
FINITE ELEMENT APPROXIMATION OF VARIATIONALINEQUALITIES IN OPTIMAL CONTROLKARIN KRAFT AND STIG LARSSONAbstract. The optimal control of a linear system of ordinary di�eren-tial equations with quadratic goal functional and inequality constraintsis considered. Lagrange's method in the calculus of variations leadsto necessary conditions for optimality in the form of a system of vari-ational inequalities, which are discretized by a �nite element method.An a posteriori error estimate based on an augmented Lagrangian isderived by means of the methodology of dual weighted residuals. Anadaptive algorithm is implemented and tested on model problems.1. IntroductionWe consider the optimal control of systems whose state equation is a linearsystem of ordinary di�erential equations together with boundary conditionsat the initial and �nal times. The goal functional is assumed to be quadraticand we allow inequality constraints on the state and control variables. Wecall such problems quadratic/linear with inequality constraints. After su�-cient regularization we apply Lagrange's method in the calculus of variations,which leads to necessary conditions for optimality in the form of a systemof variational inequalities. Our goal is to develop and analyze an adaptive�nite element method for the numerical solution of such problems.The use of �nite elements for spatial discretization of optimization andoptimal control problems for partial di�erential equations goes back to [17]and was more recently developed together with a posteriori error analysis in[1, 16] and many other works. The use of �nite element methods for temporaldiscretization of optimal control problems is less common [6, 7, 5, 12, 10, 11].The dual weighted residuals approach [1] for a posteriori error analysis isvery suitable for optimal control problems because it is formulated using theLagrangian framework. In our previous work [10, 11] we exploited this ideafor quadratic/linear and nonlinear problems without inequality constraints.However, inequality constraints on state and control variables are important1991 Mathematics Subject Classi�cation. 65L60, 49K15.Key words and phrases. �nite element, a posteriori, error estimate, variational inequality,adaptive, state constraint, control constraint, vehicle dynamics.Research supported by the Swedish Research Council (VR) and by the Swedish Foundationfor Strategic Research (SSF) through GMMC, the Gothenburg Mathematical ModellingCentre. 1



2 K. KRAFT AND S. LARSSONin practice. The present work therefore includes inequality constraints butit is limited to quadratic/linear problems.A posteriori error estimation based on dual weighted residuals for vari-ational inequalities for partial di�erential equations has been studied in [2]and [16]. The main di�culty is that an inequality is solved instead of anequation, so that the residual of the �nite element solution is no longerorthogonal to the �nite element space, that is, we have no Galerkin orthog-onality. This leads only to a one-sided bound for the error. In order toovercome this, we follow the approach of [16], which is based on using anaugmented Lagrange functional with additional Lagrange multipliers for theinequality constraints.The outline of the article is as follows. Section 2 contains the mathe-matical setting of the optimal control problem. The Lagrange frameworkis presented and the optimality conditions are derived. The next section,Section 3, includes the discretization of the problem and the derivation ofa projected algorithm for solving the resulting algebraic complementarityequations. In the following Section 4 the a posteriori error estimate is de-rived, the computation of the error estimator is discussed, and the adaptivealgorithm is brie�y described. In Section 5 presents numerical examples: alane change maneuver from vehicle dynamics and a simple problem display-ing Fuller's phenomenon. The last section contains a discussion of the resultsand presents some directions for future research.2. An optimal control problem2.1. Setting of the problem. We consider a quadratic/linear optimal con-trol problem with inequality constraints on the controls u(t) ∈ R
m and states

x(t) ∈ R
d:Minimize J (x, u) = 1

2‖x(0) − x̄0‖
2
Q0

+ 1
2‖x(T )− x̄T ‖

2
QT

+ 1
2

∫ T

0

(

‖x(t) − x̄(t)‖2Q + ‖u(t)− ū(t)‖2R
)

dt,such that ẋ(t) = A(t)x(t) +B(t)u(t), for t ∈ [0, T ],

I0x(0) = x0, ITx(T ) = xT ,

‖u(t)‖ ≤ ru, ‖x(t)‖ ≤ rx, for t ∈ [0, T ],where Q0, QT , Q(t) ∈ R
d×d and R(t) ∈ R

m×m are symmetric positive de�-nite matrices, A(t) ∈ R
d×d and B(t) ∈ R

m×d. The matrices I0, IT ∈ R
d×dare binary diagonal matrices and x0, xT , x̄0, x̄T , x̄(t) ∈ R

d, ū(t) ∈ R
m, rx,

ru ∈ R are given parameters such that ‖x0‖ ≤ rx and ‖xT ‖ ≤ ru. Here (·, ·)and ‖·‖ denote the scalar product and norm in R
d or Rm, and ‖x‖2S = (x, Sx),for any positive de�nite symmetric matrix S. In cases where the matrices

Q0, QT , Q(t), and R(t) are not positive de�nite in the original problem, aregularization has to be done by adding positive terms to the goal functional.We assume that the given data depend continuously on t.



FEM FOR VARIATIONAL INEQUALITIES IN OPTIMAL CONTROL 3Inequality constraints of the box form umin ≤ ui(t) ≤ umax, i = 1, . . . ,m,
t ∈ [0, T ], (similarly for x) can also be treated by the methods that weconsider here, see [16]. We choose to study constraints of the above circulartype in order to allow some speci�c applications from vehicle dynamics, seeSection 5, but also to deviate from the presentation in [16].2.2. Lagrange framework. In order to set the optimal control problem inthe Lagrange framework we introduce some function spaces. Let Ck denote
k times continuously di�erentiable functions and H1 denote functions withsquare integrable derivative. Further, C1

PW denotes piecewise continuouslydi�erentiable functions [0, T ] → R
d; more precisely, functions that are C1except at a �nite number of points in [0, T ] and with left and right lim-its w(t−) = lims↓t w(s), w(t+) = lims↑t w(s) for all points t ∈ [0, T ]. Weintroduce the function spaces

W = R
d × C1

PW([0, T ],Rd)× R
d,

Ẇ = R(IC0)× C1
PW([0, T ],Rd)×R(ICT )

= {w ∈ W : I0w(0
−) = 0, ITw(T

+) = 0},

U = H1([0, T ],Rm),

V = H1([0, T ],Rd).Here R(IC0) and R(ICT ) denote the ranges of the matrices IC0 = I − I0 and
ICT = I− IT . The two factors Rd in W are used to accomodate the boundaryvalues w(0−) and w(T+). The space W will contain the state variable x,which is expected to be smooth. But here we anticipate that W will alsocontain its �nite element approximation xh, which is only piecewise smooth.Therefore, W is de�ned to be a space of piecewise di�erentiable functions.These spaces are linear spaces. For some x̂ ∈ W such that I0x̂(0−) = x0and IT x̂(T

+) = xT , we also de�ne the a�ne space
Ŵ = x̂+ Ẇ =

{

w ∈ W : w − x̂ ∈ Ẇ
}

.Thus, functions in Ŵ satisfy the prescribed boundary conditions. In orderto incorporate the inequality constraints we de�ne the convex sets
Kx =

{

w ∈ Ŵ : ‖w(t±)‖ ≤ rx, t ∈ [0, T ]
}

,

Ku =
{

u ∈ U : ‖u(t)‖ ≤ ru, t ∈ [0, T ]
}

.For ease of notation we write X = W × U × V and K = Kx × Ku × V, andnote that K is a convex subset of X .The functional
J : W ×U → R,



4 K. KRAFT AND S. LARSSONis given by
J (x, u) = 1

2‖x(0
−)− x̄0‖

2
Q0

+ 1
2‖x(T

+)− x̄T ‖
2
QT

+ 1
2

∫ T

0

(

‖x(t)− x̄(t)‖2Q + ‖u(t) − ū(t)‖2R
)

dt,and we de�ne the functional
F : W ×U × V → R,by

(2.1) F(w, u, v) =
N
∑

n=1

∫ tn

tn−1

(

ẇ(t)−A(t)w(t) −B(t)u(t), v(t)
)

dt

+

N
∑

n=0

([w]n, v(tn))

=

∫ T

0

(

(w(t),−v̇(t)−A(t)Tv(t)) − (u(t), B(t)Tv(t))
)

dt

+ (w(T+), v(T )) − (w(0−), v(0)).Here [w]n = w(t+n ) − w(t−n ) and the sum is taken over all points {tn}
N
n=0of discontinuity of w, and we set t0 = 0, tN = T . The second form of Fis obtained by integration by parts using the fact that functions in V arecontinuous.We seek to minimize J (x, u) over Kx × Ku subject to F(x, u, ϕ) = 0 forall ϕ ∈ V. We de�ne the Lagrange functional

L : X = W ×U × V → R,by(2.2) L(x, u, z) = J (x, u) +F(x, u, z),and assume that there is a minimizer ξ = (x, u, z) ∈ K of the Lagrangian L.Since K is convex, we have for η ∈ K and s ∈ [0, 1],
0 ≤ L(ξ + s(η − ξ))− L(ξ) = sL′(ξ, η − ξ) + o(s), as s → 0+.Here and below the notation L′(ξ, ϕ) denotes the derivative of L at ξ actinglinearly on a vector ϕ. By dividing by s and letting s → 0+ we obtain thenecessary condition for a minimum ξ ∈ K:(2.3) L′(ξ, η − ξ) ≥ 0 ∀η ∈ K.Expressed in terms of the partial derivatives and η = (ϕx, ϕu, ϕz) ∈ K thismeans that we need to �nd (x, u, z) ∈ K such that

L′
x(x, u, z, ϕx − x) ≥ 0 ∀ϕx ∈ Kx,(2.4a)

L′
u(x, u, z, ϕu − u) ≥ 0 ∀ϕu ∈ Ku,(2.4b)

L′
z(x, u, z, ϕz) = 0 ∀ϕz ∈ V.(2.4c)



FEM FOR VARIATIONAL INEQUALITIES IN OPTIMAL CONTROL 5These are variational inequalities; the last one reduces to an equation because
ϕz ranges over a full vector space. Computing the derivatives, we obtain �rst

L′
x(x, u, z, ϕx) = J ′

x(x, u, ϕx) + F ′
x(x, u, z, ϕx),where

J ′
x(x, u, ϕx) =

∫ T

0
(Q(x− x̄), ϕx) dt

+ (Q0(x(0
−)− x̄0), ϕx(0

−))

+ (QT (x(T
+)− x̄T ), ϕx(T

+)),and where F ′
x(x, u, z, ϕx) = F(ϕx, 0, z) is given by the second form of (2.1).Computing L′
u(x, u, z, ϕu) = J ′

u(x, u, z, ϕu) + F(0, ϕu, z) using the secondform of F and L′
z(x, u, z, ϕz) = F(x, u, ϕz) with the �rst form of F andassuming that x is smooth, we obtain the following equations and inequalities

∫ T

0
(−ż −ATz +Q(x− x̄), ϕx − x) dt(2.5a)

+ (Q0(x(0
−)− x̄0)− z(0), ϕx(0

−)− x(0−))

+ (QT (x(T
+)− x̄T ) + z(T ), ϕx(T

+)− x(T+)) ≥ 0 ∀ϕx ∈ Kx,
∫ T

0
(R(u− ū)−BTz, ϕu − u) dt ≥ 0 ∀ϕu ∈ Ku,(2.5b)

∫ T

0
(ẋ−Ax−Bu,ϕz) dt = 0 ∀ϕz ∈ V,(2.5c)

I0x(0
−) = x0, ITx(T

−) = xT .(2.5d)We note that (2.5c) and (2.5d) are the equations of state and that (2.5a) isbased on the corresponding adjoint.3. The Discrete optimal control problem3.1. The �nite element method. In order to discretize the necessary con-ditions for optimality (2.4) we de�ne a mesh 0 = t0 < t1 < t2 < . . . < tN =
T , with steps hn = tn−tn−1 and intervals Jn = (tn−1, tn). With P k denotingpolynomials of degree k, we introduce the function spaces

Wh = R
d ×

{

w ∈ W : w|Jn ∈ P 0(Jn,R
d), n = 1, . . . , N

}

× R
d,

Ẇh = R(IC0)×
{

w ∈ W : w|Jn ∈ P 0(Jn,R
d), n = 1, . . . , N

}

×R(ICT )

=
{

w ∈ Wh : I0w(0
−) = 0, ITw(T

+) = 0
}

,

Uh =
{

u ∈ C0([0, T ],Rm) : u|Jn ∈ P 1(Jn,R
m), n = 1, . . . , N

}

,

Vh =
{

v ∈ C0([0, T ],Rd) : v|Jn ∈ P 1(Jn,R
d), n = 1, . . . , N

}

.



6 K. KRAFT AND S. LARSSONIn the de�nition Ŵ = x̂+ Ẇ we may choose x̂ ∈ Wh and de�ne
Ŵh = x̂+ Ẇh.Then we have Wh ⊂ W, Ẇh ⊂ Ẇ, Ŵh ⊂ Ŵ, Uh ⊂ U , and Vh ⊂ V.Moreover, we de�ne the convex sets

Kx,h =
{

xh ∈ Ŵh : ‖xh(t
±
n )‖ ≤ rx, n = 0, . . . , N

}

,

Ku,h =
{

uh ∈ Uh : ‖uh(tn)‖ ≤ ru, n = 0, . . . , N
}

,and
Kh = Kx,h ×Ku,h × Vh.It follows that Kx,h ⊂ Kx, Ku,h ⊂ Ku, and Kh ⊂ K. We formulate the �niteelement approximation of (2.4): Find (xh, uh, zh) ∈ Kh such that

L′
x(xh, uh, zh, ϕx,h − xh) ≥ 0 ∀ϕx,h ∈ Kx,h,(3.1a)

L′
u(xh, uh, zh, ϕu,h − uh) ≥ 0 ∀ϕu,h ∈ Ku,h,(3.1b)

L′
z(xh, uh, ϕz,h) = 0 ∀ϕz,h ∈ Vh.(3.1c)Note that xh ∈ Kx,h ⊂ Ŵh means that the boundary conditions (2.5d) arealso prescribed for xh.3.2. Implementation. In the implementation of (3.1) we use the piecewiseconstant basis functions {φn}

N+1
n=0 which are de�ned by φn(t) = 0 except for

φ0(t) = 1, t < 0,

φn(t) = 1, tn−1 < t < tn,

φN+1(t) = 1, t > tN ,and the piecewise linear basis functions {ϕn}
N
n=0 de�ned by ϕn(tk) = δnk.We make the Ansatz

xh(t) =
N+1
∑

i=0

Xiφi(t), Xi ∈ R
d,

uh(t) =

N
∑

i=0

Uiϕi(t), Ui ∈ R
m,

zh(t) =
N
∑

i=0

Ziϕi(t), Zi ∈ R
d.Note that

dim(Wh) = (N + 2)d,

dim(Ẇh) = (N + 2)d− d0 − dT ,

dim(Vh) = (N + 1)d,

dim(Uh) = (N + 1)m,where d0 = rank(I0), dT = rank(IT ).



FEM FOR VARIATIONAL INEQUALITIES IN OPTIMAL CONTROL 7We now compute the matrix form of the variational inequalities (3.1). Inorder to simplify the presentation we assume temporarily that the coe�cients
A(t) = A, B(t) = B, Q(t) = Q, R(t) = R are constant and that the mesh isuniform, hn = h. We eliminate the prescribed boundary values,

X0 = I0X0 + IC0X0 = x0 + IC0X0,

XN+1 = ITXN+1 + ICTXN+1 = xT + ICTXN+1.The remaining unknowns are kept in the column vector
X = [IC0X0,X1, . . . ,XN , ICTXN+1]

T ∈ R
(N+2)d−d0−dT .Similarly,

U = [U0, . . . , UN ]T ∈ R
(N+1)m,

Z = [Z0, . . . , ZN ]T ∈ R
(N+1)d.We �rst consider the case when there are no inequality constraints, thatis, Kh = Ŵh × Uh × Vh. Then ϕx,h − xh can be chosen freely in Ẇh and

ϕu,h − uh in Uh and the variational inequalities reduce to equations. The�rst equation is, c.f. (2.5a),
L′
x(xh, uh, zh, ϕx,h) =

∫ T

0
(−żh +ATzh +Q(xh − x̄), ϕx,h) dt

+ (Q0(xh(0
−)− x̄0)− zh(0), ϕx,h(0

−))

+ (QT (xh(T
+)− x̄T ) + zh(T ), ϕx,h(T

+)) ∀ϕx,h ∈ Ẇh.By taking ϕx,h = αjφj with arbitrary α0 ∈ R(IC0), αj ∈ R
d, j = 1, . . . , N−1,

αN ∈ R(ICT ), this leads to
−IC0Z0 + IC0Q0I

C
0X0 = IC0Q0x̄0 − IC0Q0x0,

(I − h
2A

T)Z0 + (−I − h
2A

T)Z1 + hQX1 = Q

∫

J1

x̄dt,...
(I − h

2A
T)ZN−1 + (−I − h

2A
T)ZN + hQXN = Q

∫

JN

x̄dt,

ICTZN + ICTQT I
C
TXN+1 = ICTQT x̄T − ICTQTxT .In matrix form this is:(3.2) QX +ATZ = Fwith the nodewise block matrices

Q =

















IC0Q0 0 . . . . . . 0

0 hQ
. . . ...... . . . . . . . . . ...... . . . hQ 0

0 . . . . . . 0 ICTQT

















,



8 K. KRAFT AND S. LARSSON
AT =























−IC0 0 . . . . . . 0

I − h
2A

T −I − h
2A

T
. . . ...

0
. . . . . . . . . ...... . . . . . . . . . 0... . . . I − h

2A
T −I − h

2A
T

0 . . . . . . 0 ICT























,

and where F contains the terms on the right hand side. The second equationis
L′
u(xh, uh, zh, ϕu,h) =

∫ T

0
(R(u− ū)−BTz, ϕu,h) dt = 0 ∀ϕu,h ∈ Uh.By taking ϕu,h = βjϕj , j = 0, . . . , N , with arbitrary βj ∈ R

m, we obtain(3.3) RU + BTZ = Gwith
R =

h

6

















2R R 0 · · · 0

R 4R R
. . . ...

0
. . . . . . . . . 0... . . . R 4R R

0 · · · 0 R 2R

















,

BT = −
h

6

















2BT BT 0 · · · 0

BT 4BT BT
. . . ...

0
. . . . . . . . . 0... . . . BT 4BT BT

0 · · · 0 BT 2BT

















,and
Gj = R

∫ T

0
ūϕj dt.The third equation is

L′
z(xh, uh, zh, ϕz,h) =

N
∑

n=1

∫

Jn

(ẋh −Axh −Buh, ϕz,h) dt

+

N
∑

n=0

([xh]n, ϕz,h(tn)) = 0 ∀ϕz,h ∈ Vh.



FEM FOR VARIATIONAL INEQUALITIES IN OPTIMAL CONTROL 9With ϕz,h = γjϕj , j = 0, . . . , N , arbitrary γj ∈ R
d, and recalling that

X0 = x0 + IC0X0 and XN+1 = xT + ICTXN+1, we get
−h

2AX1 +X1 − IC0X0 −
h
3BU0 −

h
6BU1 = x0,

−h
2AX1 −

h
2AX2 +X2 −X1 −

h
6BU0 −

2h
3 BU1 −

h
6BU2 = 0,...

−h
2AXN + ICTXN+1 −XN − h

6BUN−1 −
h
3BUN = −xT .This has the matrix form

AX + BU = H.Therefore, the three equations can be written(3.4) 



Q 0 AT

0 R BT

A B 0









X
U
Z



 =





F
G
H



 .Since Q and R are symmetric positive de�nite, this system of equations hasa saddle point structure.We now consider the inequality constraints. In this case we choose
ϕx,h = xh + αjφj , j = 0, . . . , N + 1,

ϕu,h = uh + βjϕj , j = 0, . . . , N,in (3.1), where αj ∈ R
d, βj ∈ R

m must be chosen so that ϕx,h ∈ Kx,h,
ϕu,h ∈ Ku,h. We get

((QX +ATZ − F )j , αj) ≥ 0, j = 0, . . . , N + 1,

((RU + BTZ −G)j , βj) ≥ 0, j = 0, . . . , N,for all admissible αj , βj . Here (QX+ATZ)j ∈ R
d, (RU+BTZ−G)j ∈ R

m arenodewise residuals from equations (3.2) and (3.3), respectively. If Uj = U(tj)is in contact, that is, ‖Uj‖ = ru, then βj must point into the ball ‖u‖ ≤ rufrom the contact point Uj on the boundary. Hence, (RU + BTZ −G)j mustbe anti-parallell to Uj , that is,
(RU + BTZ −G)j = −su,jUj ,for some number su,j ≥ 0. If Uj is not in contact, ‖Uj‖ < ru, then βj maypoint in any direction and

(RU + BTZ −G)j = 0.



10 K. KRAFT AND S. LARSSONWe may argue similarly for the �rst inequality in (3.1). Thus, we obtain thecomplementarity relations
(QX +ATZ − F )(rx − ‖X‖) = 0,(3.5a)
(RU + BTZ −G)(ru − ‖U‖) = 0,(3.5b)

AX + BU −H = 0,(3.5c)
‖X‖ ≤ rx,(3.5d)
‖U‖ ≤ ru,(3.5e)

QX +ATZ − F = −sxX,(3.5f)
RU + BTZ −G = −suU,(3.5g)

sx ≥ 0,(3.5h)
su ≥ 0.(3.5i)These equations should be interpreted nodewise, for example, the �rst equa-tion is

(

N+1
∑

i=0

QjiXi +

N
∑

i=0

AijZi − Fj

)

(rx − ‖Xj‖) = 0, j = 0, . . . , N + 1,where Qij , Aij , and Fj are the nodewise blocks ofQ, A, and F . The matrices
sx and su are block diagonal matrices, that is,

sx = diag(sx,0I, . . . , sx,N+1I),

su = diag(su,0I, . . . , su,NI),where I denotes the unit matrix in R
d×d respectively R

m×m.3.3. Projected solver. In order to solve the complementarity equations(3.5) a projected solver is proposed. This solver is described in Algorithm1. In short, we start by setting sx = 0, su = 0 and by solving the systemin (3.4). The resulting states and controls may be too large, that is, violate(3.5d) or (3.5e). For each node, we project large states and controls to theboundary of the set of admissible functions, hence violating equations (3.5c),(3.5f), (3.5g). By adding appropriate block diagonal matrices sx and su tothe diagonal of the system matrix, the two latter equations are ful�lled.However, since we take no measure to satisfy (3.5c), we must iterate theprocedure until convergence.We claim that all complementarity conditions are ful�lled by the solutionobtained by this algorithm. In (3.5a) and (3.5b) either the left or right factoris zero. Equations (3.5c), (3.5f), and (3.5g) are ful�lled at convergence andthe remaining equations are trivial consequences of the algorithm.The implementation of the solver is done in Matlab [14] and the solutionof the inde�nite system of equations in Algorithm 1 is done by using thebuilt-in Matlab operator \.



FEM FOR VARIATIONAL INEQUALITIES IN OPTIMAL CONTROL 11Algorithm 1: The projected solver
set X̃ = 0, Ũ = 0

solve





Q 0 AT

0 R BT

A B 0









X
U
Z



 =





F
G
H



while ‖([X U ]− [X̃ Ũ ]‖ > tol dofor i = 0, . . . , N + 1 doif ‖Xi‖ > rx then
X̃i = rx

Xi

‖Xi‖endendfor i = 0, . . . , N doif ‖Ui‖ > ru then
Ũi = ru

Ui

‖Ui‖endendfor i = 1, . . . , N + 1 do
sx,i =

1
rx
‖(F −ATZ −QX̃)i‖endfor i = 1, . . . , N do

su,i =
1
ru
‖(G− BTZ −RŨ)i‖end

solve





Q+ sx 0 AT

0 R+ su BT

A B 0









X
U
Z



 =





F
G
H



end 4. A posteriori error estimateWe present an a posteriori analysis of the error in the goal functional
J based on the dual weighted residuals methodology. Due to the lack ofGalerkin orthogonality, a direct application of the methodology to the dis-crete variational inequality leads only to a one-sided bound in Subsection4.1. We therefore use an augmented Lagrangian in Subsection 4.2.4.1. An upper bound for the error in the objective functional. Ina previous article [10] we adapted the dual weighted residuals methodologyof [1] to an optimal control problem without inequality constraints. This



12 K. KRAFT AND S. LARSSONresults in a representation formula for the error in the goal functional. Inthe present situation we obtain only an upper bound for the error.Theorem 4.1. Let (x, u, z) ∈ K be a solution to the optimality conditions in(2.4) and (xh, uh, zh) ∈ Kh be a solution to the �nite element approximationin (3.1). Then the error in the goal functional satis�es(4.1) J (x, u) − J (xh, uh) ≤
1
2ρx +

1
2ρu + 1

2ρx,with the residuals
ρx = J ′

x(xh, uh, x− xh) + F ′
x(xh, uh, zh, x− xh),

ρu = J ′
u(xh, uh, u− uh) +F ′

u(xh, uh, zh, u− uh),

ρz = F(xh, uh, z − z̃h),where z̃h ∈ Vh is arbitrary.Proof. Introduce the notation e = (ex, eu, ez) = (x − xh, u − uh, z − zh).By the de�nition of L in (2.2) and F(x, u, z) = 0, F(xh, uh, zh) = 0, whichfollow from (2.4c) and (3.1c), we get
J (x, u) − J (xh, uh)

= L(x, u, z)−F(x, u, z) −L(xh, uh, zh) + F(xh, uh, zh)

= L(x, u, z)− L(xh, uh, zh)

=

∫ 1

0

d

ds
L(xh + sex, uh + seu, zh + sez) ds

=

∫ 1

0
L′(xh + sex, uh + seu, zh + sez, e) ds

= 1
2L

′(xh, uh, zh, e) +
1
2L

′(x, u, z, e).The last step is the trapezoidal rule for the integral. Since J is bi-quadraticand F is tri-linear the integrand is a polynomial in s of degree 1 so that thetrapezoidal rule is exact. By (2.3) we have
L′(x, u, z, e) = −L′(ξ, ξh − ξ) ≤ 0,since ξ = (x, u, z) ∈ K and ξh = (xh, uh, zh) ∈ Kh ⊂ K. Therefore,

J (x, u)− J (xh, uh) ≤
1
2L

′(xh, uh, zh, e)

= 1
2ρx(xh, uh, zh, x− xh) +

1
2ρu(xh, uh, zh, u− uh)

+ 1
2ρz(xh, uh, zh, z − z̃h),where we also used the Galerkin orthogonality (3.1c) to replace zh by anarbitrary z̃h ∈ Vh. �Note that we cannot use (3.1a)�(3.1b) as in [10] to replace also xh and uhby arbitrary �nite element functions, because this would give

L′(xh, uh, zh, e) = L′(ξh, ξ − ξh) = L′(ξh, ξ − ξ̃h) + L′(ξh, ξ̃h − ξh)

≥ L′(ξh, ξ − ξ̃h) ∀ξ̃h ∈ Kh,



FEM FOR VARIATIONAL INEQUALITIES IN OPTIMAL CONTROL 13which cannot be combined with the above inequality.A similar argument is presented in [2] for an elliptic variational inequality.However, they consider the error in an output quantity, which is a linearfunctional J (u) of the solution u of an elliptic variational inequality. Theabove argument then applies to both J and −J , yielding upper bounds forthe errors in both ±J , and hence a bound for the absolute value of the errorin J . This does not work in our present situation.4.2. An augmented Lagrangian. In order to derive a two-sided error es-timate we introduce an augmented Lagrangian. A similar approach was usedin [16] for elliptic optimal control problems.We introduce two additional Lagrange multipliers, σx ∈ Z = C([0, T ],R)and σu ∈ Z = C([0, T ],R). The augmented Lagrangian, L̃ : X ×Z×Z → R,is then de�ned as(4.2) L̃(x, u, z, σx, σu) = J (x, u) + F(x, u, z)

+ 1
2

∫ T

0
σx(t)(‖x(t)‖

2 − r2x) dt

+ 1
2

∫ T

0
σu(t)(‖u(t)‖

2 − r2u) dt.Then we introduce the sets ωx and ωu, where the constraints are active, andthe spaces Zx,Zu of functions supported in these sets,
ωx = {t ∈ [0, T ] : ‖x(t)‖ = rx},

ωu = {t ∈ [0, T ] : ‖u(t)‖ = ru},

Zx = {σ ∈ Z : σ(t) = 0 on [0, T ] \ ωx},

Zu = {σ ∈ Z : σ(t) = 0 on [0, T ] \ ωu}.In order to shorten the notation, we further de�ne
Y = X × Z × Z,

Yad = K× Zx ×Zu.We take ξ = (x, u, z) ∈ X and note that for χ = (ξ, σx, σu) ∈ Yad we have
L(ξ) = L̃(χ).The necessary conditions for optimality now become, for χ ∈ Yad,

L̃′
x(χ,ϕx) = 0 ∀ϕx ∈ Ẇ,(4.3a)

L̃′
u(χ,ϕu) = 0 ∀ϕu ∈ U ,(4.3b)

L̃′
z(χ,ϕz) = 0 ∀ϕz ∈ V,(4.3c)

L̃′
σx
(χ,ϕσx

) = 0 ∀ϕσx
∈ Zx,(4.3d)

L̃′
σu
(χ,ϕσu

) = 0 ∀ϕσu
∈ Zu,(4.3e)

σx, σu ≥ 0 on [0, T ].(4.3f)



14 K. KRAFT AND S. LARSSONNote that these are equations in weak form with test functions taken in linearspaces. The equations are
∫ T

0
(−ż −ATz +Q(x− x̄) + σxx, ϕx) dt(4.4a)

+ (Q0(x(0
−)− x̄0)− z(0), ϕx(0

−))

+ (QT (x(T
+)− x̄T ) + z(T ), ϕx(T

+)) = 0 ∀ϕx ∈ Ẇ ,
∫ T

0
(R(u− ū)−BTz + σuu, ϕu) dt = 0 ∀ϕu ∈ U ,(4.4b)

∫ T

0
(ẋ−Ax+Bu,ϕz) dt = 0 ∀ϕz ∈ V,(4.4c)

I0x(0
−) = x0, ITx(T

−) = xT ,(4.4d)
∫ T

0
ϕσx

(‖x‖2 − r2x) dt = 0 ∀ϕσx
∈ Zx,(4.4e)

∫ T

0
ϕσu

(‖u‖2 − r2u) dt = 0 ∀ϕσu
∈ Zu.(4.4f)Note that the former variational inequalities (2.5a), (2.5b) have now becomeequations (4.4a), (4.4b) by the introduction of the terms σxx and σuu, whichare supported in the contact sets ωx and ωu, respectively.In order to identify the multipliers σx and σu we note that, by (4.3a),(4.3b),(4.5) L̃′

x(χ,ϕx) = L′
x(ξ, ϕx) +

∫ T

0
σx(t)(x(t), ϕx(t)) dt = 0 ∀ϕx ∈ Ẇ,

L̃′
u(χ,ϕu) = L′

u(ξ, ϕu) +

∫ T

0
σu(t)(u(t), ϕu(t)) dt = 0 ∀ϕu ∈ U .Given a solution ξ of the variational inequality (2.4), these equations deter-mine σx and σu.4.3. Discrete augmented optimality conditions. In order to derive adiscrete version of (4.3) we introduce the discrete versions of the active setsand the discrete multiplier function spaces,

ωx,h = {t ∈ [0, T ] : ‖xh(t)‖ = rx},

ωu,h = {t ∈ [0, T ] : ‖uh(t)‖ = ru},

Zh = {σ ∈ C([0, T ],R) : σ|Jn ∈ P 1(Jn,R), n = 1, . . . , N},

Zx,h = {w ∈ Zh : w(t) = 0 on [0, T ] \ ωx,h},

Zu,h = {u ∈ Zh : u(t) = 0 on [0, T ] \ ωu,h}.Additionally, the sets
Yh = Xh ×Zh ×Zh,

Yad,h = Kh ×Zx,h ×Zu,h,



FEM FOR VARIATIONAL INEQUALITIES IN OPTIMAL CONTROL 15are introduced and the discrete Lagrange multipliers σx,h ∈ Zx,h, and σu,h ∈
Zu,h, are de�ned by, c.f. (4.5),(4.6) ∫ T

0
σx,h(xh, ϕx,h) dt = −L′

x(xh, uh, zh, ϕx,h) ∀ϕx,h ∈ Ẇh,

∫ T

0
σu,h(uh, ϕu,h) dt = −L′

u(xh, uh, zh, ϕu,h) ∀ϕu,h ∈ Uh.Once ξh = (xh, uh, zh) ∈ Kh is found by solving the variational inequality(3.1), we can solve for σx,h and σu,h. Then χh = (xh, uh, zh, σx,h, σu,h) ∈
Yad,h satis�es

L̃′
x(χh, ϕx,h) = 0 ∀ϕx,h ∈ Ẇh,(4.7a)

L̃′
u(χh, ϕu,h) = 0 ∀ϕu,h ∈ Uh,(4.7b)

L̃′
z(χh, ϕz,h) = 0 ∀ϕz,h ∈ Vh,(4.7c)

L̃′
σx
(χh, ϕσx,h) = 0 ∀ϕσx,h ∈ Zx,h,(4.7d)

L̃′
σu
(χh, ϕσu,h) = 0 ∀ϕσu,h ∈ Zu,h.(4.7e)4.4. An error representation formula. In order to estimate the absolutevalue of the error, the one-sided error estimate in Theorem 4.1 is not enough.Therefore we present a representation formula for the error based on theaugmented Lagrangian in (4.2). First, we introduce the new residuals bysplitting L̃′(χh, ϕ) into partial derivatives:

ρ̃x(χh, ϕx) = J ′
x(xh, uh, ϕx) + F ′

x(xh, uh, zh, ϕx)

+

∫ T

0
σx,h(xh, ϕx) dt ∀ϕx ∈ Ẇ,

ρ̃u(χh, ϕu) = J ′
u(xh, uh, ϕu) + F ′

u(xh, uh, zh, ϕu)

+

∫ T

0
σu,h(uh, ϕu) dt ∀ϕu ∈ U ,

ρ̃z(χh, ϕz) = F(xh, uh, ϕz) ∀ϕz ∈ V,

ρ̃σx
(χh, ϕσx

) = 1
2

∫ T

0
ϕσx

(‖xh‖
2 − r2x) dt ∀ϕσx

∈ Z,

ρ̃σu
(χh, ϕσu

) = 1
2

∫ T

0
ϕσu

(‖uh‖
2 − r2u) dt ∀ϕσu

∈ Z.We will evaluate the last two residuals also at χ, that is,
ρ̃σx

(χ,ϕσx
) = 1

2

∫ T

0
ϕσx

(‖x‖2 − r2x) dt ∀ϕσx
∈ Z,

ρ̃σu
(χ,ϕσu

) = 1
2

∫ T

0
ϕσu

(‖u‖2 − r2u) dt ∀ϕσu
∈ Z.



16 K. KRAFT AND S. LARSSONNote that ρ̃z(χh, z−z̃h) is the same as ρz in Theorem 4.1. The other residualscontain additional contributions from the contact sets.Theorem 4.2. Let χ ∈ Yad be a solution to the necessary conditions ofoptimality in (4.3) and let χh ∈ Yad,h be a solution to its �nite elementapproximation (4.7). Then the error in the objective functional is given by
J (x, u) − J (xh, uh) =

1
2 ρ̃x(χh, z − z̃h) +

1
2 ρ̃u(χh, u− ũh) +

1
2 ρ̃z(χh, x− x̃h)

+ 1
2 ρ̃σx

(χh, σx − σ̃x,h) +
1
2 ρ̃σu

(χh, σu − σ̃u,h)

+ 1
2 ρ̃σx

(χ, σ̃x − σx,h) +
1
2 ρ̃σu

(χ, σ̃u − σu,h) +R,where (x̃h, ũh, z̃h) ∈ Xh, σ̃x,h ∈ Zx,h, σ̃u,h ∈ Zu,h, σ̃x ∈ Zx, and σ̃u ∈ Zu arearbitrary and(4.8) R = −1
4

∫ T

0

(

(σx − σx,h)‖x− xh‖
2 + (σu − σu,h)‖u− uh‖

2
)

dt,is a remainder.Proof. Let χ = (x, u, z, σx, σu) ∈ Yad, χh = (xh, uh, zh, σx,h, σu,h) ∈ Yad,h,and ξ = (x, u, z) ∈ K. We have
J (x, u) = L(ξ) = L̃(χ), J (xh, uh) = L(ξh) = L̃(χh),so that

J (x, u)− J (xh, uh) = L̃(χ)− L̃(χh)

=

∫ 1

0
L̃′(χh + s(χ− χh), χ− χh) ds.This integral is computed by the trapezoidal rule as in the proof of Theorem4.1 and we obtain(4.9) J (x, u)− J (xh, uh) =

1
2 L̃

′(χ, χ− χh) +
1
2 L̃

′(χh, χ− χh) +R.Since the integrand f(s) = L̃′(χh + s(χ − χh), χ − χh) contains terms thatare quadratic in s, there is now a remainder R = 1
2

∫ 1
0 f ′′(s)s(s− 1) ds and asimple calculation leads to (4.8). The �rst term on the right side of (4.9) is

L̃′(χ, χ− χh) = L̃′
x(χ, x− xh) + L̃′

u(χ, u− uh) + L̃′
z(χ, z − zh)

+ L̃′
σx
(χ, σx − σx,h) + L̃′

σu
(χ, σu − σu,h).From the optimality conditions in (4.3) we see that the �rst three termsvanish, so that

L̃′(χ, χ− χh) = L̃′
σx
(χ, σx − σx,h) + L̃′

σu
(χ, σu − σu,h)

= ρ̃σx
(χ, σx − σx,h) + ρ̃σu

(χ, σu − σu,h).These terms are not zero, since σx − σx,h belongs to Z but not necessarilyto Zx because ωx,h 6⊂ ωx. The same argument is valid for σu − σu,h. Using



FEM FOR VARIATIONAL INEQUALITIES IN OPTIMAL CONTROL 17(4.3d), (4.3e), and that ρ̃σx
and ρ̃σu

are linear in the second argument, wecan replace σx and σu by arbitrary σ̃x ∈ Zx and σ̃u ∈ Zu, so that
L̃′(χ, χ− χh) = ρ̃σx

(χ, σ̃x − σx,h) + ρ̃σu
(χ, σ̃u − σu,h).The second term in (4.9) is

L̃′(χh, χ− χh) = ρ̃x(χh, z − zh) + ρ̃u(χh, u− uh) + ρ̃z(χh, x− xh)

+ ρ̃σx
(χh, σx − σx,h) + ρ̃σu

(χh, σu − σu,h).The discrete necessary conditions (4.7) mean that these residuals are or-thogonal to the respective �nite element function spaces, so that xh, uh, zh,
σx,h, and σu,h can be replaced by arbitrary x̃h ∈ Ẇh, ũh ∈ Uh, z̃h ∈ Vh,
σ̃x,h ∈ Zx,h, and σ̃u,h ∈ Zu,h, yielding

ρ̃x(χh, z − zh) = ρ̃x(χh, z − z̃h),

ρ̃u(χh, u− uh) = ρ̃u(χh, u− ũh),

ρ̃z(χh, x− xh) = ρ̃z(χh, x− x̃h),

ρ̃σx
(χh, σx − σx,h) = ρ̃σx

(χh, σx − σ̃x,h),

ρ̃σu
(χh, σu − σu,h) = ρ̃σu

(χh, σu − σ̃u,h).This completes the proof. �4.5. An error estimator. In order to derive a computable a posteriorierror estimate we expand each term in the error formula separately:
ρ̃x(xh, uh, zh, x− x̃h) = J ′

x(xh, uh, x− x̃h) + F ′
x(xh, uh, zh, x− x̃h)

+

∫ T

0
σx,h(xh, x− x̃h) dt,

ρ̃u(xh, uh, zh, u− ũh) = J ′
u(xh, uh, u− ũh) + F ′

u(xh, uh, zh, u− ũh)

+

∫ T

0
σu,h(uh, u− ũh) dt,

ρ̃z(xh, uh, zh, z − z̃h) = F(xh, uh, z − z̃h),

ρ̃σx
(xh, uh, zh, σx − σ̃x,h) =

1
2

∫ T

0
(σx − σ̃x,h)(‖xh‖

2 − r2x) dt,

ρ̃σu
(xh, uh, zh, σu − σ̃u,h) =

1
2

∫ T

0
(σu − σ̃u,h)(‖uh‖

2 − r2u) dt,

ρ̃σx
(x, u, z, σ̃x − σx,h) =

1
2

∫ T

0
(σ̃x − σx,h)(‖x‖

2 − r2x) dt,

ρ̃σu
(x, u, z, σ̃u − σu,h) =

1
2

∫ T

0
(σ̃u − σu,h)(‖u‖

2 − r2u) dt.Here we know only xh, uh, and zh and the remaining functions must beapproximated. In order to do so we compute approximate solutions xfine,
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ufine, and zfine on a �ner mesh. These are used to replace x, u, z and x̃, ũ,
z̃ wherever they occur. Likewise, we replace x̃h, ũh, z̃h by xh, uh, zh.The Lagrange multipliers σx,h, σu,h, σ̃x,h, σ̃u,h are computed by solvingthe equations in (4.6) with xh, uh, and zh as coe�cients. The Lagrangemultipliers σx, σu, σ̃x, and σ̃u are approximated by solving (4.6) with xfine,
ufine, and zfine as coe�cients. After these substitutions we write the variousresiduals as elementwise sums and apply norms to the terms in an appro-priate way, see [10] for details. Finally, we ignore the remainder R, which iscubic in the errors in σx,h, σu,h, xh, and uh, while the residuals are formallylinear in these errors.4.6. An adaptive algorithm. The error estimator in the previous sectionis used for implementing an adaptive �nite element method. The algorithmis described in detail in [10]. A solution is computed on a coarse mesh, thenthe contribution to the error estimator from each interval is computed. Themesh is re�ned according to the principle that the elements with the largestcontribution to the total error are re�ned. This procedure is iterated untilthe required error tolerance has been achieved.5. Numerical examplesThe algorithm described in this work has been tested on several problems.These tests are described in this section.5.1. Fuller's problem 1. The following problem is known as Fuller's prob-lem [3, 8].(5.1) Minimize ∫ 1

0
x1(t)

2 dtsubject to(5.2) [

ẋ1(t)
ẋ2(t)

]

=

[

x2(t)
−u(t)

]

, 0 < t < 1,

[

x1(0)
x2(0)

]

=

[

0.01
0

]

,

[

x1(1)
x2(1)

]

=

[

0.01
0

]

,

|u(t)| ≤ 1, 0 < t < 1.We regularize the problem by adding the following term to (5.1):
ω

∫ 1

0
(x2(t)

2 + u(t)2) dt,with ω = 10−10. It is known, that the non-regularized problem displaysFuller's phenomenon, that is, the control makes in�nitely many switchingsbetween ±1, but that the regularized problem only has a �nite, but large,number of switchings [13, 4]. In Figure 5.1 the control is plotted and we cansee that it is symmetric around t = 0.5. The adaptive solver has startedto resolve the switchings. The value of the goal functional for the non-regularized problem computed with an exact formula is J (x, u) = 1.5280 ·
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10−5 [9]. The value of the goal functional for the numerical solution is is
J (xh, uh) = 1.4760 · 10−5. This solution is computed with the tolerance
10−4.
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[

x1(0)
x2(0)

]

=

[

0.1
0

]

,

[

x1(1)
x2(1)

]

=

[

0.1
0

]

,gives a problem where Fuller's phenomenon does not occur [9]. The resultcan be found in Figure 5.3.5.3. Lane change maneuver. In this subsection we present a stabilizationmaneuver taken from vehicle dynamics. A vehicle is described by a particleon which a steering force, FY , and a braking force, FX , are acting as controls.The vehicle has an initial velocity in both the X- and Y -directions and ithas an initial position Y = 8 m. The aim is to �nd the optimal way to steerand brake in order to reach another lane at Y = 0 m, where the vehicle ismoving only in the X-direction, that is VY = 0. We minimize ∫ T

0 Y 2 dt for�xed T = 4.15 s, and with additional regularization the problem is:Minimize 1
2

∫ T

0

{

Y (t)2

+ ω
(

X(t)2 + VX(t)2 + VY (t)
2 + FX(t)2 + FY (t)

2
)

}

dt
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







Ẋ

Ẏ

V̇X

V̇Y









=









VX

VY

FX

FY









, 0 < t < T ;









X(0)
Y (0)
VX(0)
VY (0)









=









0
8
24
14.4









, VY (T ) = 0,

F 2
X + F 2

Y ≤ (µg)2, 0 < t < T.The inequality constraint means that the force (divided by the mass of thevehicle) is limited by the friction circle. We use the friction coe�cient µ = 1and acceleration of gravity g = 10 m/s2. We emphasize that the problemthat we really want to solve from a vehicle dynamics point of view has ω = 0.However, due to numerical reasons we must regularize and use ω > 0. Herewe present a solution with ω = 10−10. The results presented are computedwith the tolerance 10−4 for the discretization error.The results are shown in Figures 5.4�5.8. In Figure 5.4 the optimal trackis shown. The same �gure displays the solution obtained with the optimalcontrol module PROPT [15] and we see that the solutions coincide. Thevelocities of the vehicle in the X- and Y -directions are shown in Figure 5.5and we note that VX is constant because the vehicle is only steering and nobraking takes place, which can be seen in Figure 5.6, where the controls areplotted. The force acting in the X-direction, FX , is equal to zero duringthe whole maneuver and only the steering force is active. We also notethat the forces are on the friction circle, that is F 2
X + F 2

Y = (µg)2. This isexpected since the optimization problem is convex (K and J are convex).Figure 5.7 shows the size of the error when the mesh is re�ned adaptively oruniformly. The advantage of the adaptive solver is clear when looking at thenumber of nodes needed to reach a precision of 10−4. Approximately onethird more nodes are used in the case of uniform re�nement in order to reachthe same accuracy. The �gure also implies that this e�ect will be more clearwhen decreasing the tolerance further. Finally, the adapted mesh is shownin Figure 5.8.
6. ConclusionsThis work aimed at investigating the potential use of adaptive �nite el-ement methods for solving optimal control problems with inequality con-straints on controls and states. The contributions consist of setting theproblem in a mathematical framework, deriving an a posteriori error esti-mate, and the implementation of an adaptive algorithm. The results so far
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