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Abstract We consider the semilinear stochastic heat equation perturbed by additive
noise. After time-discretization by Euler’s method the equation is split into a linear
stochastic equation and a non-linear random evolution equation. The linear stochas-
tic equation is discretized in space by a non-adaptive wavelet-Galerkin method. This
equation is solved first and its solution is substituted into the nonlinear random evo-
lution equation, which is solved by an adaptive wavelet method. We provide mean
square estimates for the overall error.

1 Introduction

We consider the following semilinear parabolic problem with additive noise,

du−∇ · (κ∇u)dt = f (u)dt +dW, x ∈D , t ∈ (0,T ),
u = 0, x ∈ ∂D , t ∈ (0,T ),
u(·,0) = u0, x ∈D .

(1)

Here T > 0, D ⊂ Rd , d = 1,2,3, is a convex polygonal domain or a domain with
smooth boundary ∂D , and {W (t)}t≥0 is an L2(D)-valued Q-Wiener process on a
filtered probability space (Ω ,F ,P,{Ft}t≥0) with respect to the normal filtration

Mihály Kovács
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{Ft}t≥0. We use the notation H = L2(D), V = H1
0 (D) with ‖·‖= ‖·‖H and (·, ·) =

(·, ·)H . Moreover, A : V → V ′ denotes the linear elliptic operator Au = −∇ · (κ∇u)
for u ∈ V where κ(x) > κ0 > 0 is smooth. As usual we consider the bilinear form
a : V ×V →R defined by a(u,v) = 〈Au,v〉 for u,v ∈V , and 〈·, ·〉 denotes the duality
pairing of V ′ and V . We denote by e−tA the analytic semigroup in H generated by
the realization of −A in H with D(A) = H2(D)∩H1

0 (D). Finally, f : H → H is a
nonlinear function, which is assumed to be globally Lipschitz continuous, i.e., there
exists a constant L f such that

‖ f (u)− f (v)‖ ≤ L f ‖u− v‖, u,v ∈ H. (2)

It is well known that our assumptions on A and on the spatial domain D implies
the existence of a sequence of nondecreasing positive real numbers {λk}k≥1 and an
orthonormal basis {ek}k≥1 of H such that

Aek = λkek, lim
k→+∞

λk =+∞.

Using the spectral functional calculus for A we introduce the fractional powers As,
s ∈ R, of A as

Asv =
∞

∑
k=1

λ
s
k (v,ek)ek, D(As) =

{
v ∈ H : ‖Asv‖2 =

∞

∑
k=1

λ
2s
k (v,ek)

2 < ∞

}
and spaces Ḣβ =D(Aβ/2) with norms ‖v‖β = ‖Aβ/2v‖. It is classical that if 0≤ β <

1/2, then Ḣβ = Hβ and if 1/2 < β ≤ 2, then Ḣβ = {u ∈Hβ : u|∂D = 0}, where Hβ

denotes the standard Sobolev space of order β . We also use the spaces L2(Ω , Ḣβ )

with the mean square norms ‖v‖L2(Ω ,Ḣβ ) =
(
E[‖v‖2

β
]
) 1

2 .
We assume for some β ≥ 0 that

‖A
β−1

2 Q
1
2 ‖HS < ∞, u0 ∈ L2(Ω , Ḣβ ). (3)

Here Q is the covariance operator of W and ‖·‖HS denotes the Hilbert-Schmidt norm.
The Hilbert-Schmidt condition in (3) can be viewed as a regularity assumption on
the covariance operator Q. In particular, it holds with β = 1 if Q is a trace class oper-
ator and with β < 1/2 if Q = I and d = 1. More generally, it holds if ∑

∞
k=1 λ

−α

k < ∞

(thus α > d/2) and Aβ+α−1Q is a bounded linear operator on H (see, for example,
[12, Theorem 2.1]).

It is known ([9], [10, Lemma 3.1]) that if (2) and (3) hold, then (1) has a unique
mild solution, which is defined to be the solution of the fixed point equation

u(t) = e−tAu0 +
∫ t

0
e−(t−s)A f (u(s))ds+

∫ t

0
e−(t−s)A dW (s). (4)

This naturally splits the solution as u = v+w, where w is a stochastic convolution,
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w(t) =
∫ t

0
e−(t−s)A dW (s), (5)

which is the solution of

dw+Awdt = dW, 0 < t ≤ T ; w(0) = 0, (6)

and v is the solution of the random evolution equation

v̇+Av = f (v+w), 0 < t ≤ T ; v(0) = u0. (7)

Our approach will be to first compute w and then to insert it into (7) which we
then solve for v. Finally, u = v + w. For the numerical solution we use Rothe’s
method, where we first discretize with respect to time and then discretize the re-
sulting elliptic problems with wavelet methods.

Thus, we fix a time step τ > 0, set tn := nτ with tN = T , and consider a backward
Euler discretization of (1). With un ≈ u(tn) and increments ∆W n =W (tn)−W (tn−1)
this reads

un + τAun = un−1 + τ f (un)+∆W n, 1≤ n≤ N; u0 = u0. (8)

Then we decompose un = vn +wn to get time-discrete versions of (6) and (7):

wn + τAwn = wn−1 +∆W n, 1≤ n≤ N; w0 = 0, (9a)

vn + τAvn = vn−1 + τ f (vn +wn), 1≤ n≤ N; v0 = u0. (9b)

This allows us to solve the linear problem (9a) first and use the result as an input for
the nonlinear problem (9b). Moreover, the stochastic influence in (9b) is smoother
than in (9a), which allows us to use fast nonlinear solvers.

We consider now the spatial discretization of (9). To this end, let SJ be a mul-
tiresolution space of order m (see (26) for the definition) and let {wn

J}N
n=0 ⊂ SJ be

the corresponding Galerkin approximation of {wn}N
n=0, i.e.,

wn
J + τAJwn

J = wn−1
J +PJ∆W n, 1≤ n≤ N; w0

J = 0. (10)

We refer to Sect. 3 for further details. We enter this approximation instead of wn into
(9b). The corresponding equation reads

v̄n + τAv̄n = v̄n−1 + τ f (v̄n +wn
J), 1≤ n≤ N; v̄0 = u0. (11)

For each ω ∈ Ω and for each n ≥ 1 the nonlinear equation in (11) is solved by
an adaptive wavelet algorithm to yield an approximate solution vn

ε with tolerance
εn. Note that we use the same tolerance for each ω . More precisely, denoting v̄n =
En(v̄n−1), where En = (I + τA− τ f (·+wn

J))
−1 is the nonlinear one-step operator

from (11), we assume that vn
ε = Ẽn(vn−1

ε ), where Ẽn is an approximation of En such
that
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‖En(v)− Ẽn(v)‖ ≤ εn, 1≤ n≤ N, v ∈ H. (12)

The output of the computation will then be the sequence

un
ε = vn

ε +wn
J , 0≤ n≤ N. (13)

The total error is un
ε −u(tn) = (vn

ε − v̄n)+(v̄n− vn)+(wn
J −wn)+(un−u(tn)). The

contributions are bounded as follows, where the constants C depend on ‖u0‖L2(Ω ,Ḣβ ),

‖A
β−1

2 Q
1
2 ‖HS, and T , referring to assumption (3). We also assume τL f <

1
2 .

First, in Sect. 2.1, an adaptive wavelet algorithm is described which realizes (12).
In Theorem 2.4, we also analyze the computational effort of the algorithm applied
to (11). We conclude the section by showing that

max
0≤tn≤T

‖vn
ε − v̄n‖L2(Ω ,H) ≤C

N

∑
n=1

εn. (14)

The multiresolution approximation of the time-discrete stochastic convolution is
studied in Sect. 3 and Theorem 3.3 shows that

max
0≤tn≤T

‖wn
J−wn‖L2(Ω ,H) ≤C 2−J min(β ,m). (15)

In Sect. 4, Theorem 4.5, we study the time-discretization error and prove that

max
0≤tn≤T

‖un−u(tn)‖L2(Ω ,H) ≤C τ
β

2 , if 0≤ β < 1. (16)

Finally, in Sect. 5, we analyze the perturbation of the nonlinear term and obtain
that

max
0≤tn≤T

‖v̄n− vn‖L2(Ω ,H) ≤C max
0≤tn≤T

‖wn
J−wn‖L2(Ω ,H). (17)

Therefore, our main result is the following.

Theorem 1.1. Assume (3) for some β ≥ 0. Let {wn
J}N

n=0 ⊂ SJ be computed by a
multiresolution Galerkin method of order m and {vn

ε}N
n=0 by an adaptive wavelet

method with tolerances εn. Then for 0≤ β < 1, the total error in (13) is bounded by

max
0≤tn≤T

‖un
ε −u(tn)‖L2(Ω ,H) ≤C τ

β

2 +C 2−J min(β ,m)+C
N

∑
n=1

εn,

for τL f <
1
2 , where C =C(‖u0‖L2(Ω ,Ḣβ ),‖A

β−1
2 Q

1
2 ‖HS,T ). If β ≥ 1, then first term

is replaced by Cδ τ
1
2−δ , for any δ > 0.

The literature on numerics for nonlinear stochastic parabolic problems is now
rather large. We mention, for example, [15] on pure time-discretization and [13, 18]
on complete discretization based on the method of lines, where the spatial discretiza-
tion is first performed by finite elements and the resulting finite-dimensional evolu-



On Wavelet-Galerkin Methods for Semilinear Parabolic Equations with Additive Noise 5

tion problem is then discretized. Wavelets have been used in [11] where the spatial
approximation (without adaptivity) of stochastic convolutions were considered.

Our present paper is a first attempt towards spatial adaptivity by using Rothe’s
method together with known adaptive wavelet methods for solving the resulting
nonlinear elliptic problems.

The spatial Besov regularity of solutions of stochastic PDEs is investigated in
[2, 3]. The comparison of the Sobolev and Besov regularity is indicative of whether
adaptivity is advantageous. For problems on domains with smooth or convex polyg-
onal boundary with boundary adapted additive noise (that is, (3) holds for β high
enough), where the solution can be split as u = v+w, we expect that the adaptivity
is not needed for the stochastic convolution w, which then has sufficient Sobolev
regularity. We therefore apply it only to the random evolution problem (7). Once the
domain is not convex, or the boundary is not regular, or the noise is not boundary
adapted, adaptivity might pay off also for the solution of the linear problem (9a).

The recent paper [1] is a first attempt for a more complete error analysis of
Rothe’s method for both deterministic and stochastic evolution problems. The over-
lap with our present work is not not too large, since we take advantage of special
features of equations with additive noise.

2 Wavelet approximation

In this section, we collect the notation and the main properties of wavelets that will
be needed in the sequel. We refer to [4, 8, 17] for more details on wavelet methods
for PDEs. For the space discretization, let

Ψ = {ψλ : λ ∈J Ψ}, Ψ̃ = {ψ̃λ : λ ∈J Ψ}

be a biorthogonal basis of H, i.e., in particular (ψλ , ψ̃µ)H = δδ ,µ . Here, λ typically
is an index vector λ = ( j,k) containing both the information on the level j = |λ |
and the location in space k (e.g., the center of the support of ψλ ). Note that Ψ also
contains the scaling functions on the coarsest level that are not wavelets. We will
refer to |λ |= 0 as the level of the scaling functions.

In addition, we assume that ψλ ∈ V , which is an assumption on the regularity
(and boundary conditions) of the primal wavelets. To be precise, we pose the fol-
lowing assumptions on the wavelet bases:

1. Regularity: ψλ ∈ Ht(D), λ ∈J Ψ for all 0≤ t < sΨ ;
2. Vanishing moments: ((·)r,ψλ )0;D = 0, 0≤ r < mΨ , |λ |> 0.
3. Locality: diam(suppψΛ )∼ 2−|λ |.

We assume the same properties for the dual wavelet basis with sΨ and mΨ replaced
by s̃Ψ and m̃Ψ . Note that the dual wavelet ψ̃λ does not need to be in V , typically one
expects ψ̃λ ∈V ′.

We will consider (often finite-dimensional) subspaces generated by (adaptively
generated finite) sets of indices Λ ⊂J Ψ and
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ΨΛ := {ψλ : λ ∈Λ}, SΛ := closspan(ΨΛ ),

where the closure is of course not needed if Λ is a finite set. If Λ = ΛJ := {λ ∈
J Ψ : |λ | ≤ J−1}, then SJ := SΛJ contains all wavelets up to level J−1 so that SJ
coincides with the multiresolution space generated by all scaling functions on level
J, i.e.,

SJ = spanΦJ , ΦJ = {ϕJ,k : k ∈IJ}, (18)

where IJ is an appropriate index set.

2.1 Adaptive wavelet methods for nonlinear variational problems

In this section, we quote from [7] the main facts on adaptive wavelet methods for
solving stationary nonlinear variational problems. Note, that all what is said in this
section is taken from [7]. However, we abandon further reference for easier reading.

Let F : V → V ′ be a nonlinear map. We consider the problem of finding u ∈ V
such that

〈v,R(u)〉 := 〈v,F(u)−g〉= 0, v ∈V, (19)

where g ∈ V ′ is given. As an example, let F be given as 〈v,F(u)〉 := a(v,u) +
〈v, f (u)〉 which covers (11). The main idea is to consider an equivalent formula-
tion of (19) in terms of the wavelet coefficients u of the unknown solution u = uTΨ .
Setting

R(v) := (〈ψλ ,R(v)〉)λ∈JΨ , v = vT
Ψ ,

the equivalent formulation amounts to finding u ∈ `2(J
Ψ ) such that

R(v) = 0. (20)

The next ingredient is a basic iteration in the (infinite-dimensional) space `2(J
Ψ )

and replacing the infinite operator applications in an adaptive way by finite approx-
imations in order to obtain a computable version. Starting by some finite u(0), the
iteration reads

u(n+1) = u(n)−∆u(n), ∆u(n) := B(n)R(u(n)) (21)

where the operator B(n) is to be chosen and determines the nonlinear solution
method (such as Richardson or Newton). The sequence ∆u(n) = B(n)R(u(n)) (pos-
sibly infinite even for finite input u(n)) is then replaced by some finite sequence
w(n)

η := RES[ηn,B(n),R,u(n)] such that

‖∆u(n)−w(n)
η ‖ ≤ ηn.
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Replacing ∆u(n) by w(n)
η in (21) and choosing the sequence of tolerances (ηn)n∈N0

appropriately results in a convergent algorithm such that any tolerance ε is reached
after finitely many steps. We set ū(ε) := SOLVE[ε,R,B(n),u(0)] such that we get
‖u− ū(ε)|| ≤ ε .

In terms of optimality, there are several issues to be considered:

• How many iterations n(ε) are required in order to achieve ε-accuracy?
• How many “active” coefficients are needed to represent the numerical approxi-

mation and how does that compare with a “best” approximation?
• How many operations (arithmetic, storage) and how much storage is required?

In order to quantify that, one considers so-called approximation classes

A s := {v ∈ `2(J
Ψ ) : σN(v). N−s}

of all those sequences whose error of best N-term approximation

σN(v) := min{‖v−w‖`2 : # suppw≤ N}

decays at a certain rate (suppv := {λ ∈J Ψ : vλ 6= 0}, v = (vλ )λ∈JΨ ).
Let us first consider the case where F = A is a linear elliptic partial differential

operator, i.e., Au = g ∈ V ′, where A : V → V ′, g ∈ V ′ is given and u ∈ V is to be
determined. For the discretization we use a wavelet basis Ψ in H where rescaled
versions admit Riesz bases in V and V ′, respectively. Then, the operator equation
can equivalently be written as

Au = g ∈ `2(J
Ψ ),

where A := D−1a(Ψ ,Ψ)D−1, g := D−1(g,Ψ) and u := D(uλ )λ∈JΨ , with uλ being
the wavelet coefficients of the unknown function u∈V , ‖u‖V ∼‖u‖`2(JΨ ). Wavelet
preconditioning results in the fact that κ2(A)< ∞, [5].

The (biinfinite) matrix A is said to be s∗-compressible, A ∈ Cs∗ , if for any 0 <
s < s∗ and every j ∈ N there exists a matrix A j with the following properties: For
some summable sequence (α j) j∈N, the matrix A j is obtained by replacing all but
the order of α j2 j entries per row and column in A by zero and satisfies

‖A−A j‖ ≤Cα j2− js, j ∈ N.

Wavelet representations of differential (and certain integral) operators fall into this
category. Typically, s∗ depends on the regularity and the order of vanishing moments
of the wavelets. Then, one can construct a linear counterpart RESlin of RES such
that wη := RESlin[η ,A,g,v] for finite input v satisfies

‖wη − (Av−g)‖`2 ≤ η , (22a)
‖wη‖A s . (‖v‖A s +‖u‖A s), (22b)

#suppwη . η
−1/s(‖v‖1/s

A s +‖u‖1/s
A s), (22c)
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where the constants in (22b), (22c) depend only on s. Here, we have used the quasi-
norm

‖v‖A s := sup
N∈N

Ns
σN(v).

This is the main ingredient for proving optimality of the scheme in the following
sense.

Theorem 2.1 ([5, 7]). If A ∈ Cs∗ and if the exact solution u of Au = g satifies u ∈
A s, s < s∗, then ū(ε) = SOLVElin[ε] satisfies

‖u− ū(ε)‖ ≤ ε, (23a)

#supp ū(ε). ε
−1/s, (23b)

computational complexity∼ #supp ū(ε). (23c)

It turns out that most of what is said before also holds for the nonlinear case ex-
cept that the analysis of the approximate evaluation of nonlinear expressions R(v)
poses a constraint on the structure of the active coefficients, namely that it has
tree structure. In order to define this, one uses the notation µ ≺ λ , λ ,µ ∈J Ψ

to express that µ is a descendant of λ . We explain this in the univariate case with
ψλ = ψ j,k = 2 j/2ψ(2 j ·−k). Then, the children of λ = ( j,k) are, as one would also
intuitively define, µ = ( j+1,2k) and ν = ( j+1,2k+1). The descendants of λ are
its children, the children of its children and so on. In higher dimensions and even on
more complex domains this can also be defined – with some more technical effort,
however.

Then, a set T ⊂J Ψ is called a tree if λ ∈ T implies µ ∈ T for all µ ∈J Ψ

with λ ≺ µ . Given this, the error of the best N-term tree approximation is given as

σ
tree
N (v) := min{‖v−w‖`2 : T := # suppw is a tree and #T ≤ N}

and define the tree approximation space as

A s
tree := {v ∈ `2(J

Ψ ) : σ
tree
N (v). N−s}

which is a quasi-normed space under the quasi-norm

‖v‖A s
tree

:= sup
N∈N

Ns
σ

tree
N (v).

Remark 2.2. For the case V = Ht (or, a closed subspace of Ht ) it is known that
the solution being in some Besov space u ∈ Bt+ds

q (Lq), q = (s+ 1
2 )
−1, implies that

u ∈A r
tree, for r < s, see [6, Remark 2.3].

The extension of the s∗-compressibility Cs∗ is the s∗-sparsity of the scheme RES
which is defined by the following property: If the exact solution u of (20) is in A s

tree
for some s < s∗, then wη := RES[η ,B,R,v] for finite v satisfies
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‖wη‖A s
tree
≤C(‖v‖A s

tree
+‖u‖A s

tree
+1),

#suppwη ≤Cη
−1/s(‖v‖1/s

A s
tree

+‖u‖1/s
A s

tree
+1),

comp. complexity∼C(η−1/s(‖v‖1/s
A s

tree
+‖u‖1/s

A s
tree

+1)+#T (suppv)),

where C depends only on s when s→ s∗ and T (suppv) denotes the smallest tree
containing suppv. Now, we are ready to collect the main result.

Theorem 2.3 ([7, Theorem 6.1]). If RES is s∗-sparse, s∗ > 0 and if u ∈ A s
tree for

some s < s∗, then the approximations ū(ε) satisfy ‖u−u(ε)‖ ≤ ε with

#supp ū(ε)≤C ε
−1/s‖u‖1/s

A s
tree
, ‖ū(ε)‖A s

tree
≤C‖u‖A s

tree
,

where C depends only on s when s→ s∗. The number of operations is bounded by
Cε−1/s‖u‖1/s

A s
tree

.

We remark that since the wavelet transform is of linear complexity the overall num-
ber of operations needed is the one mentioned in Theorem 2.3.

Next we show that the wavelet coefficients v̄n of the solution of (11) belong to a
certain approximation class A s

tree and hence, in view of Theorem 2.3, we obtain an
estimate on the support of v̄n

ε and the number of operations required to compute it.

Theorem 2.4. The wavelet coefficients v̄n of the solution of (11) belong to A s
tree for

all s < 1
2d−2 , where d ≥ 2 is the spatial dimension of D .

Proof. It follows from [1, Lemma 5.15] that r(τA) ∈ L (L2(D),Br
q(Lq)) for r =

3d−2+4ε

2d−2+4ε
, where 1/q = (r−1)/d+1/2 and ε > 0. Thus, the statement follows from

Remark 2.2 noting that t = 1 and hence r = 1+ds.

We end this section by showing (14); that is, the overall error after n steps, when in
every step (11) is solved approximately up to an error tolerance εn using the adaptive
wavelet algorithm described above. Define

En
j = En ◦ · · · ◦E j+1, En

n = I; 0≤ j < n≤ N,

and similarly Ẽn
j . Then we have

vn
ε − v̄n = Ẽn

0 (u0)−En
0 (u0)

=
n−1

∑
j=0

(
En

j+1(Ẽ
j+1
0 (u0))−En

j (Ẽ
j
0(u0))

)
=

n−1

∑
j=0

(
En

j+1(Ẽ
j+1
j (Ẽ j

0(u0)))−En
j+1(E

j+1
j (Ẽ j

0(u0)))
)

=
n−1

∑
j=0

(
En

j+1(Ẽ j+1(v
j
ε))−En

j+1(E j+1(v
j
ε))
)
.
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A simple argument shows that the Lipschitz constant of En is bounded by (1−
τL f )

−1 ≤ ecτL f for some c > 0, if τL f ≤ 1
2 , cf. the proof of Lemma 5.1. Hence En

j+1

has a Lipschitz constant bounded by ec(tn−t j+1) ≤ ectN . Thus, using (12), we obtain

‖vn
ε − v̄n‖ ≤

n−1

∑
j=0

ec(tn−t j+1)‖Ẽ j+1(v
j
ε)−E j+1(v

j
ε)‖ ≤

n

∑
j=1

ec(tn−t j)ε j ≤ ectN
n

∑
j=1

ε j.

After taking a mean square we obtain (14).

3 Error analysis for the stochastic convolution

Let SJ = SΛJ be a multiresolution space (18). The multiresolution Galerkin approx-
imation of the equation Au = f in V ′ is to find uJ ∈ SJ such that

a(uJ ,vJ) = ( f ,vJ) ∀v ∈ SJ . (24)

Define the orthogonal projector PJ : H→ SJ by

(PJv,wJ) = (v,wJ), v ∈ H, wJ ∈ SJ . (25)

Note that PJ can be extended to V ′ by (25) since SJ ⊂V . Next, we define the operator
AJ : SJ → SJ by

a(AJvJ ,wJ) = a(vJ ,wJ), uJ ,vJ ∈ SJ .

Then (24) reads AJuJ = PJ f in SJ . Alternatively we may write uJ = RJu, where
RJ : V → SJ is the Ritz projector, defined by

a(RJv,wJ) = a(v,wJ), v ∈V, wJ ∈ SJ .

The multiresolution space is of order m if

inf
wJ∈SJ

‖v−wJ‖ . 2−mJ‖v‖m;D , v ∈ Hm(D)∩V. (26)

Standard arguments then show, using elliptic regularity thanks to our assumptions
on D , that ‖uJ−u‖ . 2−mJ‖u‖m;D , or in other words

‖v−RJv‖ . 2−mJ‖v‖m;D , v ∈ Hm(D)∩V. (27)

The next lemma is of independent interest and we state it in a general form.

Lemma 3.1. Let −A and −B generate strongly continuous semigroups e−tA and
e−tB on a Banach space X and let r(s) = (1+ s)−1. Then, for all x,y ∈ X, N ∈ N,
τ > 0,
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τ

N

∑
n=1
‖rn(τB)y− rn(τA)x‖p ≤

∫
∞

0
‖e−tBy− e−tAx‖p dt, 1≤ p < ∞, (28)

‖rn(τB)y− rn(τA)x‖ ≤ sup
t≥0
‖e−tBy− e−tAx‖. (29)

Proof. By the Hille-Phillips functional calculus, we have

rn(τB)y− rn(τA)x =
∫

∞

0
(e−tτBy− e−tτAx) fn(t)dt, (30)

where fn denotes the nth convolution power of f (t) = e−t . Since ‖ fn‖L1(R+) = 1
inequality (29) follows immediately by Hölder’s inequality. To see (28) we note that
fn is a probability density and hence by Jensen’s inequality and (30),

τ

N

∑
n=1
‖rn(τB)y− rn(τA)x‖p = τ

N

∑
n=1

∥∥∥∫ ∞

0
(e−tτBy− e−tτAx) fn(t)dt

∥∥∥p

≤ τ

N

∑
n=1

∫
∞

0
‖e−tτBy− e−tτAx‖p fn(t)dt

=
∫

∞

0
‖e−tBy− e−tAx‖p dt sup

t>0

∞

∑
n=1

fn(t).

Finally, by monotone convergence, the Laplace transform of ∑
∞
n=1 fn is given by( ∞

∑
n=1

fn

)ˆ
(λ ) =

∞

∑
n=1

f̂n(λ ) =
∞

∑
n=1

( 1
1+λ

)n
=

1
λ
, λ > 0.

Thus, ∑
∞
n=1 fn ≡ 1 and the proof is complete.

Next we derive an error estimate for the multiresolution approximation of the
semigroup e−tA and its Euler approximation rn(τA).

Lemma 3.2. Let SJ be a multiresolution space of order m and let A, AJ , and PJ be
as above. Then, for T ≥ 0, N ≥ 1, τ , we have(∫ T

0
‖e−tAJ PJv− e−tAv‖2 dt

) 1
2 ≤C2−Jβ‖v‖β−1, 0≤ β ≤ m, (31)

and (
τ

N

∑
n=1
‖rn(τAJ)PJv− rn(τA)v‖2

) 1
2 ≤C2−Jβ‖v‖β−1, 0≤ β ≤ m. (32)

Proof. Estimate (31) is known in the finite element context, see for example [16,
Theorem 2.5], and may be proved in a completely analogous fashion for using the
approximation property (27) of the Ritz projection RJ , the parabolic smoothing (35),
and interpolation. Finally, (32) follows from (31) by using Lemma 3.1 with x = v,
y = PJv, and B = AJ . (Note that C is independent of T .)
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Now we are ready to consider the multiresolution approximation of wn in (9a).

Theorem 3.3. Let SJ be a multiresolution space of order m and w and wn
J the solu-

tions of (9a) and (10). If ‖A
β−1

2 Q
1
2 ‖HS < ∞ for some 0≤ β ≤ m, then

(E[‖wn
J−wn‖2])

1
2 ≤C2−Jβ‖A

β−1
2 Q

1
2 ‖HS.

Proof. Let tk = kτ , k = 0, ...,n. By (10), (9a), and induction,

wn
J−wn =

n

∑
k=1

∫ tk

tk−1

[
rn−k+1(τAJ)PJ− rn−k+1(τA)

]
dW (s),

whence, by Itô’s isometry, we get

E[‖wn
J−wn‖2] =

n

∑
k=1

∫ tk

tk−1

∥∥[rn−k+1(τAJ)PJ− rn−k+1(τA)
]
Q

1
2
∥∥2

HS ds

=
n

∑
k=1

τ
∥∥[rk(τAJ)PJ− rk(τA)

]
Q

1
2
∥∥2

HS.

Let {el}∞
l=1 be an orthonormal basis of H. Then, using Lemma 3.2, we obtain

E[‖wn
J−wn‖2] =

∞

∑
l=1

n

∑
k=1

τ‖[rk(τAJ)PJ− rk(τA)]Q
1
2 el‖2

≤C
∞

∑
l=1

2−2Jβ‖Q
1
2 el‖2

β−1 =C2−2Jβ‖A
β−1

2 Q
1
2 ‖2

HS.

4 Pure time discretization

In the proofs below we will often make use of the following well-known facts about
the analytic semigroup e−tA, namely

‖Aα e−tA‖ ≤Ct−α , α ≥ 0, t > 0, (33)

‖(e−tA− I)A−α‖ ≤Ctα , 0≤ α ≤ 1, t ≥ 0, (34)

for some C = C(α), see, for example, [14, Chapter II, Theorem 6.4]. Also, by a
simple energy argument we may prove∫ t

0
‖A

1
2 e−sAv‖2 ds≤ 1

2
‖v‖2, v ∈ H, t ≥ 0. (35)

We quote the following existence, uniqueness and stability result from [10, Lemma
3.1]. For the mild, and other solution concepts we refer to [9, Chapters 6 and 7].
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Lemma 4.1. If ‖A
β−1

2 Q
1
2 ‖HS < ∞ for some β ≥ 0, u0 ∈ L2(Ω ,H), and (2) holds,

then there is a unique mild solution {u(t)}t≥0 of (1) with supt∈[0,T ]E‖u(t)‖2 ≤ K,
where K = K(u0,T,L f ).

Concerning the temporal regularity of the stochastic convolution we have the
following theorem.

Theorem 4.2. Let ‖A−η Q
1
2 ‖HS < ∞ for some η ∈ [0, 1

2 ]. Then the stochastic convo-
lution w(t) :=

∫ t
0 e−(t−σ)A dW (σ) is mean square Hölder continuous on [0,∞) with

Hölder constant C =C(η) and Hölder exponent 1
2 −η , i.e.,

(
E‖w(t)−w(s)‖2) 1

2 ≤C|t− s|
1
2−η , t,s≥ 0.

Proof. For η = 1
2 the result follows from Lemma 4.1. Let η ∈ [0, 1

2 ) and, without
loss of generality, let s < t. By independence of the increments of W ,

E‖w(t)−w(s)‖2 = E
∥∥∥∫ t

s
e−(t−σ)A dW (σ)

∥∥2

+E
∥∥∥∫ s

0
e−(t−σ)A− e−(s−σ)A dW (σ)

∥∥2
= I1 + I2.

From Itô’s isometry and (33) it follows that

I1 = E
∥∥∥∫ t

s
Aη e−(t−σ)AA−η dW (σ)

∥∥2
=
∫ t

s
‖Aη e−(t−σ)AA−η Q

1
2 ‖2

HS dσ

≤C
∫ t

s
(t−σ)−2η‖A−η Q

1
2 ‖2

HS dσ ≤ C
1−2η

(t− s)1−2η‖A−η Q
1
2 ‖2

HS.

Finally, let {ek}∞
k=1 be an orthonormal basis of H. Then, by (34) and (35),

I2 =
∫ s

0
‖(e−(t−σ)A− e−(s−σ)A)Q

1
2 ‖2

HS dσ

=
∞

∑
k=1

∫ s

0
‖(e−(t−s)A− I)A−(

1
2−η)A

1
2−η e−(s−σ)AQ

1
2 ek‖2 dσ

≤C(t− s)1−2η
∞

∑
k=1

∫ s

0
‖A

1
2 e−(s−σ)AA−η Q

1
2 ek‖2 dσ

≤C(t− s)1−2η
∞

∑
k=1
‖A−η Q

1
2 ek‖=C(t− s)1−2η‖A−η Q

1
2 ‖2

HS.

(36)

The next result shows that the time regularity of w transfers to the solution of the
semilinear problem.

Theorem 4.3. If u0 ∈ L2(Ω , Ḣβ ) and ‖A
β−1

2 Q
1
2 ‖HS < ∞ for some 0 ≤ β < 1, then

there is C =C(T,u0,β ) such that the mild solution u of (1) satisfies(
E‖u(t)−u(s)‖2) 1

2 ≤C|t− s|
β

2 , t,s ∈ [0,T ].
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Proof. Let T > 0 and 0≤ s < t ≤ T . Then, by (4),

u(t)−u(s) = (e−tA− e−sA)u0 +
∫ t

s
e−(t−r)A f (u(r))dr

+
∫ s

0
(e−(t−r)A− e−(s−r)A) f (u(r))dr+w(t)−w(s).

In a standard way, for 0≤ β ≤ 2, we have E‖(e−tA−e−sA)u0‖2 ≤C|t− s|βE‖u0‖2
β
.

Using that f is Lipschitz and hence ‖ f (u)‖ ≤C(1+‖u‖), the norm boundedness of
the semigroup e−tA, and Lemma 4.1, we have that

E
∥∥∥∫ t

s
e−(t−r)A f (u(r))dr

∥∥∥2
≤C|t− s|2

(
1+ sup

r∈[0,T ]
E‖u(r)‖2

)
≤C|t− s|2.

For 0≤ β < 1, by Lemma 4.1, (33) and (34), it follows that

E
∥∥∥∫ s

0
(e−(t−r)A− e−(s−r)A) f (u(r))dr

∥∥∥2

≤ sE
∫ s

0
‖(e−(t−r)A− e−(s−r)A) f (u(r))‖2 dr

≤Cs
(

1+ sup
r∈[0,T ]

E‖u(r)‖2
)∫ s

0
‖e−(t−r)A− e−(s−r)A‖2 dr

≤Cs
∫ s

0
‖A

β

2 e−(s−r)A(e−(t−s)A− I)A−
β

2 ‖2 dr ≤C|t− s|β s2−β ≤C|t− s|β .

Finally, by Theorem 4.2 with η = −β−1
2 , we have E‖w(t)−w(s)‖2 ≤ C|t − s|β ,

which finishes the proof.

In order to analyze the order of the backward Euler time-stepping (8) we quote the
following deterministic error estimates, where r(τA) = (I + τA)−1.

Lemma 4.4. The following error estimates hold for tn = nτ > 0.

‖[e−nτA− rn(τA)]v‖ ≤Cτ
β

2 ‖v‖β , 0≤ β ≤ 2, (37)

‖[e−nτA− rn(τA)]v‖ ≤Cτt−1
n ‖v‖, (38)

n

∑
k=1

τ

∥∥∥[rk(τA)− e−kτA]v
∥∥∥2
≤Cτ

β‖v‖2
β−1, 0≤ β ≤ 2. (39)

Proof. Estimates (37) and (38) are shown in, for example, [16, Chapter 7]. Estimate
(39) can be proved in a similar way as (2.17) in [18, Lemma 2.8].

Theorem 4.5. If u0 ∈ L2(Ω , Ḣβ ) and ‖A
β−1

2 Q
1
2 ‖HS < ∞ for some 0 ≤ β < 1, then

there is C = C(T,u0,β ) such that for 0 < τ < 1
2L f

, the solutions u of (4) and un of
(8) satisfy

(E‖u(tn)−un‖2)
1
2 ≤Cτ

β/2, tn = nτ ∈ [0,T ].
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Proof. We have, with en := u(tn)−un,

en = [e−tnA− rn(τA)]u0 +
n

∑
k=1

∫ tk

tk−1

[e−(tn−s)A− rn−k+1(τA)]dW (s)

+
n

∑
k=1

∫ tk

tk−1

e−(tn−s)A f (u(s))− rn−k+1(τA) f (uk)ds = e1 + e2 + e3.

The error e1 is easily bounded, using (37), as

E‖e1‖2 ≤Cτ
βE‖u0‖2

β
, 0≤ β ≤ 2.

The contribution of e2 is the linear stochastic error. First, we decompose e2 as

e2 =
n

∑
k=1

∫ tk

tk−1

[e−tn−k+1A− rn−k+1(τA)]dW (s)

+
n

∑
k=1

∫ tk

tk−1

[e−(tn−s)A− e−tn−k+1A]dW (s) = e21 + e22.

Let { fl}∞
l=1 be an ONB of H. By Itô’s isometry, the independence of the increments

of W and (39),

E‖e21‖2 =
n

∑
k=1

τ‖[rk(τA)− e−kτA]Q
1
2 ‖2

HS ≤=
∞

∑
l=1

n

∑
k=1

τ‖[rk(τA)− e−kτA]Q
1
2 fl‖2

≤C
∞

∑
l=1

τ
β‖Q

1
2 fl‖2

β−1 =Cτ
β‖A

β−1
2 Q

1
2 ‖2

HS, 0≤ β ≤ 2.

The term e22 can be bounded using a similar argument as in (36) by

E‖e22‖2 ≤Cτ
β‖A

β−1
2 Q

1
2 ‖2

HS, 0≤ β ≤ 2.

Next, we can further decompose e3 as

e3 =
n

∑
k=1

∫ tk

tk−1

rn−k+1(τA)[ f (u(tk))− f (uk)]ds

+
n

∑
k=1

∫ tk

tk−1

[e−tn−k+1A− rn−k+1(τA)] f (u(tk))ds

+
n

∑
k=1

∫ tk

tk−1

e−tn−k+1A[ f (u(s))− f (u(tk))]ds

+
n

∑
k=1

∫ tk

tk−1

[e−(tn−s)A− e−tn−k+1A] f (u(s))ds = e31 + e32 + e33 + e34.

By the stability of rn(τA) and the Lipschitz condition on f , we have
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E‖e31‖2 ≤ 2L2
f τ

2E‖en‖2 +2L2
f τ

2n
n−1

∑
k=1

E‖ek‖2 ≤ 2L2
f τ

2E‖en‖2 +Cτ

n−1

∑
k=1

E‖ek‖2.

By (38) and Lemma 4.1, with τt−1
n−k+1 = (n− k+1)−1 = l−1,

E‖e32‖2 ≤CE
( n

∑
k=1

ττt−1
n−k+1‖ f (u(tk))‖

)2
≤Cτ

2
n

∑
l=1

1
l2

n

∑
k=1

E‖ f (u(tk))‖2

≤Cτ
2

n

∑
k=1

(1+E‖u(tk)‖2)≤Cτtn ≤Cτ.

Furthermore, by Theorem 4.3,

E‖e33‖2 ≤ tn
n

∑
k=1

∫ tk

tk−1

E‖ f (u(s))− f (u(tk))‖2 ds≤Ct2
n τ

β ≤Cτ
β , 0≤ β < 1.

To estimate e34 we have, using again that tn−k+1 = tn− tk−1 and Lemma 4.1,

E‖e34‖2 = E
( n

∑
k=1

∫ tk

tk−1

‖[A
β

2 e−(tn−s)A(I− e−(s−tk−1)A)]A−
β

2 f (u(s))‖ds
)2

≤Ctn
n

∑
k=1

∫ tk

tk−1

(tn− s)−β
τ

βE‖ f (u(s))‖2 ds≤Cτ
β , 0≤ β < 1.

Putting the pieces together, we have

E‖en‖2 ≤Cτ
β +2L2

f τ
2E‖en‖2 +Cτ

n−1

∑
k=1

E‖ek‖2, 0≤ β < 1.

Finally, if τ < 1
2L f

, then by the discrete Gronwall lemma,

E‖en‖2 ≤Cτ
β eCtn ≤Cτ

β , 0≤ β < 1,

and the theorem is established.

5 Error analysis for the nonlinear random problem

In this section we bound the term E
[
‖v̄n−vn‖2

]
in (17). We use the global Lipschitz

condition (2).

Lemma 5.1. Assume that τL f ≤ 1
2 . Then, with C = 2L f Te2L f T ,

max
1≤n≤N

(
E
[
‖v̄n− vn‖2]) 1

2 ≤C max
1≤n≤N

(
E
[
‖wn

J−wn‖2]) 1
2
.
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Proof. Let en := v̄n− vn. Then, we have by (9b) and (11)

en + τAen = τ
(

f (v̄n +wn
J)− f (vn +wn)

)
+ en−1.

Since e0 = 0, we get by induction

en = τ

n

∑
j=1

(I + τA)−(n+1− j)( f (v̄ j +w j
J)− f (v j +w j)

)
.

In view of the global Lipschitz condition (2), this results in the estimate

‖en‖ ≤ L f τ

n

∑
j=1
‖(I + τA)−(n+1− j)‖‖v̄ j +w j

J− v j−w j‖

≤ L f τ

n

∑
j=1

(
‖w j

J−w j‖+‖e j‖
)
,

since ‖(I + τA)−1‖ ≤ 1. Thus, we obtain

‖en‖ ≤ (1−L f τ)−1L f τ

( n

∑
j=1
‖w j

J−w j‖+
n−1

∑
j=1
‖e j‖

)
.

With L f τ ≤ 1
2 we complete the proof by the standard discrete Gronwall lemma.
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11. Kovács, M., Lindgren, F., Larsson, S.: Spatial approximation of stochastic convolutions. J.
Comput. Appl. Math. 235, 3554–3570 (2011).
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