A TRIGONOMETRIC METHOD FOR THE LINEAR STOCHASTIC WAVE
EQUATION
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Abstract. A fully discrete approximation of the linear stochastic wasquation driven by additive noise is
presented. A standard finite element method is used for thgabpliscretisation and a stochastic trigonometric
scheme for the temporal approximation. This explicit timeegrator allows for error bounds independent of the
space discretisation and thus do not have a step size tiestrds in the often used Stormer-Verlet-leap-frog scheme
Moreover it enjoys a trace formula as does the exact solufoour problem. These favourable properties are
demonstrated with numerical experiments.
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1. Introduction. We consider the numerical discretisation of the linearlsastic wave
equation with additive noise

du— Audt = dw in 2 x (0,),
u=0 ind% x (0,), (1.1)
u(-,0) = up, U(-,0) =vo in 2,

whereu = u(x,t), 2 c RY, d = 1,2, 3, is a bounded convex domain with polygonal boundary
02, and the dot * stands for the time derivative. The stochastic proc@¥§t)}i~o is an
Lo(2)-valued Q-Wiener process with respect to a normal filtratipé#: }1~o on a filtered
probability spacéQ,.7 P, {% }1>0). The initial dataup andvgp are.%p,-measurable random
variables. We will numerically solve this problem with a fenelement method in space [18]
and a stochastic trigonometric method in tirne [2] dd [4¢(Sectioh B).

There are many reasons to study stochastic wave equatiehsislmention the motion
of a suspended cable under wind loading [7]; the motion ofranskt of DNA in a liquid
[6]; or the motion of shock waves on the surface of the slin 8] these stochastic partial
differential equations are of course nonlinear and higldgtrivial. But in order to derive
efficient numerical schemes, we first look at model problekes(L.).

The numerical analysis of the stochastic wave equationlisionts beginning in com-
parison with the numerical analysis of parabolic probleride refer to [[1] and[[25] for
spectral-type (spatial) discretisations of our stoclegsdirtial differential equation and to the
introduction of [18] for other types of spatial discretisas. We now comment on works
dealing with the time discretisation ¢f (1.1). Strong cagemce estimates for implicit one-
step methods can be found in[17], despite the main themeegfdper which is weak con-
vergence. Both for spatial and temporal approximation tigkeioof convergence is found to
be somewhat lower than the order of regularity, see Remarkéow. In [28] the leap-frog
scheme is applied to the nonlinear stochastic wave equaithrspace-time white noise on
the whole line. A strong convergence rat¢h'/?) is proved, wherd is the step size in both
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time and space, which is in agreement with the order of reijyia this case. The reason for
this is that the Green'’s functions of the continuous and iberdte problems coincide at mesh
points. A similar trick is also used i [20] and [21] to deriame “exact” solver. Let us finally
mention the work[[14], where error bounds in fhx¢h mean for general semilinear stochastic
evolution equations are presented. The authors consideurgelF Galerkin discretisation in
space and the exponential Euler scheme in time. This expi@ah&me integrator (see also
[12], [13], [19] and references therein) is, in the lineaseagrecisely the one that we use [4].

The paper is organised as follows. Some preliminaries aadrthin results from [18]
on strong convergence estimates for the finite element appation of our problem are pre-
sented in Sectioh] 2. The stochastic trigonometric schermrisduced in Sectiohl3 and a
convergence analysis is carried out in Secfibn 4. A tracetda for the numerical integra-
tor is obtained in Sectidnl 5 and finally in Sect[dn 6 numerealeriments demonstrate the
efficiency of our discretisation.

2. A finite element approximation of the stochastic wave equ@n. Before we can
state the main result on the finite element approximatiod&f, [we must define the spaces,
norms and notations we will need. LEtandH be separable Hilbert spaces with norms
-lu, resp.||-lu. £ (U,H) denotes the space of bounded linear operators BiamH and
Z(U,H) the space of Hilbert-Schmidt operators with norm

o 1/2
ITlzom = 3 ITed)”
=1

where{e}_, is an orthonormal basis &f. If H =U, then.Z(U) = Z(U,U) and HS=
Z(U,U). Furthermore, if Q,.%,P,{.% }i>0) is a filtered probability space, thén(Q,H)
is the space ofi-valued square integrable random variables with norm

IVl = EIIVIEN2

LetQ € .Z(U) be a self-adjoint, positive semidefinite operator. Theidgstochastic process
W(t) in (L) is aU-valuedQ-Wiener process with respect to the filtrati@s#: }1~0 and has
the orthogonal expansion [23, Section 2.1]

Wi = 5 1B @.1)
=

where{(y;,&j)}7, are eigenpairs o with orthonormal eigenvectors arg;(t)}{", are
real-valued mutually independent standard Brownian metidt is then possible to define
the stochastic integreﬂ% ®(s)dW(s) together with Itd’s isometry[ [23]:

't 2 't
B[] [o@an@],] = [ 1969Q 2 %0 s (2.2)
whered : [0,00) — £ (U,H) is such that the right side is finite.
For the stochastic wave equati¢n {1.1), we define Lo(2) andA = —A with D(A) =
H2(2)NH(2). We assume that the covariance oper@af W satisfies
||/\(B*l>/2Q1/2||HS < (2.3)

for someB > 0 and with the Hilbert-Schmidt norm defined aboveQIfs of trace class, i. e.,
Tr(Q) = ||QY?||3s < o, then = 1. If Q = A5, s> 0, thenf < 1+s—d/2. This follows
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from the asymptotic behaviour of the eigenvaluefpAj ~ j2/d. In particular, ifQ =1, then
B < % andd = 1. Note that we do not assume tifandQ have a common eigenbasis.

We will use the spaced? = D(A%/2) for a € R. The corresponding norm is given by
© 1/2
IVl = A%V () = (;A v 8)E)

where{(Aj, ¢;) i are the eigenpairs @t with orthonormal eigenvectors. We also write
HY =HYxHI tandH = HO=HOx H 1,

We use a standard piecewise linear finite element methodhBrspatial discretisa-
tion. Let{Zh} be a quasi-uniform family of triangulations 6f with hx = diamK), h =
maxc 7, hk, and denote by, the space of piecewise linear continuous functions with re-
spect toZ, which vanish o 2. HenceW, € H3(2) = HL.

We introduce discrete variants ]| o andH?:

nllha = IS Wl Ly ), Vh €Vhi HE = Vh equipped with- ..
whereAp : Vi, — VW is the discrete Laplace operator defined by
(AnVh, Wh) Ly (7) = (OVR, OWh) (), YWh € Vi
Denoting the velocity of the solution hy := Uy := U, one can rewritd (111) as

dX (t) = AX(t)dt +BdW(t), t >0, 2.4)
X(0) = Xo,

N _ (0] ._ |n . |Uo : _
whereA = {—/\ 0} B:= [I] X:= {UJ andXp := {Vo]' The operatoA with D(A) =

H® =H x HO is the generator of a strongly continuous semigroup of bedritiear opera-
torsE(t) = é” onH% = HO x H1, in fact, a unitary group.

Let 2, : H® =V, and %, : H! — 4, denote the orthogonal projectors onto the finite
element spac¥;, C H&(@) = HZ, where we recall that}, is the space of piecewise linear
continuous functions. The finite element approximatiofofl] can then be written as

dUhyl(t) +/\huh,1(t)dt =%, dVV(t), t>0,

2.5
Un,1(0) = Un0, Un2(0) = Vho, (25)
or in the abstract form
dXn(t) = AnXn(t) dt + Z,BadW(t), t >0, 2.6)
Xn(0) = Xno, '
whereA;, ;= { 0 I] Xh 1= {Um} andX o= [Uh,o} with Upg, Vho € V. Again, Ay, is the
L _/\h O ’ L uh,2 ,0'_ Vh,O h,07 h,O h- 1

generator of &£y-semigrougEn(t) = €% onVj, x .
It is known, see, e.g.. [5, Example 5.8] ahd]|[18], that undsuaption[(213) the linear
stochastic wave equatidn (2.4) has a unique weak soluti@ndiy

X(t) = E(t)Xo+'/: E(t—s)BAW(S), @2.7)
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with mean-square regularity of ordgr

Xl Lym8) < C(HXOHLZ(Q,HB) +t1/2||/\([371)/2Q1/2”HS), t>0. (2.8)

Similarly, the unique solution of the finite element probl@h8) is given by

Xa(t) = Eh(t)xh,o—i-'/o.t En(t— ) ZBdW(s). (2.9)

We quote the following theorem on the convergence of thaaEgiproximation.
THEOREM 2.1 (Theorem 5.1 i [18])Assume that Q satisfig8.3) for somef € [0,4].
Let X = [ug,Vo]T € HP = HP x HB~1 X = [ug,up]™ and X% = [Un1,Un2]" be given byZ.7)
and (2.39), respectively. Then the following estimates hold ferQ, where Gt) is an increas-
ing function of the time t.
o If Uho = P, Vh,o = Ppvp andp € [0, 3], then

2 1(B_1) 1
[[un,1(t) — ur(t)[,0,r0) SC(t)h3B{||X0H|_2(Q,HB)+H/\Z(B VQ2 s}

o If Uno = ZnUo, Vho = PhVo andf € [1,4], then

2(3_ lip_ 1
[[un2(t) = U2(t) [, (0,10 <C(t)h3® 1){HX0||L2(Q,HI3)+”/\2(B VQ2||ns}-

REMARK 2.2. Note that the order of convergence in the positiéﬁ, is lower than the
order of regularity,3, in (2.8). This is a known feature of the finite element method for the
wave equation, see [18]. The upper limits fdare only dictated by the fact that the maximal
order for piecewise linear approximation % higher regularity will not yield higher rate of
convergence unless higher order finite elements are usedhwhn be done of course, see
[L8]. Similarly, it is shown in[17, Theorem 4.1] that the @dof convergence of implicit

one-step temporal approximationszﬁs(km'”(ﬁp%’n), where k is the steplength and p is the
order of the method. Thus,=p1 and p= 2 for the backward Euler-Maruyama and Crank-
Nicolson-Maruyama methods, respectively.

We will also use the following relation betweép and/A, see the proof of Theorem 4.4

in [16],
IAR RN VIE i < Iy, @ €[=3,1], veH® =La(2), (2.10)

where 27, is the orthogonal projecto#;, : H® — V.

Finally, we remark that the assumption thiatis convex and polygonal guarantees that
the triangulations can be exactly fittedi& and that we have the elliptic regularjty|,;2( ;) <
C||AV]| () for ve D(A). This simplifies the error analysis of the finite element rodttThe
assumption of quasi-uniformity guarantees that we havexarse inequality and is only used
in the proof of the case € [0, %] of (2.10). In particular, it is not needed for the proof of
Theoreni 211 and not for the caBe- 1 (trace class noise) in the error analysis in Thedrein 4.1
below.

3. A stochastic trigonometric method for the discretisatia in time. In order to dis-
cretise efficiently the finite element problein (2.5),[or §2i6 time one is often interested in
using explicit methods with large step sizes. A standardaaah for the deterministic case is
the leap-frog scheme, but unfortunately one has a stepesngction due to stability issues.
In the present paper, we will consider a stochastic exteansidhe trigonometric methods.
The trigonometric methods are particularly well suited fioe numerical discretisation of
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second-order differential equations with highly oscélgt solutions, see [10, Chapter XIII]

for more details. As stated above, the exact solutiori o) @.6ound by the variation-of-
constants formula and given Hy (R.9). We can witét) as

En(t) =

Cr() A YPS()
NS hch(t> ] Gy

with Cy(t) = cos(t/\ﬁ/z) and S(t) = sin(t/\ﬁ/z). Discretising the stochastic integral in the
sense of 1td, that is, evaluating the integrand at thedatt-point of the interval, leads us
to the stochastic trigonometric method. We Kkebe the time step size and? = uno and
U2 = V0, and obtain the numerical schetd&"! = E,(k)U" + Ex(k) 2,BAW", that is,

U n+1
i -
whereAW" =W(t,1) —W(t,) denotes the Wiener increments. Here we thus get an approx-
imationU;' &~ un j (ta) of the exact solution of our finite element problem at the iteetimes
tn = nk.
REMARK 3.1. The stochastic trigonometric methof&2) are easily adapted to the

numerical time discretisation of (N-dimensional) syst@fsonlinear stochastic differential
equations of the form

Colk) AL PSR ] U] AL 2S(K) n
AR G {Ué‘]+[ hCh(k) }%Aw, (3.2)

X (1) + w?X(t) = G(X(t)) +W(t),

wherew € RN*N is a symmetric positive definite matrix andxG< RN is a smooth nonlin-
earity. In this case, one obtains the following explicit ruival scheme 4]

[Xlr‘“] _ { cogkw) wlsin(kw)] {Xf]

Xt —wsinkw)  cogkw) | |XJ -
N EWG(ox)) [wlsin(kw)] AW '
K (WoG(®X]) + W1G(PX[H)) cogkw) ’

where k denotes the step size @&wil" = W (t,, 1) —W(tn) the Wiener increments. Het =
Y (kw) and ® = @(kw), where the filter functiong, ¢ are even, real-valued functions with
Y(0) = ¢(0) = 1. Moreover, we haviy = (p(kw), W1 = Y1 (kw) with even functiongy, Y1
satisfyingyin(0) = 1 (0) = 1. The purpose of these filter functions is to attenuate nurakri
resonances. Moreover, the choice of the filter functions atey have a substantial influence
on the long-time properties of the method, [10, Chapti¢} f&r the deterministic case.
We will not deal with these issues in the present paper.

Numerical experiments for the nonlinear stochastic waveaéqgn

du— Audt = G(u) dt + dw

with a smooth nonlinearity G will be provided in Sectidn 6 ider to demonstrate the effi-
ciency of this approach. We leave a theoretical investagatif the nonlinear case for future
works.

For a more detailed derivation of the trigonometric methdigs use for nonlinear wave
equations we refer t¢_ [10, Chapter XIII] arid [3] for the detaristic case and td [2] andl[4]
for the stochastic case.
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In the next section we will see that this explicit numericathod permits the use of large
time step sizek and that the error bounds are independent of the spatial sissh; some
of these properties are not shared by, for example, the kackiauler-Maruyama scheme,
the Stormer-Verlet scheme or the Crank-Nicolson-Marugacheme, as we will see in the
numerical experiments in Sectibh 6.

4. Mean-square convergence analysisin this section, we will derive mean-square
error bounds for the stochastic trigonometric mettiod (33)r main result is a global error
estimate for the time discretisation in Theoffeni 4.1. Itopiwbased on bounds for the local
errors in Lemm&4l12. Finally, we formulate an error estinfatehe full discretisation.

THEOREM4.1. Consider the numerical discretisation (#.3) by the stochastic trigono-
metric schemd3.2) with temporal step size k. The global strong errors of the erical
scheme satisfy the following estimates:

o If [AB-D/2Q1/2||4s < oo for someB > 0, then

IUF — Una(tn)llL,a o) < CKMMPHAP-D/2QY2) s,
o If [AB-D/2QL/2| 45 < o for someB > 1, then
U2 — tna(tn) |y 0) < CKMME LU AB-D/2QH2) s,
The constant G= C(T) is independent of h, k, and n with+ nk<T.

For the proof of the above theorem, we will need the followigmgma:
LEMMA 4.2. Let the local defects't= [d,d5]" be defined by

th
a7 = [ A S tnes — 9 ARAN(S) — A () 2w,
th

Ty
A= [ Chltnr— ) ZnOW(S) — Cr(K) ZnAW".

Jtn

We have the following estimates:
o If [AB-D/2Q1/2||4s < oo for someB > 0, then

~1/2 i _

E[[|03(1E, ()] +EllIA, / d317, ()] < CKMMZPHLINAB-D2QH2) By
o If [AB-D/2QL/2|| 45 < o0 for someB > 1, then

]E[H/\ﬁ/szHEz(@)] +E[[|d37, )] < CKMMZEL3HAP-U2QH2) B,

The constant G= C(T) is independent of h, k, and n witht nk<T.
Proof. We begin by showing, recall that® = V4, with norm||-||no = IllLy(2)

[(Sh(t) = S(NAP 2l ) <Cit =P, Be[0,2). (4.1)
For 8 = 0 andv;, € Vi, we use the triangle inequality and the boundedneSs(05:

[(Sh(t) = Sh(8)VhllL,(2) < 2lIVhllLy(2) = 2lIVhlIno-

For B = 1 andv, € V}, we use the fact that

(Sh(t) — Sn(S) Vi = /: Dy Sh(r v dr — /:ch(r)/\ﬁ/zvhdr
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and hence
1/2

1(Sh(t) = Sh()Vhlly(2) < It—=SllIA;

A well-known interpolation argument, see e.g. the proofbédrem 3.5 in[[27], then yields

VillLy(2) = [t —sl[[Vhlln1-

1(Sh(t) — Sh(8))Vhlliy(2) < Clt—SPIVhllng, Vh €V, B €10,1],

which is [4.1).
We now consided;] with 8 € [0,1]. By Itd’s isometry [2.P) and (4]11) we have

nij2 172 2
B0 = B[] [ A (St -9 - Sy 2naw(s)| ]
= [ 29 - $100) 2102 s
< [ —sn<k>>A.:B/2||; o SISV
<CREINTV Q2 s,
Using also[(2.10) witle = (B — 1)/2 € [—3,0] we obtain

IR 2 QY s = A2 2 P NP 2QY s
-1)/2 _(B— _
< INF V2 A= BD12)| o [AP-D/2QY2 s
< CAB-D/2QY2| g

This proves

E[[[d]]2, )] < CREFLABD/2QH2 2

which is the desired bound wh@e [0, 1]. WhenB > 1, we simply observe thg\~(F~1)/2|| o) <
C, so that by the already proven case

Kk
B2, 0) < [ 1AV 2(SH(8) = $100) 2, 851 20Q 21

<c [ (s kPas Q2 s < ORIV s
< CIRAB/2QU2 B A~ VP2,
< CIRAP-/2QV2)

This is the desired result fg@ > 1.
Similarly we find for the second componeiftwith 8 € [1,2]:

k
1)/2 -1)/2
E110BI] < [ 1On(9) ~Cak)Ay P2, o asIN 2 QM2
where, similar to[(4]1),

1(Ca() = Ca(IA, P2l ) <Clt =8P, Be1,2).
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Hence, using als¢{2.].0) now with= (8 —1)/2 € [0, 3], we obtain
E[| 031175 < CIPHAP-D2QY2| Bg

for B € [1,2]. For3 > 2 the defect is of the ordée.
The bounds folE[HAl/zd”H2 )] andIE[H/\;l/zdgHEZ(%] are proved in the same wdy.

We now turn to the proof of our main result on the strong cogeace of the numerical

method [(3.R).
Proof. [Proof of Theoreni_4]1] We definE/ := U]' — unj(tn), j = 1,2, andF" =
[FP,FNT. First of all we remark that

”Ul — Un, 1(tn)|||_2 Q,HO) — ”Fl |||_2 Q,HO) [”Fl ||L2 ]

Substituting the exact solutiok, = [un 1,Un ] of (Z.8) into the numerical schen{e(B.2), we
obtain

Xn(ta+1) = En(K)Xn(tn) + En(k) 2,BAW" +d"

with the defectal” := [d],d}]" defined in Lemm&Z]2 anBl,(t) defined in [311). We thus
obtain the following formula for the errde"*:

n ) n
FM = En(K)F" +d" = En(th1)F° + ZJEh(tn,,-)dJ = Z)Eh(tn,j)dl
= =
sinceF® = 0. Taking expectations gives us for the first component

E[IF Ity )] =E

|
EK;M o)

+< /\1/2 (th—1- l, Chl(t 1)d>
J h n JZ% n—1-1)¥1

Ch (th-1— J)d:{+/\h /&(tnflfj)d%) :
5

L2(2)

n—1

Z{)Ahlz& th-1- J é, %Ahl/z tn 1-i dz)}

]

_|_
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Here we use the independencedgg anddi2 withi,j=0,...,n—1fori # j to get

n—1 . .
E[IFI2,)] = E| 3 (Onltna- ) s )
n—1

+ zO«:h(tn,P DAL AL Y2 S (th-1-)d))
+ZO Sh(th-1- ])dZaCh(tn 1- J)dj)
+ Z}(A;”Z&(M DAk AL St 1))
]=
= | pAC12 |12
:zO]E{HCh(tn,l,j)di—l-/\h &(tnflfj)déHLz(ﬁ)}
=

n—-1
. BV
<23 (ElldliE o) + BN i)

J:

Now we can apply Lemnia4.2 for the estimates of the detﬂc&mddi and get
n .
E[||F1n||fz(%} <C zokmln{ZBJrl,S}H/\(Bfl)/ZQl/ZHaS
C(T K221 AP-1/2QH 2 g,
Therefore we obtain
JUT = tn1(tn) [l yq.h0) = E[HF{]HEZ(@)} < CKMNBL | AB-D/2QY2| g

forB > 0.
For the second componentif we obtain

E[IFI2, )] [H Z) Shltn-1-)d] +Calta 1 J)dé)Hz |

L2(2)

n—-1

- ZOE 1= ?Sh(tn-1-)0] + Ca(tn—1-)d3 12 ]

1/2
<C zo 1A 201112, ) + 183117,)) -
Thus we get with Lemma4.2, B > 1:
n .
E(IF 2, s)] <C 3 KMMEPTEIIAETIEQH R
< CKMM2B-22} A (B-1/291/2| 2

and

[UZ = tn2(tn) | ,(0.10) = E[HFZ“HEZ(@)] < CKMMB-LL AB-1/2Q12 s,
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We can now collect the convergence results for the spacestisation and for the time
discretisation. This gives us the following theorem.

THEOREM4.3. Consider the numerical solution L.T) by the finite element method in
space with a maximal mesh size h and the numerical scif@&@pwith a time step size k on
the time interval0, T]. Let us denote the discrete time hy=t nk. Let % = [up,Vo]" and let
X = [ug, U] and %, = [Un1, Un2]" be given byZ2)and (Z3), respectively. i Xoll ,q s, <
w, the following estimates hold fort 0, where Gt) is an increasing function of the time t.

e If upg = Phlo, Vho = Pnvo and if | AB~1/2QY2|| 45 < oo for someB < [0, 3], then
U5~ un(tn) a0y < CT) (P73 kB2 ) | AP0/2GH2
o 1f Uno = Znlo, Vho = PnVo and if | AB~1/2QL/2| 45 < oo for someB € [1,4], then
jup — Ua(tn) a0 < C(T) (hz(ﬁfl)/3+ kmin{ﬁ—l,l}) IAB=D/2QY2 6.
Proof. This follows from Theoren{s 2.1 ahd #.1 by the triangle irediy O

5. Atrace formula for the numerical solution. In this section, we look at a geometric
property of the exact solution of the wave equation. It iswkndhat, in the deterministic
setting, the linear wave equation is a Hamiltonian partitiecential equation, wherein the
total energy (or Hamiltonian) of the problem is conservedd times. However, in the
stochastic case considered here, the expected value aféhgyaggrows linearly with the time
t. This is stated in the next theorem for the semidiscretigatif our linear stochastic wave
equation[(T.). For a nonlinear version of this so-calladérformula we refer ta [25].

THEOREM 5.1. Consider the numerical solution dfL.1) by the finite element method
in space with a maximal mesh size h. Lﬁtﬁ([uh’l,uh,Z]T be given byZ.9). The expected
value of the energy of the exact solution of the semidisgretelem(2.8) with initial values
Xn(0) = [Uno,Vho]" € L2(Q, V) satisfies:

1 1/2 1 1/2
E| 5 (1A 2unaO11Z, ) + lunz2®1Z,5)) | = E[ 5 (I 2nollZy ) + ¥hollZ )]

1
+ EtTl’(f@th@h)

for all times t> 0.

Proof. We recall that the solution of (2.5%(t) = [Uh,l(t),uh,z(t)]T, with initial values
Xn(0) = [Uno,Vho]" can be written as

Xa(t) = EnDX(0) + [ Ent—9) 28AN(S)
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Therefore we get for the first summand of the energy, i. e.ptitential energy,

1/2 2 1/2 t ’
”/\ Uh,l(t)”LZ(Q} [H/\ )uh,o—i-Sh(t)vh,o-i-/oSh(t—S)thW(S) Lz(g)}

= E[ I 2Cn(0)tnollZ, ) + IS (tVnollZ, )
ot 2
+] [st=9omaws)|  +2(8 Cult)uno. Situmo)
+2(/\1/2ch (t uho,/tsh t—s)%dvv(s))
+2( VhOa/ Sh(t =) ZPhdW( ))}
E[ I 2Crlt)unollZ, ) + ISh(vholZ )
! 1/2
+H./o Sh(t—S)th\N(s)HLZ( )+2(A Ch(t )Uh,o,Sh(t)Vh,o)}

using the fact that the above It6 integrals are normallfrithisted with mean 0.
For the second summand we obtain

E HUh,z(t)HEz(@} [H/\l/Z ()Uh.,OHEZ(@)‘F||Ch(t)Vh,oHEZ(%
2
+ [ent-9mmans)|] 2 Ch0umo Si0mo)]

Now, we use Itd’s isometry to compute, for example,

H/Sﬂ— 3”de()

] = [ls-94Q 2 fscs

Then, combining these expressions and using a trigonameémntity leads to the statement
of the theorem:

E[5 (1A 21 (01,5 + un2®)12,00)] = E[5 (IAY noll, )+ nol2y )]
QY s
= 2 (1A ol o) + lumoll )
+ %tTr(@thzh).

The last equality follows from the definitions of the HS-nomifi the operato and of the
projector&:

120QY2 s = Tr((ZhQY2)(2nQY?)") = TH(ZhQP).

This concludes the proadil
REMARK 5.2. We would like to point out, that an alternative proof of theoab result
can be obtained usingdts formula, see for examplgl[5, Theorem 4.17], to the florcti

1/2
F(Up) = (||A PUnal2,0) + Un2llZy )
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We are now able to show that the numerical solution given bystachastic trigonometric
scheme preserves this geometric property of the exacicolot the finite element problem
(239).

THEOREM5.3. Under the assumptions of Theorem] 5.1, the numerical solatiq2.5)
by the stochastic trigonometric meth@I2) with a step size k preserves the linear drift of the
expected value of the energy, i. e.,

1 1
E |5 (1A 20012, 9 + 1U512,90) | = B[ 5 (1A ol 9 + Vol ) |

1
+ étnTr(gthh)

for all times t, = nk > 0.
Proof. The stochastic part of the method can be written as an té@ial and we obtain
due to the Itd isometry

2

(150w | <[ [ swmanes) ]

th
= [ 150 20Q"? o

Similarly to the proof of Theoren 3.1 we thus get

1 2 1 _ _
E[5 (A8 070 + IU1Z,0) | = B[ 5 (1A 082120+ 105 12,5)
k
+ ETr(WhQQh).

A recursion now concludes the prodf.

To conclude this section, we would like to remark that alyefmt stochastic ordinary
differential equations, the growth rate of the expectedgnalong the numerical solutions
given by the forward (or backward) Euler-Maruyama schentetha midpoint rule, se€]2]
and references therein, is not correct. Indeed, for thedahiEuler-Maruyama scheme, one
has an exponential drift in the expected value of the energy.

6. Numerical examples.Let us consider the example given|in[18]:

du— Audt = dw, (x,t) € (0,1) % (0,1),
u(0,t) = u(1,t) =0, te(0,1), (6.1)
u(x,0) = cogm(x—1/2)), u(x,0) =0, x e (0,1).

The solution of this stochastic partial differential eqaatwill now be numerically approx-
imated with a finite element method in space and the stoch@gtonometric method (3.2)
in time. For the below numerical experiments, we will coesitivo kinds of noise: a space-
time white noise with covariance operat@r= | and a correlated one. For correlated noise
we choose = A5 with s € R and recall the relatiofy < 1+s—d/2, whered =1 is the
dimension of the problem, see the discussion dftef (2.3).

Before we start with our numerical experiments, let us byriefiplain how we approxi-
mate the noise present in the above stochastic partiafeiiffial equation. From the Fourier
expansion[(Z]1), we have for gfl € V;:

(PhBW", X)Ly(7) = Zlyil/ZABjn(eJaX)Lz@)’
J:
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) k=278, M=100 samples

T
—e—B<1/2
— Order 1/3
—*—p<1
— Order 2/3 [
——B<32

Order 2

FIGURE 6.1. Spatial errors: The k-error in the first component decreases with ordéfh

where{y;, g }‘J?°:l are the eigenpairs of the covariance oper@aith orthonormal eigenvec-
tors{ej}{_,, and{B;}{_, are mutually independent standard real-valued Browniatiome
with Gaussian incr_ement\sﬁj“ = Bj(tn) = B; (th-1) ~ VkA(0,1). As explained in[[18], un-
der some assumptions on the triangulation and the op&patore can approximate the above
expansion with

J
2
(PobW", X)) ~ Zy,-l/ ABI (e}, X)Ly(2),
j=

with an integed > Ny, whereN, = dim(V4,), while retaining the convergence rate, to obtain
the semidiscrete solution, sée (2.9),

J
Xﬁ](t) = En(t)Xno+ Z le/z/ot En(t —s) ZnBedB;(s).
=1

Figure[6.1 confirms the results on the spatial discretisatibour linear stochastic wave
equation stated in Theordm P.1. The spatial errors in thediasiponent of our problem
are displayed for various values of the parameste®n the one hand we consider a space-
time white noise withQ = I, and hencg8 < 1/2, and on the other hand, different corre-
lated noises witlQ = A5, i.e., B < 1/2+s. The corresponding convergence rates are
observed. Here, we simulate the exact solution with the migaleone using a very small
step size, i. €.Kexact= Nexact= 2~8. The expected values are approximated by computing
averages ovel = 100 samples. All the numerical experiments were performedatlab
using specially designed software and the random numbeesyemerated with the command
randn(’state’,100).

We are now interested in the time-discretisation of the alsiochastic wave equation
for various spatial meshes. Figurel6.2 displays the strora at timet = 1 in the first
component of the solution for space-time white noise withO and for correlated noise with
s=1/2, respectively. One observes the order of convergenadsitafTheoreri4]1 and the
fact that these errors are independent of the spatial disatien. Again, the exact solution is
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o s=0, M=100 samples
10 .
10+ 4
—o— p=p 1t
—%— =710
——h=2"°
N Order 1/2
10’ -2 ‘71 0
10 10 10

k
s=1/2, M=100 samples

10°F

—O— ph=2 1t
—F— =210
—— h=2"

— Order1

10°

FIGURE 6.2. Temporal errors: The j-error in the first component decreases with ord@rand is independent
of the mesh-grid h.

approximated by the stochastic trigonometric method withrg small step SizReyact=2"©.
We usehexact= 22,2719, resp., 211 for the spatial discretisations. Agalih= 100 samples
are used for the approximation of the expected values.

Next, we compare our time integrator with the following si@al numerical schemes for
stochastic differential equations. When applied to theeneuation in the forni (2.4), these
schemes are:

1. The backward Euler-Maruyama schekig? = X" + kAX"1 + BAW", see for ex-
ample [15] or[22]. The strong rate of convergence for thishod is¢'(k""(B/2.1)),
see[[17, Theorem 4.12].
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2. A stochastic version of the Stormer-Verlet scheme,ingiX = [Xg,Xo]T,

k
Xg 2= X5+ SAXT Wit 1/2) ~ W(ta).

X = XD 4 kg 2
k
)(2”+1 = X2n+1/2+ i/\XfH +Wi(thi1) _W(tn+1/2)-

For an application of this scheme to the Langevin equatianyafer to [24]. We
were not able to find any references on the strong rate of cgexee of this numer-
ical method.

3. The Crank-Nicolson-Maruyama schernel[11]

k
Xn+1 _ Xn + EA(XH+1 + Xn) + BAWn

The strong rate of convergenced§k™n(28/31)) see[[17, Theorem 4.12].
We apply these schemes to the finite element approximaticgheofinear problem[{6]1)
with truncated noise. Note that both the backward EulerdMama scheme and the Crank-
Nicolson-Maruyama scheme are implicit. Figlirel 6.3 presth various strong convergence
rates of the above numerical integrators, once with whitsenand once with correlated
noise withQ = A~1/2, One observes that the numerical solution given by thengtoiVerlet
method explodes for larger values of the step-$iz¢his computation was stopped when
the deterministic non-stable regime of the scheme wasatai For all the experiments we
usehexact= 210 for the spatial discretisation. The reference solutioroimputed using the
stochastic trigonometric method with the step $igg.i= 2 6. AgainM = 100 samples are
used.

In the following numerical experiment, we are concernedhwlie trace formula of Sec-
tion[H. Figurd 6.1 illustrates the trace formula of the nun®rsolution. Here, we choose
s=1/2 and henc@ < 1 and display the expected value of the energy along the ricahso-
lution of the above stochastic linear wave equation withimggglsh = 0.1 andk = 0.1 on the
long time interval0,500. We tookM = 15000 samples to approximate the expected energy
of our problem. A comparison with other time integratorsiisgented in Figure 8.5. One
notes that all these numerical schemes do not reproducieéa growth of the expected en-
ergy correctly. This fact is already known for the backwatdele-Maruyama scheme applied
to a finite-dimensional linear stochastic oscillator|[26].

Finally we consider a nonlinear stochastic wave equatiba,3ine-Gordon equation
driven by additive noise:

du— Audt = —sin(u) dt + dw, (x,t) € (0,1) x (0,1),

u(0,t) =u(1,t) =0, te (0,1),

U(X, O) = 07 U(x, O) = 1[%%]()()7 Xe (Oa 1)1
where 1(x) denotes the indicator function for the intervallhe corresponding deterministic
problem is studied for example ihl[8]. We solve this problegaia with a finite element

method in space and in time we use the stochastic trigonametthod[(3.B) withG(X(t)) =
—sin(X(t)) and the filter functions proposed [ [9]:

Y(&) =sinc (&), @(&)=sind&), Yo(&)=cog&)sin¢(&), Ya(§)=sincd(§),

where sin¢é) = sin(&)/&. In the upper plot of Figure 8.6, we show the expected enefrgy o
the numerical solution of the Sine-Gordon equation whegetvariance operator is given by
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s=0, h=2"%, M=100 samples

10°F —©— Error BEM [
—%— Error SV
—— Error CNM
—H&— Error STM
S Order 1/4
0 Order 1/3
Order 1/2
T

0

10° 10

—S— Error BEM [§
—— Error SV
—— Error CNM
—&— Error STM
Order 1/2
Order 2/3
I Orqer 1

10" 10°

FIGURE 6.3. Ly-error in the first component of the numerical solutions gil®y the Stormer-Verlet method
(SV), the backward Euler-Maruyama scheme (BEM), the Chiokison-Maruyama scheme (CNM) and the
stochastic trigopnometric method (STM).

Q=1. Evenforalarge step-sixe= 0.1, one can observe the good behaviour of the numerical
scheme. In the lower figure, we display the convergence catté first component with a
covariance operat@ = A~1. Again, we approximate the exact solution with a finite elame
solution and the stochastic trigonometric scheme ukigg:= 2 ° andhexact= 2°.
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