn,z—2p) is the same as p, in Theorem [£LIl The other residuals
contain additional contributions from the contact sets.

Theorem 4.2. Let x € Yaq be a solution to the necessary conditions of
optimality in @3) and let xp, € Vaan be a solution to its finite element
approzimation [AX). Then the error in the objective functional is given by

j($,U) - j(ﬂi‘h,’dh) = %[)IE(X}M z — Zh) + %ﬁu(Xh,u - ﬂh) + %[)Z(X}ng - jh)
ﬁax (th Ox — &m,h) + %ﬁau (th Oy — &u,h)

4
+ /5095 (X7 Op — Ugc,h) + %ﬁo’u (Xya'u - Uu,h) + R,

N[—= N[—=

where (Tp, U, Zn) € Xp, G b € Zyh, Ouh € Zuh, Ox € 24, and &, € 2, are
arbitrary and

T

48 R=—1 [ (2= cealle ~anlP + (o~ oun)lu — unl?) at,
0

1s a remainder.

Proof. Let x = (z,u,2,04,04) € Yad, Xh = (Th, Un, 21, Op by Oup) € Vadh,
and £ = (z,u,z) € K. We have

T (@) = LE) = L), T(wnun) = LE) = Lxn),
so that
T (@, u) — T (zh,un) = L(x) — L(xn)

1 ~
= / L'(xn + s(x — xn), x — xn) ds.
0

This integral is computed by the trapezoidal rule as in the proof of Theorem
41 and we obtain

(4.9 J(z,u) — T(@hun) = 2L (6, x — xn) + 5L (xns X — xn) + R

Since the integrand f(s) = £'(xn + s(X — Xn), X — X») contains terms that
are quadratic in s, there is now a remainder R = 3 fol f"(s)s(s—1)ds and a
simple calculation leads to (4.8]). The first term on the right side of ([4.9) is

L'(x.x = xn) = L0, & — xp) + L,(¢u —un) + LU 2 — 2n)
+ E;x(x, Op — Ogp) + Ef,u(x, Ou— Ouh)-
From the optimality conditions in (£3) we see that the first three terms
vanish, so that
L' x = xn) = L, (X, 00 — 0un) + L5, (X, 0u — Tup)
= Po. (X, 00 — U:B,h) + P (X Tu — Ouh)-

These terms are not zero, since 0, — 0, belongs to Z but not necessarily
to Z, because wy j, ¢ w,. The same argument is valid for o, — 0, . Using
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(@3d), (E3d), and that p,, and p,, are linear in the second argument, we
can replace o, and o, by arbitrary o, € Z, and 7, € Z,, so that
E,(X, X — Xh) = ﬁax (X7 Oy — Ugc,h) + ﬁau (X7 Ou — Uu,h)-
The second term in ([A9]) is

L' (Xns X = Xn) = Pa(Xn> 2 = 21) + Pu(Xh, u = up) + p=(xn, © — zn)
+ ﬁax (Xh7 Or — Um,h) + laau (Xh7 Oy — Uu,h)-
The discrete necessary conditions (4.7) mean that these residuals are or-
thogonal to the respective finite element function spaces, so that z, up, s,
Oz h, and o, 5, can be replaced by arbitrary I, € Wi, ap € Uy, Z, € Vi,
Ozh € Zzh, and 0y € 2y p, yielding

Px(Xns 2 — 2n) = pzx(Xn, 2 — Zn),
Pu(Xh v — up) = pu(Xn, w — ap),

ﬁau (Xh7 Oy — Oyh) = ﬁau (th Oy — &u,h)'

This completes the proof. O

4.5. An error estimator. In order to derive a computable a posteriori
error estimate we expand each term in the error formula separately:

Pa(ThyUp, 2n, T — Tp) = T(@h, up, ® — Tp) + Fol@p, up, 20, T — Tp)
+ /OT opn(Th, T — Tp)dt,
Pul(Thy Un, 2h,w — Up) = To(Thy Un, u — Up) + Fo (Thy Un, 21, U — Tp)
T
—1—/0 oun(up,u — ) dt,
P=(@h, Un, 2n, 2 — Zp) = F(@h, un, 2 — Zn),

T
/ (00 — o) (lanll? — r2)dt,
0

N~

ﬁaz(xhvuhy Zhs Oz — 5-:C7h) =

T

Poy (ThsUp, 2k, Oy — Ty ) = (0w — Gup)(unl? —r2)dt,

T

i
2
0
r 2 2
Pou (@t 2,50 — o) = 1 / (60 — oun)(l]? — r2)dt,
0
/

Here we know only xp, wp, and zp and the remaining functions must be
approximated. In order to do so we compute approximate solutions Zfe,
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Ufine, and Zgne on a finer mesh. These are used to replace x, u, z and T, 4,
Z wherever they occur. Likewise, we replace Ty, Uy, Zn by Th, up, 24-

The Lagrange multipliers o p, 0y, Oz h, Oupr are computed by solving
the equations in ([40) with xp, up, and z, as coefficients. The Lagrange
multipliers oy, oy, 0, and &, are approximated by solving (A0 with xgne,
Ufine, and zfne as coefficients. After these substitutions we write the various
residuals as elementwise sums and apply norms to the terms in an appro-
priate way, see [10] for details. Finally, we ignore the remainder R, which is
cubic in the errors in o, 4, 0y n, Th, and up, while the residuals are formally
linear in these errors.

4.6. An adaptive algorithm. The error estimator in the previous section
is used for implementing an adaptive finite element method. The algorithm
is described in detail in [10]. A solution is computed on a coarse mesh, then
the contribution to the error estimator from each interval is computed. The
mesh is refined according to the principle that the elements with the largest
contribution to the total error are refined. This procedure is iterated until
the required error tolerance has been achieved.

5. NUMERICAL EXAMPLES

The algorithm described in this work has been tested on several problems.
These tests are described in this section.

5.1. Fuller’s problem 1. The following problem is known as Fuller’s prob-

lem [3], [§].

(5.1) Minimize / 1 x1 ()% dt
subject to O
[i;gg] = [fi((tt))] , 0<t<l,
(5.2) z1(0)] _ [0.01 | zi(1)] _ [o.01 |
1 -

We regularize the problem by adding the following term to (5.1I):

w / 1(x2(t)2 +u(t)?)dt,
0

with w = 10719, It is known, that the non-regularized problem displays
Fuller’s phenomenon, that is, the control makes infinitely many switchings
between £1, but that the regularized problem only has a finite, but large,
number of switchings [I3],4]. In Figure 5.1l the control is plotted and we can
see that it is symmetric around ¢ = 0.5. The adaptive solver has started
to resolve the switchings. The value of the goal functional for the non-
regularized problem computed with an exact formula is J(z,u) = 1.5280 -
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107> [9]. The value of the goal functional for the numerical solution is is
T (zp,up) = 1.4760 - 107°.

10~%.

This solution is computed with the tolerance
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FiGURE 5.3. The computed solution of Fuller’s problem 2
with only two switchings.

5.2. Fuller’s problem 2. Changing the boundary values in (5.2)) to

z1(0)| _ (0.1 z1(1)| _ (0.1

z2(0)| | O |7 Jz2(D)| | O’
gives a problem where Fuller’s phenomenon does not occur [9]. The result
can be found in Figure (5.3l

5.3. Lane change maneuver. In this subsection we present a stabilization
maneuver taken from vehicle dynamics. A vehicle is described by a particle
on which a steering force, Fy, and a braking force, Fx, are acting as controls.
The vehicle has an initial velocity in both the X- and Y-directions and it
has an initial position Y = 8 m. The aim is to find the optimal way to steer
and brake in order to reach another lane at Y = 0 m, where the vehicle is
moving only in the X-direction, that is Vy» = 0. We minimize fOT Y?2dt for
fixed T' = 4.15 s, and with additional regularization the problem is:

T
Minimize 1 /0 {Y(t)2

+w(X(#)? + Vx(t)? + W (t)? + Fx(t)* + Fy (t)?) } dt
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subject to the dynamics of the vehicle,

X Vx X(0) 0

Y| | W ' YO)| | 8 B
Vel = [Py 0<t<T; V)| = | 24 | W(T) =0,
Wy Fy Vv (0) 14.4

F% +FE <(ug)?, 0<t<T.

The inequality constraint means that the force (divided by the mass of the
vehicle) is limited by the friction circle. We use the friction coefficient p =1
and acceleration of gravity g = 10 m/sz. We emphasize that the problem
that we really want to solve from a vehicle dynamics point of view has w = 0.
However, due to numerical reasons we must regularize and use w > 0. Here
we present a solution with w = 1071%, The results presented are computed
with the tolerance 10~ for the discretization error.

The results are shown in Figures 5.4H5.81 In Figure 5.4l the optimal track
is shown. The same figure displays the solution obtained with the optimal
control module PROPT [15] and we see that the solutions coincide. The
velocities of the vehicle in the X- and Y-directions are shown in Figure
and we note that Vy is constant because the vehicle is only steering and no
braking takes place, which can be seen in Figure 5.6, where the controls are
plotted. The force acting in the X-direction, F, is equal to zero during
the whole maneuver and only the steering force is active. We also note
that the forces are on the friction circle, that is Fz + FZ = (ug)?. This is
expected since the optimization problem is convex (K and J are convex).
Figure 0.7 shows the size of the error when the mesh is refined adaptively or
uniformly. The advantage of the adaptive solver is clear when looking at the
number of nodes needed to reach a precision of 1074, Approximately one
third more nodes are used in the case of uniform refinement in order to reach
the same accuracy. The figure also implies that this effect will be more clear
when decreasing the tolerance further. Finally, the adapted mesh is shown
in Figure .8l

6. CONCLUSIONS

This work aimed at investigating the potential use of adaptive finite el-
ement methods for solving optimal control problems with inequality con-
straints on controls and states. The contributions consist of setting the
problem in a mathematical framework, deriving an a posterior: error esti-
mate, and the implementation of an adaptive algorithm. The results so far
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show that the use of an adaptive finite element method can contribute to
automation of the solution of optimal control problems.
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At this stage more focus has to be put on the issue of effectiveness of the
implementation of the algorithm. We also have to address the problem of
handling inequality constraints for non-linear problems.
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