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Abstract

We introduce the Hilbert space-valued Wiener process and the
corresponding stochastic integral of 1t6 type. This is then used to-
gether with semigroup theory to obtain existence and uniqueness
of weak solutions of linear and semilinear stochastic evolution
problems in Hilbert space. Finally, this abstract theory is applied

to the linear heat and wave equations driven by additive noise.
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1 Functional analysis essentials

In this section we discuss a few concepts and results form the theory of
operators in Hilbert spaces. We either give a proof or give a reference to
the proof. Consider two separable Hilbert spaces (U, (-, -)v), (H, (-, )x)
where the respective subscripts will be suppressed whenever it is clear

from the context which one is meant.

1.1 Spaces of linear operators

Let L(U,H) denote the Banach space of bounded linear operators from
Uto H. If U=H, then we simply write L(U). For T € L(U) we
write T > 0 if T is self-adjoint positive semidefinite, that is, 7" =T
and (Tu,u)y > 0 for all u € U. Let L;(U,H) denote the set of nuclear
operators from U to H, thatis, T € Ly (U,H) if T € L(U,H) and there
are sequences {a;}jeN C H,{b;}jen CU with X7, [|a;||[|b|| < o and
such that

(1.1) Tf=) (f.bj)a; VfeU.
j=1

Sometimes these operators are referred to as trace class operators from

U to H. It is well known that L, (U, H) is a Banach space with the norm
1Ty =inf{ Y Nl 77 = Y (fbjyay vF € U},
j=1 j=1

We note that T € L (U,H) is compact because (I.1)) means that it can
be approximated by operators of finite rank. Another characterization
of Li(U,H) can be obtained via the polar decomposition of compact

operators (see, for example, [6, Chapter 30] and [8, Chapter 7]).
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Lemma 1.1. Let T € L1(H,H) and {e}}reN be an orthonormal basis
for H. Then the trace of T,

(1.2) Z Tey, ex),

exists and is independent of the choice of the orthonormal basis.

Proof. Since T € L1(H,H) we have (L.T) for some {a;} jen,{b;}jen in
H. Then

(Tex,ex) = Z ex,bj){aj,er)

and hence
Z |<T€k,€k Z Z ek? ajvek Z Z | eka ajaek>|
k=1 k=1 j=I j=1k=1
oo oo l oo
<) <Z| (ex, b > (Z [{ajex)] ) Z laj 111 < oo
=1 k= =1 =

Therefore, the series in (1.2)) converges absolutely and, by Fubini’s the-

orem,
Z Teg,er) = Z Z(ek,b M aj,ex)
k=1 k=1 j=1
= Z Z(eka ajaek Z a];
j=lk=1 j=1
is independent of the orthonormal basis. 0

Lemma 1.2. [fT € Li(H,,H,), S| € L(Hy,H3) and S, € L(H3,H,), then
S1T € Li(H,H3) and TS, € L1(H3,H,). Moreover, if T € L1(Hy,H>),
S € L(Ha, Hy), then Te(ST) = Tr(TS) < S| T |1, (&1, b1)- I T > 0, then
T € Li(H,H) if and only if the series in (1.2) converges for some or-

thonormal basis {e }ren and in this case ||T ||, (1) = Tr(T).
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Proof. The proofs for H; = H are given in [4, Appendix C]. The general

cases are proved in the same way. [

Definition 1.3 (Hilbert-Schmidt operator). An operator T € L(U,H) is
Hilbert-Schmidt if Y2, ||Tex||* < o for an orthonormal basis {e;}ren
of U.

A straightforward calculation shows that if 7 is Hilbert-Schmidt,
then the sum in Definition is independent of the choice of the or-
thonormal basis. It is clear that Hilbert-Schmidt operators form a linear
space denoted by L, (U, H) which, as Proposition |15/ shows, becomes a
Hilbert space with scalar product and norm

1

(1.3) AT, S)r,.m) i (Tex,Ser)r, | T, m) (i |T€k||12q>§,
where {e }ren is any orthonormal basis of U.
Remark 1.4. We list a few facts about Hilbert Schmidt operators.
1. Anoperator T € Lr(U,H) if and only if T* € L,(H,U) and
1T .1y = 1T N p(m,0)-

2. An operator T € L(U,H) if and only if TT* € L;(H,H) if and
only if T*T € Ly (U,U) and in this case

”TH%Z(U,H) =Te(TT*) =Tr(T*T).
3. If T € Ly(U,H) and S € L(U), then TS € L,(U,H) and

TS|, .1y < NT ||y w,m) 1Sy



4. If T € LZ(U,H), then ||T||L(U7H) S ||T||L2(U7H)'
The proofs are elementary and are left as an exercise.

Proposition 1.5. The space L,(U,H) of Hilbert-Schmidt operators is a
separable Hilbert space with scalar product and norm defined in ((1.3).
If { fi }ren is an orthonormal basis of H and { e }xeN is an orthonormal
basis of U, then the rank one operators {f; ® e} j ken defined by (f; ®
ex)(u) := fjlex,u), u € U, form an orthonormal basis for Lo(U,H).

Proof. We first prove completeness. Let {7}, },en C L2(U,H) be a Cau-
chy sequence. Then {7, },¢n is also a Cauchy sequence in L(U, H) since
T,z < 1Ty ,my for all T € Ly(U,H). Since L(U,H) is com-
plete there is T € L(U, H) such that

||Tl’l_T||L(UH) —>0, as n — oo,

Let € > 0. If n is large enough, then by Fatou’s lemma,

8

1T =Tl 7wy = X (T = T)exllZs
k=1

|
s

HPLEOH(TH_Tm)ekH%I

~
I

1

< timinf Y [[(T; — Tow)ex 13

= lirzn_}ng(Tn —Tn) H[i(U,H) SE.

This shows that 7, — T in Ly(U,H) as n — o and that T € L,(U,H).
To show separability observe first that f; ®e; € L,(U,H) for all i, j € N.
If T € Ly(U,H), then

(14) <fj®ei7 Ly(U,H) Z elven f],T€n> <f]7Tel>

n=1



By setting 7 equal to f; ® ¢; in it follows that {f; ® e;}; jen is
an orthonormal system. To show that it is a complete system let 7' €
L,(U,H) and assume that (f; ®e;,T) 1, ) = 0 for all i, j € N. Then
(fj,Te;) =0 for all i, j € N and thus Te; = 0 for all i € N. Therefore,
T =0. 0

The following proposition summarizes well-known results from the
spectral theorem for self-adjoint compact linear operators on Hilbert

space. For the proofs we refer to [[6] and [8].

Proposition 1.6. I[f Q € L(U), Q > 0, and Tr(Q) < oo, then there is an
orthonormal basis { ey }xen of U such that Qe = hgeg, Ay > Ay > -+ >
M > A1 >+ >0, i — 0 as k — oo, and 0 is the only accumulation
point of { M }ren. Moreover,

Ox = Z A (x,er)er, x€eU.
k=1

1.2 Pseudo-inverse and the Cameron-Martin space

Let T € L(U,H) and define ker(T) = {x € U : Tx = 0}. Recall that
T is one-to-one with inverse 7! if and only if ker(T) = 0. Since the
restriction 7' ‘ (Ker(T))~ is one-to-one we may define the pseudo-inverse of
T, still denoted 71, by

Tl = <T‘<ker<r>>i)_l

and thus 7! is defined on the range of T,

T T(U) — (ker(T))"



In the particular situation of Proposition 1.6/ we have

0 x= Z 7»,:1<x,ek>ek, xeU.
A>0

Let Q € L(U), Q >0, and let 9'/? € L(U) denote its unique pos-
itive square root, that is, Ql/ 2>0and Ql/ 2Q1/ 2=0. (Every positive
operator in L(U) has a unique positive square root, see [0, 31.2].) Let us

introduce the Cameron-Martin space Uy = Q'/2(U) with inner product

(uo,vo)o = (Qil/zuo, Q71/2V0>U7 up,vo € Uy,

where O~!/2 denotes the pseudo-inverse of 0'/2 in case it is not one-to-

one. Since
10"2ull§ = (@@ 2u, 0™ 2Q" Pu)y = |lulf;, ueU,

it follows that
L
02 ((Ker(@') ", (7)) — (W, - )0)

is an isometric isomorphism. Hence, (Uy, (-,-)o) is a separable Hilbert
space. If {gilren is an orthonormal basis for (ker(Q'/2))L, then it
follows that {Ql/zgk}keN is an orthonormal basis for (Up, (-,-)o). Let
Lg = L,(Uy, H) be the space of Hilbert-Schmidt operators from Uy — H
and let L(U,H)o ={T|vy, : T € L(U,H)} denote the space of bounded
linear operators U — H restricted to Uy. Notice that Lg may contain

unbounded operators U — H. However, the next result shows that if
Tr(Q) < o, then L(U,H)y is dense in LY.

Lemma 1.7. There is an orthonormal basis of LY = L,(Uy, H) consist-
ing of elements of L(U,H)o. If Tr(Q) < o, then L(U,H)o C LY and
hence L(U,H)j is dense in LY.



Proof. Let {gi}ren be an orthonormal basis for (ker(Q))l. Then, by
the previous discussion, {Ql/ ng} reN 18 an orthonormal basis of Up.
By Lemma the set {f; ® 0'/2g;} jkeN is an orthonormal basis for
Lr(Uo,H), if {f;}jen is an orthonormal basis for H. This proves the
first statement. To prove the second statement we complement { gy } xeN
to an orthonormal basis of U, still denoted by { gy }ren, by adding an or-
thonormal basis of ker(Q'/?) . Since Tr(Q) < oo, it follows that Q'/2 €
L,(U,U) by property (2) in Remark([1.4] If T € L(U, H)y, then, by prop-
erty (3) in Remark [I.4]

ITIly = k; 1T il = ITQ" 217,01

< ||T|’1%(U,H)‘|Q1/2‘|1%2(U,U) <

and thus L(U,H)o C LY. O

2 Elements of Banach space-valued stochas-

tic analysis

Let (U, (-,-)u) be a separable Hilbert space and let (Q, ¥, P) be a prob-
ability space. In the present section we review some constructions and

results from the theory of Banach space-valued stochastic analysis.

2.1 Infinite-dimensional Wiener processes

Let B(U) denote the Borel G-algebra of U, that is, the smallest G-algebra
which contains all open subsets of U. Let u be a probability mea-

sure on (U, B(U)). By a real random variable on the probability space
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(U,B(U),u) we understand a measurable function X : (U, B(U)) —
(R, B(R)), where B(R) is the real Borel c-algebra. The law of X is
the probability measure gyo X ~!. For v € U let v/ € U* denote the func-
tional given by v'(u) = (vu)y, u € U.

Definition 2.1. A probability measure puon (U, B(U)) is Gaussian if for
allv € U, V' has a Gaussian law as a real-valued random variable on the
probability space (U, B(U),u). That is, for all v € U there are m, € R
and 6, € Ry, such that, if 6, > 0,

_(smmy)?
(/JO(V/)_1> (A) zy({u cU Vv (u) EA}) = \/217t7/Ae 207 ds,

for all A € B(R). If 6, = 0, then we require that uo (V')~! =3, , the

Dirac measure concentrated at m,,.
We need the following lemma.

Lemma 2.2. Let v be a probability measure on (U, B(U)) and k € N be
such that
/ (o) [F dv(x) < o0 VzeU.
U

Then there is a constant C(v,k) > 0 such that for all hy, ..., h € U,
/| (h1,x) - (b, x) [ dV(x) S CV,R) [ ]| (1]

In particular, the symmetric k-form

(h1,...,h '—>/ hi,x) - (hy,x) dv(x)

s continuous.
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Proof. Let n € N and define

Unz{ZGU:/U}(Z,xﬂkdv(x)gn}.

Then, by construction, U = J;,_; U,. Notice that U, is closed for all
n € N. Indeed, let z € U, and take a sequence U, > Zj—zas j— oo

Then |(z;,x) }k — |{z,x)|F as j — oo and thus, by Fatou’s lemma,

| e avi < timint [ ({279 avia

Jj—oo

so that z € U,,.

Since U is a complete metric space, it follows from the Baire cate-
gory theorem that there is ng such that U, is not nowhere dens There-
fore there are ro > 0 and zo € Uy, such that the closed ball B(zo,ry) C
U,,O = Uy,. Therefore,

/U]<Zo+y,x)|kdv(x)§no Wy € B(0,r0),

and hence, for all y € B(0,r9),

J 10t v = [ fzo+32) = (0.2) [ dvw
U U
<21 [ oty favi)
EUn,

+2k1/U|< 20 .2 [Fdv(x) < 2.
€Uy,

2.1)

Let z € U with ||z|| = 1 and y = rpz so that y € B(0,rp). By (2.1)),

J el v =rg* [ a0 vl < 2norg

'A set A C U is nowhere dense, if A has empty interior.
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Finally, if A;,...,h € U\ {0}, then by Holder’s inequality,

/’wn 'QM|M“

l/k 1/k
/’ |h1|| Vx /‘ el ()>
k

<2 noro .
]

We next characterize Gaussian measures is terms of their Fourier

transforms.

Theorem 2.3 (Characterization of Gaussian measure). A finite measure
uon (U,B(U)) is Gaussian if and only if

‘a(u> — / ei(u,v)y d/J(v) 1(m uyy— (Qu u)
U
where m € U and Q € L(U),Q > 0, with Tr(Q) < co. In this case we

write u = N(m,Q), and m and Q are called the mean and the covariance

operator of u. The measure u is uniquely determined by m and Q.
Proof. Assume that u has Fourier transform
‘i:l(l/l) — el<m7u>_%<Qu7u> .
We must check that for v/ € U* with v/ (u) = (v,u) the measure y, =
po (v')~!is Gaussian on R. For t € R we have, by assumption,
ﬁ(l’v) — eil(m,v>*%t2<Qv,v> .
On the other hand, by the definition of the Fourier transform,

() = [ & qu(w) = [ &0 au(w)

— / & Ay (5) = (1)
R

12
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Therefore, fi,(t) = e (mv)=31*(QvV) and by uniqueness of the Fourier
transform of finite measures on R, the measure g, is Gaussian with mean
m, = (m,v) and covariance 6> = (Qv,v). The parameters m and Q de-
termine u uniquely by the uniqueness of the Fourier transform on U, see
(4, p. 36].

Conversely, assume that u is Gaussian on (U, B(U)) as in Defini-
tion 2.1 Since,

duy(s) = e 20 ds or py,=35y,

we have

L@xww /w )| du(x) /va o,

and it follows from Lemma that

v [ () dut

is continuous. Thus, by the Riesz representation theorem there is a

unique m € U such that

[ v dut) = (m.v).
U

Moreover, we have

/wwﬁw /m%m

and thus the bilinear form

()= [ (o) o) Qu) = o) G, o)
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is continuous by Lemma Hence, by the Riesz representation theo-

rem, there is a symmetric operator Q € L(U) such that
(o) = [ (xh) (e ) () = (o, ) G, o).
Note that Q > 0 because
(@) = [ (5.1 du(x) — (.
U
2
= [ whauo) ~ ([ fehyduto) =0,
U U
In order to determine the Fourier transform of u first note that
(m,v) = / (x,v) du(x) = / sduy(s) = my,
U R

and
(0u) = [ e duto) — ([ ) o))

:/Rs2dyv(s)—</de,uv(s)>2:($‘2,.

Therefore, by (2.2) and the uniqueness of the Fourier transform on R,
av) = (1) = i —30% _ itmy)—3(0vy)

as required.

Finally, we show that Tr(Q) < o. Without loss of generality we may
assume that m = 0. Otherwise, the translated measure f1((A) = u(A +m)
has zero mean and the same covariance operator as u. Let ¢ € (0,00).

Since m = 0, we have

o3 (Qh.h) :/ el{hx) du(x) :/ cos(h,x) du(x).
U U

14



Therefore, using that 1 —cosx < %xz,

| — e 3o _ /(l—cos(hx>)d,u(x)

S —
2 xH<c

Define Q. € L(U), Q. >0, b

(2.3)

p—

[, ) | dua() -+ 24({x < [1x]] > ¢}

(Qchi o) = / ,2) U, ) da(x), o € U,

Xl <e

We have that Tr(Q,) < oo, since

[e55)

Tr(Q.) = Z(chka k) = i/ <€k,x>2dy(x)
=17
(2.4) / z:exz

.X||<Ck

- ux||<c”x”2d’“‘(x) S <o

where we used the monotone convergence theorem to interchange the

sum and integral. We will show that there is ¢ > 0 such that
2.5) (Oh,h) < 2log4(Qch,h), VheU,

which implies that Tr(Q) < 2log4Tr(Q.) < e in view of (2.4). Choose
¢ such that
1

wxeU:|x|| >c} < T

and let i € U be such that (Q.h,h) < 1. Then, (2.3) implies
| 1 1 3
1 —e 2(Qhh) <
© =2tiTw

which yields (Qh,h) < 210g 4. So if h € U is arbitrary but (Q.h,h) # 0,
then we replace i by and deduce (2.5). On the other hand, if

<Qch h)
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(Qch,h) =0, then (Q.nh,nh) =0 <1 for all n € N. Thus, (Qh,h) <
n~22log4. Since this is true for all n € N it follows that (Qh,h) = 0,
which shows (2.3) in this case as well. O

Corollary 2.4. Let u be a Gaussian measure on U with mean m and

covariance operator Q. Then, for all u,v € U,

/U(x,u>U du(x) = (m,u)y,
/ (x —m,u)y (x —m,v)y du(x) = (Qu,v)y,

U
[ =l dutx) = T(©).

Proof. The statement follows by inspecting the proof of Theorem

and is left to the reader as an exercise. O]

Definition 2.5. A U-valued random variable X on a probability space
(Q, F,P), that is, a measurable mapping X : (Q, F,P) — (U, B(U)),
is Gaussian if the law y= PoX~' of X is a Gaussian measure on
(U,B(U)), that is, Po X' = N(m,Q) for some m € U and Q € L(U).

We call m the mean and Q the covariance operator of X.

Proposition 2.6. If X is a U-valued Gaussian random variable with

mean m and covariance operator Q, then for all u,v € U,

E(<X7u>U) = <m=u>U7
E(X —m,u)y(X —m,v)y) = (Qu,v)y,
E(|[X —ml|5) = Tr(Q).

Proof. This follows from Corollary 2.4] by a change of variables. [
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The following proposition gives a representation of a Gaussian ran-

dom variable in terms the eigenpairs of its covariance operator, see
Proposition [I.6]

Proposition 2.7. Let m € U and Q € L(U), Q > 0, with Tr(Q) < e. A
U-valued random variable X on (Q, F ,P) is Gaussian with PoX ! =

N(m,Q) if and only if
(2.6) X=m+ Y vMbBrex.
k=1

where (M, ey) are the eigenpairs of Q and By are independent real ran-
dom variables with Po B, ' = N(0,1) if &y > 0 and By = 0 otherwise.
The series in converges in Lr(Q, F,P;U).

Proof. Let X be Gaussian with Po X! = N(m, Q). Since {e; }sen is an
orthonormal basis for U, it follows that, for fixed ® € Q,

X((D) = ;<X((D) , €k>€k.

Since X is Gaussian we have that (X,e;) is a real Gaussian random

variable. By Proposition [2.6| we have
E((X,er)) = (m,ex),
E((X —m,ex) (X —m,e;)) = (Qex,er) = MOy
Define 1
A 2(X —myer), if A >0,
0, if Ay =0.

B =

If A4 > 0, then By is a Gaussian random variable with P o B]?l =N(0,1)
and X =m+ Y7 | \/ MPrek. It remains to show that the random vari-
ables {By} are independent. We will use the well-known fact that if

17



Y = (11,...,Y,) is an R"-valued Gaussian random variable, then the
family {Y;}}_,, of real random variables are independent if and only
if for k # [, E(Y;Y;) = 0. Here, B = (B1,...,Bn), where n € N is fixed
but arbitrary, is an R"-valued Gaussian random variable. Indeed, since

X is Gaussian it follows that, for any v € R”,
L _1 _1
Bvire =Y viBr=Y, vl 2 (X —m,e)y = <X, Y v, 2€k> +C
k=1 D >0 >0 v

is real Gaussian and, hence, that B is R"-valued Gaussian. Moreover,
E(BiP;) = Oy for k # [ so that By, ..., B, are independent.

Finally, the series in (2.6) converges in L, (Q, F,P;U), since by Par-
seval’s identity and the fact that ;7 ; Ay = Tr(Q) < oo,

2 n ,
LQ.FPU) /Q H];n’vk Brex|  dP
:E(Hké%%ﬁkek 2U> =E<éxk|3g>

- i}"kE(B%) = i;”k — 0 asm,n — oo,
k=n k=n

moo1
| ¥ e
k=n

Conversely, let By, ex and Ay be as assumed. Define
X=m+ Y VMPBrex,
k=1

which converges in L, (Q, F,P;U) by the above computation. We have
to show that X is a Gaussian random variable with mean m and covari-

ance operator Q. If u € U, then
@D (mt Y VhBrewu) = (mu) + Y, v/ MeBilewsu)
k=1 k=1

18



is real a real Gaussian random variable since PBi,...,[, are indepen-
dent Gaussian random variables. Moreover, the series on the right side
of converges in L(Q, F,P;R) and hence its limit (X,u) is real
Gaussian. Therefore, X is a Gaussian random variable. Finally, by the
assumption on {fy}, for the mean we obtain E ((X,u)) = (m,u) and for

the covariance we have

E(X —m,u)(X —m,v))

I
=
/~
S

i VMBrer, u> <g’1 VBrer, V>)

MAE(Bifr) ek, u) (er,v)

~
I
—_

I
gk
s

T
I
=
i

I

I
s

i (ex, u) {ex,v) = (Qu,v).

~
I
—_

]

Corollary 2.8 (Existence of Gaussian measures). For each m € U and
Qe L(U), Q >0, with Tr(Q) < oo, there exists u= N(m,Q).

Proof. For the given m and Q, construct a Gaussian random variable X
according to Proposition 2.7/ and take u = Po X! [

Remark 2.9. In the above construction we assumed that there exist a
probability space with a countably infinite family of independent real
Gaussian random variables. This is a nontrivial fact from probability

theory.

Definition 2.10. Ler (Q, F,P) be a probability space and I C R be an
interval (possibly infinite). A U-valued stochastic process {X (t)}:cr is
a set of U-valued random variables X (t) on (Q, F ,P) where t € I. Two
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stochastic processes {X (t) };e; and {Y (t) };er are versions (or modifica-

tions) of each other, if
P{X(t)#Y(t)}) =0, foralltel.
They are indistinguishable (or indistinguishable versions of each other),
if
P(U{X(r) ” Y(t)}) —0.

tel

Since 7 is uncountable, being indistinguishable is much stronger than
being versions. This is because the exceptional null sets, where the pro-
cesses do not coincide, may depend on ¢, with # ranging in an uncount-

able set in case two processes are only versions of each other.

Definition 2.11. A U-valued stochastic process {W (t)};>0 is called a

(nuclear) Q-Wiener process if
1. W(0)=0;

2. {W(t)};>0 has continuous paths almost surely, that is, the map-

ping t — W (t,®) is continuous for almost every ® € €,

3. {W(t)};>0 has independent increments, that is, for any finite par-
tition 0 =1y <t < -+ <t—1 <t, < o the random variables
W(t),W(t) —W(t1), - ,W(ty) —W(tm—1), are independent;

4. the increments have Gaussian laws, more precisely,

Po(W(t)—W(s)) "' =N(0,(r—5)0), 0<s<rt.
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It follows from the definition that Tr(Q) < o and that we may as well
assume that {W () },>0 has continuous paths for all ® € Q by re-defining

W (t,®) = 0 for those ® where ¢ — W (¢, ®) is not continuous.

Proposition 2.12 (Representation of Q-Wiener process). Let Q € L(U),
Q > 0, with Tr(Q) < eo. A U-valued process {W (t)};>0 is a U-valued
Q-Wiener process if and only if

(2.8) W)= Y VABe(r)er.
k=1

where (A, ex) are the eigenpairs of Q and {Pi(t) };>0 are independent
real-valued standard Brownian motions on (Q, F,P). For each T > 0,
the series in (2.8) converges in L (Q, F,P;C([0,T],U)). In particular,
forevery Q € L(U) with Q > 0 and Tr(Q) < oo, there exists a Q-Wiener

process.

Proof. Let {W(t)};>0 be a Q-Wiener process. Since
PoW()~! =N(0,10),

it follows, as in the proof of Proposition that
W(t) =Y vV MBi(1)ex,
k=1

where

A 2 (W(D),e),  if >0,
0, if A =0,

Bi(r) =

and the sum converges in Ly(Q, F,P;U). Also, PoPBi(t)~! = N(0,¢)
and the random variables {B;(7) }xen are independent, for fixed 7. We
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have to show that, in fact, {B(-) }ren is a family of independent standard

real Brownian motions. Since

2.9)  Brltn) = Brlta1) = N> (W(ta) = W(ta1)sex), 0 <ty 1 < tn,

for all k € N, it follows that B;(0) = 0, {Bx(¢) };>0 has continuous paths
almost surely, {B(¢)}:>0 has independent increments and P o (B (¢) —
Bk(s))fl = N(0,¢ —s) for t > s. It remains to show that {Bx(-) }xen is
a family of independent stochastic processes. Take {k;}”_; C N distinct

and 0 =1y <t <--- <t, < oo. We must show that the c-algebras

G(Bkl (tl),...,Bkl ([m)),...,G(Bkn(l‘l),...,Bkn(tm))

are independent. We proceed by induction on m. For m = 1, the random
variables {By,(¢1)}"_, are independent as observed before. Now take

0=1y<t; <--- <ty+1 and assume that

G(Bkl (t1)7"'7Bk1 (tm))a"'7G<Bkn<t1)""7Bkn(tm>)

are independent. Note first that

(B (1), -, Br; (tmr1)) = S (Br, (1), - -, B (tm) s Bies (bmt-1) — B (1) ) -

Also, (2.9) and the fact that W(z,) — W(t,—1) is Gaussian imply, as
in the proof of Proposition that the random variables {PB(t,) —
Br(tn—1) 21;“21 are independent. Then, for A;; € B(R),i=1,...,n, j
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which finishes the proof of the induction step and hence the induction.
Conversely, let {Bx(-) }xen and Q be given as in the statement of the

theorem. Define
(2.10) W(t) =Y vVMBr(t)ex,
k=1

where for fixed ¢ is the series converges in L, (Q, F,P;U) as Q has fi-
nite trace. It is straightforward to check that W(0) = 0, {W(¢)},>0 has
independent Gaussian increments with the required covariance operator
(compare with the proof of Proposition[2.7). The almost sure continuity
of the paths will follow from the L, (Q, F,P;C([0,T],U)) convergence

of (2.10). In order to prove this we recall that Doob’s maximal inequal-
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ity states that if {M(z)},>0 is a real-valued martingale, then

1

(E( sup |M(t)|P))’l’ gﬁ(E(\M(T)V’))p, | <p<oo.

0<t<T

It is well known that a real-valued Brownian motion is a martingale

(with respect to itself) and therefore

£ sp |5 vBa]) = E( sp § ru0)

0<t<T 0<t<T k=p

< Z }VkE( sup Pr(t) ) <4 Z ME (B(T)?) =4T i M — 0,
k=n k=n

0<t<T

as n — oo. The fact that the space L, (Q, F,P;C([0,T],U)) is complete
finishes the proof. U

Remark 2.13. As in the proof of the existence of a Gaussian measure,
we used here the nontrivial fact that there is a probability space with
a countably infinite set of independent Brownian motions. Even the
existence of a single Brownian motion is far from obvious. We refer to

the standard literature on probability theory.

2.2 Wiener processes with respect to a filtration

We start with a few definitions.

Definition 2.14. A filtration is a family of 6-algebras { }}} o With J: C
Fs C F fort <s. A filtration {%}t>0 on (Q, F,P) is called normal if

o Fo contains all sets A € F such that P(A) = 0;
o Fi="Fy =Nt Fs, Vt€[0,T].
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Definition 2.15. A Q-Wiener process {W(t)} />0 is called a Q-Wiener
process with respect to the filtration { F } o0 ¥

o {W(t)}i>0 is adapted to { F; }i>0, that is, W(t) is F; measurable
forallt > 0;

o the random variable W (t) — W (s) is independent of F; for all fixed
s € [0,1].

To see that for a given O-Wiener process {W(t) } +~p there is always
a normal filtration { %} _, such that {W(¢)} ., becomes a Q-Wiener

process with respect to { F } 1~ define

N:={A€ F:P(A)=0}, F=o(W(r):r<s), F):=oc(NUF)
and

.11 Fo=F.

r>s

Proposition 2.16. If {W(t) } >0 I8 a U-valued Q-Wiener process on the
measure space (Q, F ,P), then {W(t)}
respect to the normal filtration defined in (2.17]).

is a Q-Wiener process with

Proof. That {W (t)};>¢ is adapted to { % };>0 is clear from the construc-
tion. Thus, we only need to show that W(¢) — W (s) independent of ¥
for all fixed s € [0,7]. We first show that W (¢) — W (s) is independent of
,‘NFS. Fix0<s<randtake 0 <t <t <---<t, <s. Then

S(W(t1),....W(ta)) =c(W(t1),W(t2) =W (t1),...,W(tn) = W(tn_1))
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is independent of W(r) — W(s) as {W(f)};>o has independent incre-
ments. Then W (z) — W (s) is also independent of #. Finally, we show
that W (¢) — W (s) is independent of ;. By the continuity of paths,
T 1
W(r)—W(s)=lim (W(t)—W(s+1)).

n—oo

If n is large enough (such that s + % <t),then W(t) —W(s+ }l) is inde-
pendent of ,‘7—'3 (i 1 O s and hence of %. Therefore, W(¢) — W (s) is also
independent of nfs. [

2.3 Martingales in Banach space

Let E be a Banach space. An E-valued random variable X on (Q, F,P)
is Bochner integrable if X : (Q,F,P) — (E,B(E)) is measurable and
Jo [ X (®)|| dP(®) < . A Banach space E is called separable if there is
a countable dense subset of E. If E is separable then X is measurable if
and only if [(X) : (Q, F,P) — (R, B(R)) is measurable for all [ € E* as
shown in Corollary 2.19|below.

Lemma 2.17. Let E be a separable Banach space. Then there is a
countable subset {I,},en C E* such that for all x,y € E, x # y, there is
Ly € {In}neN with Li+(x) # Ly (y), that is, {I,}neN separates the points

of E. Moreover, ||x|| = sup,cn In(X).

Proof. Since E is separable, there is {x,},eN C E such that {x,},eN is
dense in E. By the Hahn-Banach theorem, there is {/,},en C E* such
that 1,,(x,) = ||x,|| and ||l,|| = 1. If x € E is arbitrary, then there is a

sequence {x,, }keN C {Xx }neN such that x,, — x as k — co. We have
I (X) = by (=X %) + by () = D (x =2 ) =+ (|3, |-
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Since ||x, || — [|x]| and [£y, (x = xn )| < (|l || £ [lx = X0, || = [|x =X [| = 0
as k — oo, we conclude that [, (x) — ||x|| as k — oo. It follows that there
is n* such that /,«(x) > 0 if x # 0. Thus, {/,} separates the points of
E. Finally, since I,(x) < ||x|| for all x € E, n € N, and [, (x) — ||x|| as
k — oo, it follows that ||x|| = sup,,cn/x(x) forall x € E. O

Lemma 2.18. If E is a separable Banach space and

2.12) Ci= {{er:l(x)goc}}

acR, IcE*’
then 6(C) = B(E).
Proof. By Lemma 2.17| there is {l, },en C E* with ||x|| = sup,,cxln(x)

forall x € E. Let a € E and r > 0, and denote the open ball centered at
a with radius r by B(a,r). Then,

m=1

— U {reE:x—a| <r(1—1)
m=1

— U ﬂ{er:ln(x—a)Sr(l—%)}
m=1n=1

Thus 6(C) contains open balls of E and therefore, B(E) C 6(C). But
6(C) C ‘B(E), since all [ € E* are continuous. Thus, B(E) =o(C). O

Corollary 2.19 (Weak versus strong measurability). If E is a separable
Banach space and (., F ,P) is a measure space, then X is an E-valued
random variable if and only if [(X) is an R-valued random variable for
all | € E*. In other words: X is strongly measurable if and only if it is

weakly measurable.
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Proof. If X is measurable, then /(X) is measurable for all / € E*, since
[ is continuous. Conversely, since B(E) = o(C), where C is defined in
[2.12), it is enough to show that X! (C) € ¥ forall C € C. Let[ € E*
and take a typical set C = {x € E : [(x) < a} from C. Since [(X) is

measurable, we have
X)) ={weQ:X(w)eCl={wecQ:(X(0) <a}c ¥F.
]

Proposition 2.20 (Conditional expectation). Let E be a real separable
Banach space, let X be an E-valued Bochner integrable random vari-
able on (Q, F ,P), andlet G C F be a 6-algebra. Then there is a unique,
up to a set of P-measure 0, Bochner integrable E-valued G-measurable

random variable Z such that

(2.13) /XdP:/ZdP forall A € G.
A A

The random variable Z is called the conditional expectation of X given
G and is denoted by Z = E(X|G). Furthermore,

(2.14) IEX|G)| <E(|X||G) P-ae.

Proof. We first prove uniqueness. Suppose that Z;,Z, are Bochner inte-

grable and G-measurable E-valued random variables such that

/XdP:/ZldP:/szP VA€ G.
A A A

Since E is separable, there is a subset {/, },en that separates the points
of E. Foralln € Nand A € G we have

1,1(/Az]dp> :1,,</Azzdp),
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which implies, by the continuity of /,, that

/Aln(Zl)dP:/Aln(Zz)dP.

Therefore,
/ (In(Z1) — 1n(Z2)) P =0, WneN, A€ G.
A
By taking first A to be {® € Q : [,(Z;(®)) > 1,(Z2(®))}, then to be
{w € Q:1,(Z1(mw) < I,(Z2(w))} (both of these sets belong to §), it
follows that [,,(Z,) = I,(Z,), P-a.e. Therefore, the set
Qp = m {(D cQ: ln(Zl ((x))) = ln(Zz(O)))}

neN
satisfies P(Qp) = 1. If @ € Qo, then [,,(Z; (®)) = 1,(Z2(w)) for all n € N.
But this is only possible if Z;(®) = Z;(®) for all ® € Qqy as {l,; }neN
separates points. This finishes the proof the uniqueness part of the state-
ment.
Next we show existence. Assume first that X is a simple random

variable, that is, there are X1,...,Xy € E and disjoint sets A1, ..., A, € F

such that N
X =Y Xcla,
k=1
and define
N
(2.15) Z=Y XE(l4]G).
k=1

It is clear from the definition, by the properties of the conditional ex-
pectation of real random variables, that Z is G-measurable and that
J4ZdP = [,XdP forall A € G. Moreover,

N N
170 < X2 B0 ]6) = E( X el 1] 6) = E(Ix1]6).
=1 =1
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Taking expectations and using the law of double expectation for real

random variables, we get

(2.16) E(|zI) < E(E(Ix]|G) ) = E(IX])-

Let X be a general E-valued Bochner-integrable random variable. Then
then there is a sequence of simple functions X,, such that || X, (o) —
X(m)|| — 0 as n — 0 in a decreasing way, see, for example, [4, Lemma
1.1]. By Lebesgue’s dominated convergence theorem this also holds in
Li(Q,F,P;E). Define Z, as in (2.13), replacing X by X,. Then, by
(2.16)), for all m,n € N,

E([1Zn = Zall) < E([| X0 — Xal])-

Thus, {Z,} is a Cauchy sequence in L (Q, G,P;E) as {X,} is a Cauchy
sequence in L;(Q, F,P;E). Since L1(Q, G,P;E) is complete, there ex-
ists Z € L1(Q,G,P;E) such that Z, — Z in L;(Q, G,P;E) and, in par-
ticular, Z is G-measurable. Then, for allA € G,

/XdP: lim X,,dP = lim XdP—hm/Z dP = /ZdP
A

Finally, since Z, — Z asn — o in L1 (Q, G, P;E), it follows that there is
a subsequence {Z,, } of {Z,} which converges P-a.e. to Z. Clearly, the
corresponding subsequence X, — X as k — oo both in L;(Q, F,P;E)

and pointwise for all ® € Q. Therefore, P-a.e.,

IEXIG) =11Z]| = lim [|Z,,]| < lim E([X,,][|G) = E(IX]|]G)-
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For later reference we note the "law of double expectation”
(2.17) E<E(X| g)) —E(X)
which is obtained by taking A = Q in (2.13).

Lemma 2.21. If E is a separable Banach space and X is an E-valued
random variable on (Q, F ,P) with E(||X||) < e and G C F, then

(2.18) 1(E(X|G)) =E(I(X)|G), foralll €E".

Proof. By definition, the right hand side of (2.18) is G-measurable. The

left hand side is G-measurable, too, since [ is continuous. For allA € G,

/Z(E(X\g))dP:l(/E(X\g)dP) :l(/XdP)
A A A
:/l(X)dP:/E(l(X)\g)dP.
A A
By uniqueness of conditional expectation the statement follows. [

Corollary 2.22. Let E be a separable Banach space, let the random
variable X € Li(Q,F ,P;E), and let G C F be a G-algebra. If X is
independent of G, then 1(X) is independent of G for all | € E* and

E(X[G) = E(X).
Proof. Letl € E*,A € B(R), and B € G. Then

P({l(X)eAYNB)=P({X €I"'(A)} NB})
= P({X e I"'(4)}) P(B) = P({l(X) € A}) P(B),

and hence /(X) is independent of G. Thus, using the corresponding re-
sult for real random variables, and Lemma we get [(E(X|G)) =
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E(I(X)|G) =E(I(X)) =1(E(X)) almost surely. The proof can be com-
pleted in the same fashion as in the proof of the uniqueness part of The-
orem [2.20} by taking / from a countable subset of E* separating points
of E. 0

Definition 2.23. Let M(t),~ be an E-valued stochastic process on a
probability space (Q, F ,P) and let { F; },>0 be a filtration on (Q, F , P).
The process {M(t)};>0 is called a martingale with respect to {F; }1>0
(or {M(1) }i=0 is an { Ji}i=o-martingale) if

1. E(||M(2)||) < oo fort >0,
2. {M(t)}s>0 is adapted to { F; } >0,
3. E(M(1)|Fs) =M(s) for 0 <s <t < co.

Note that, by (2.17), E(M(s)) = E(E(M(t) | %)) =E(M(t)) and thus
E(M(t)) =E(M(0)) for t > 0. This shows that, in the first condition of
the definition, it would be enough to assume that E(||M(0)]|) < . The-
orem below shows that known theorems about real-valued martin-
gales can be transferred to Banach space-valued martingales by applying

functionals.

Theorem 2.24. Let E be a separable Banach space, let {M(t) };>0 be an
E-valued process on (Q, F,P), and let { F: };>0 C F be a filtration. If
{M(t)}i>0 is an { F }r>0-martingale, then {I(M(t)) };>0 is a real-valued
{F }i>0-martingale for all 1 € E*. If E(||M(t)||) < oo forallt > 0, then

the converse holds as well.

32



Proof. Assume first that {M() };>0 is an { F };>o-martingale. Then, for
alll e E*,

E(U(0)) = [ 10ae)|aP < [ 1]1M(0)] aP
= [HEQMO)]) < o

Since M(t) is F;-measurable for all # > 0 and [ is continuous, it follows
that /(M (z)) is F;-measurable for all > 0 and [ € E*. Finally, by Lemma

forall [ € E*,
E((M(0)|%) = (EM)|F)) = (M(s), 0<s<r.

Therefore, /(M) is an { %, },>0-martingale.

We now prove the converse statement. By assumption, E(||M(z)]]) <
oo. The measurability of M(¢) with respect to %, for all # > 0, follows
from that of /(M(t)) by Corollary Since {I(M(t))}+>0 is a martin-
gale for all / € E* it follows that

E(I(M(1)|F) = [(M(5), 0<s<t,
which implies, by Lemma [2.21] that
HEM()|F5)) =1(M(5)), O0<s<t.

The proof can be completed, as in the proof of the uniqueness part of
Theorem [2.20} by taking / from a countable subset of E* separating
points of E. [

Remark 2.25. The assumption E(||M(7)||) < e in Theorem is es-
sential, that is, it is possible that /(Z) € L, (Q, F,P;R) for all / € E* but
Z ¢ L (Q,,‘F,P;E).
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Proof. Let E := c( be the Banach space of all complex sequences X =
{X tnen with lim, .. X;, = 0, endowed with norm || X || = sup,cn | Xa|-
Let (Q, F,P) = ([0,1],B([0,1]),m), where m is the Lebesgue measure
on [0,1], and let Z = (Z,),eN be given by Z,(®) = n1(07%](0)) for m €
[0,1]. It is well known that ¢ can be identified with /;, the space of
complex sequences [ = {I,,} suchthat};”_, |/,| < e, endowed with norm
|| = X |In]|. It is also known that cg is separable. If I = {I,} €
then [(Z) =Y, , lpnly, 1 and /(Z) is thus measurable for all / € cj.
Therefore, by Lemma Z is measurable. Also,

(o] 1 oo
D)<Y [ alnt g zydm= Y i) = i,
n=1 0 " n=1

and thus [(Z) € Li(Q, F,P;R) for all [ € ¢f. But ||Z(0)|| =nif o €
(n+1’ 11 and hence

(o)

/HZ )| dm(o 2/ 1Z(0)]] dm(w Zn

(n-&-l’n} n=1

O

Recall that Jensen’s inequality for real-valued conditional expecta-
tion states that if ¢ : R — R is convex, if the random variables X, y(X) €
Li(Q,F,P;R), and if G C ¥ is a c-algebra, then

(2.19) V(EX|G)) <E(y(X)[G).

Theorem 2.26 (Doob’s maximal inequality). Let E be a separable Ba-
nach space and let {M(t)},>0 be an E-valued {J;};>0-martingale. If
M(t) € L,(Q,F,P;E), t >0, for some p € [1,00), then {||M(t)||” };>0 is

a non-negative real-valued { F; }>o-submartingale, that is,

(2.20) IM(s)||” <E(||M(1)||”|F), 0<s<t.
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Moreover, if p>1and T > 0, then

E(,;‘;F’T ] M) < (S 2) EQM@|P)

Proof. That {||M(¢)||”}+>0 is a non-negative real-valued {7 };>0-sub-
martingale follows from Definition [2.23] (2.14)), and Jensen’s inequality
with y(x) = x”, because, for 0 < s <t,
p
IM(6)]1? = [EM)|5) 17 < (B(M )| 5))” <E(MOIP|7)).

Now the rest of the proof is a direct consequence of Doob’s maximal

inequality for positive real-valued submartingales. [

Next we define one of the most important spaces that we will work

with when defining the stochastic integral. Let 7 > 0 and define
MZ(E) == {{M(f)};e[o,T] :t — M(t) is continuous P-a.s.,
{M(t) }scp0,7) 1s an E-valued { # },¢[o r-martingale,

and sup HM(t)HZdP<<>o}
tel0,7]/

endowed with norm

In the last equality we used E(||M(¢)||)? < E(||M(T)||)?, which follows
from (2.20) by taking expectations.

Proposition 2.27. The space M?(E) is a Banach space and for all M €
MZ(E), we have

1/2
@20 [Mlap < (E( sup IM@)2)) " < 20M] agz e
t€[0,
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Proof. The first inequality in (2.21)) is obvious and the second one fol-
lows immediately from Theorem Let {M,} C M}(E) be a Cauchy
sequence. Then, by (2.21)), it is a Cauchy sequence in

X :=L(Q,F,P;C([0,T],E))

as well. But X is a Banach space. Thus {M,} converges to an almost
surely continuous process M in X, and also in the norm of SM%(E)
in view of (2.21). Finally, to see that M is a martingale, we observe
that M, (t) — M in Lr(Q, F ,P;E), forallt € [0,T] and hence also in
Li(Q,F,P;E), as n — oo. Thus, there is a subsequence {M,, } of {M,},
which converges to M almost surely, too. If 0 <5 <7 < T, then M,, (s) =
E(M,, ()| Fs) almost surely. By letting k — oo the proof is complete. [

We now apply this to a Q-Wiener process on an Hilbert space U as
in Proposition

Proposition 2.28. Let {W(t)};>0 be a U-valued Q-Wiener process with
respect to a normal filtration {F };>0 on (Q, F,P). Then W € MZ(U)
forall T > 0.

Proof. By definition W € C([0,T],U) almost surely and
E(|W()|?) =:Tr(Q) < T Tr(Q) < o, forallt e [0,T].

Also, by assumption, {W(z)},>0 is adapted to {¥ },>0. Thus, it re-
mains to show that W(s) = E(W ()| %) for 0 < s <t or, equivalently,
JuW(s)dP= [,W(t)dP for 0 <s<rand A € F. But W(t) —W(s) is
independent of ¥, by assumption and thus, by Corollary

/A(W( )~ W(s))dP = /E W(s)|Fs)dP
:/AdPEWt —W(s)) =0.



O

2.4 Measurability of operator valued random variables

We are going to integrate operator-valued processes against a Wiener
process. We therefore discuss briefly various concepts of measurabil-
ity of operator-valued random variables. Since the space of bounded
linear operators L(U,H) becomes a Banach space with respect to the
operator norm ||T'|| = sup<; [|Tx||, T € L(U,H), it is tempting to en-
dow L(U,H) with its uniform Borel G-algebra By, (L(U,H)), that is,

the smallest 6-algebra which contains all open balls
B.(T)={LeL(U,H):||L-T| <r}, r>0,Te€L(U,H).

This leads to a 6-algebra with too many measurable sets. To see this, we
show that, in general, L(U, H) is not separable and thus it has too many
open sets. This implies that the class of measurable L(U,H)-valued
functions is so small that even very simple operator-valued functions are
not measurable. Let U := H := L»(R). We show that (L(H), || -||) is not
separable. Define the function S: R — L(H) by (S(¢)f)(x) = f(x+1),
feH. Ift >sand f € H, then

1S@)f = S(s)flle = [[S(s) (St =) f = )l = IS —9).f = Flla-

Take f € H such that supp(f) C (5%,%5*). Then, supp(f) Nsupp(S(r —
s)f) =0, and thus f and S(¢ —s) f are orthogonal in H. Therefore,

IS —s)f = £I2 = 1S = s) £ 17 + L£1° =20 £11%,

which implies that ||S(¢) f — S(s) f||> = 2| f||>. Hence, ||S(z) — S(s)|| >
/2 implying that (L(H),|| - ||) is not separable. Next, consider S as a
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mapping
S: (R,B(R)) — (L(H), Buni(L(H))).

Consider a set A ¢ B(R) and define

2
D:=] {GeL(H) 1G-S0 < i}.
2
reA

This is an open set and hence D C Byyi(L(H)). But S™1(D) = {s e R:
S(s) € D} = A. Therefore, S is not measurable.

Instead we consider the strong Borel 6-algebra of L(U,H) denoted
by By (L(U,H)), or simply B(L(U,H), which is defined to be the small-

est o-algebra containing all sets of the form
{T €LU,H): Tx€A, Ac B(H), x € U}.

Definition 2.29. Let (Q,F) be a measure space and G C F be a ©-
algebra. A mapping L: (Q,F) — L(U,H) is said to be strongly G-
measurable if it is G-measurable if we endow L(U,H) with the strong
Borel c-algebra By (L(U,H)), that is, if Lx : (Q,F) — (H,B(H)) is
G-measurable for all x € U. If G = F, then L is said to be strongly

measurable.

One can check that the mapping S considered above is continuous
with respect to the strong operator topology of L(H), that is,  — S()x
is continuous for every x € H, and it is therefore strongly measurable.

Thus, in general, By (L(U,H)) € Buni(L(U,H)) (strict inclusion).
To see that this is not always the case, consider L(H,R), where H is sep-
arable Hilbert space. By the Riesz representation theorem L(H,R) and

H are isometrically isomorphic and hence L(H,R) is separable. Thus,
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if we identify L(H,R) and H under the Riesz isomorphism, then by
Lemma[2.18]

Bui(L(H,R))=BH)=0c({x:l(x) <a,l € H", a € R})
=c({x: (yx) <o, ye H, a € R})
= By (L(H,R)).

Next, we prove that B(L,(U,H)) C By (L(U,H)) which implies, in
particular, that L, (U, H) is a strongly measurable subset of L(U,H).

Lemma 2.30. The containment B(Ly(U,H)) C By (L(U,H)) holds.

Proof. Tt is enough to show that every open ball in L,(U,H) also be-
longs to By (L(U,H)). Indeed, if {f;} is an orthonormal basis for U
and Ty € Lr(U,H), then

{T € Ly(U,H) : ||T - Ty|z, < r}

—{reLw.n): |7l <}

(2.22) :mL_Jl {TeLw .1 |7 - D, <01 - i)}
- U {revwm: L ir-math<fa-1)
:Olﬁl{TeL i T—To)felf <r’(1— ,:1)}
The map

—l—
LWU,H) —H":=Hx--xH—R

T ((T=To)firee (T —To)fy) — YT = To) fe
k=1
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is continuous if we endow L(U, H) with the strong topology, H" with the
product topology and R with the natural topology. Thus it is measurable
with respect to the Borel G-algebras generated by the respective topolo-
gies. Thus, the set in belongs to Bs(L(U,H)) and the proof is

complete. U
Finally, we will need the following lemma.

Lemma 2.31. Let L be and L(U,H)-valued strongly measurable map-

ping and § be a U-valued measurable mapping on a measurable space
(Q, F). Then LE is an H-valued measurable mapping on (Q, F).

Proof. Since H is separable, LE is measurable if and only if (L, x) is
R-valued measurable for all x € H by Lemma Let {e;} be an or-
thonormal basis for U. Then, (LE,x) = (§,L*x) = Y1 (E,ex)(x,Ley) is
measurable as both § and Ley, are measurable and hence weakly measur-

able and the sum converges for all ® € Q. [

3 The stochastic integral for nuclear Wiener

processes

Let (U,(-,-)y) and (H,(-,-)) be separable Hilbert spaces and assume
that {W () },c[o,r] is @ U-valued O-Wiener process on a probability space
(Q, ¥, P) with respect to the normal filtration { % },c[0, 7], where T >0
is fixed. Let Q7 = [0,7] x Q and Pr = m x P, where m is the Lebesgue
measure on [0, 7], be the product measure on Q7. We first define the

stochastic integral for elementary processes.
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3.1 The stochastic integral for elementary processes

Definition 3.1. An L(U,H)-valued process {®(t)}c(o,r] is called ele-
mentary if there exist 0 =ty <t} < --- <ty =T, N € N, such that

N—1
D(t) = Z @14, 1,01(), t€[0,T],
m=0
where
o &, :(Q F)— L(U,H) is strongly F, -measurable;

o @, takes only a finite number of values in L(U,H), that is,

k’ﬂ
Py (0) = ) lor(@)L],
j=1

where L' € L(U,H) and Q = U];";l Q7 with the union being dis-
joint.
We denote the (linear) space of elementary process by ‘E.
For ® € ‘E, define
t N—1
(3.1) Int(P)(t) :/ QAW = ) D,(AW, (1)), 1€[0,T],
0 n=0
where

AW, (1) = W (tyr1 At) =W (t, AT,

and r A s = min(t,s). Note that AW, (0) = 0 and that for ¢ € (., ;11| we

have
W(ths1) —W(ty), t, <ty

AW, (1) = S W(t) — W (1), th = I,

0, Iy > 1.
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Note also that AW, () is F-measurable and that AW,,(¢) is independent
of ¥ for s <1t,. We recall the following result for real-valued random

variables.

Lemma 3.2. Let X and Y be real-valued random variables on (Q, F , P)
and let G C F be a c-algebra. If X is G-measurable and Y,XY €
Li(Q,F,P;R), then E(XY|G) =XE(Y|G).

Proof. The proof is elementary and is left to the reader. 0

Proposition 3.3. For all ® € E, the integral {Int(®)(t)},c(0,7) defined
in (3.1) is a continuous square integrable { J; }c|o r)-martingale, that is,
{Int(®) () }ej0,7) € Mz (H).

Proof. LetM(t) := [;®dW, € [0,T]. Then, M : [0,T] — H is continu-
ous a.s., because AW, (¢) : [0,T] — U is continuous a.s. and ®: U — H is

continuous for all ® € Q. The process {M(¢)},(o,7) is square integrable

because

E(|M(0)|?) = E(HN;;@,,@W”([))HZ)

N—1
<E( Y 19l 0.0 I1AW: ()17
n:Ok,, N-1
<max (Y 1L wm) X E(AW:(0)]2), 1 € [0,T].
j=1 non
Finally, we show that M is an {; },c[o r]-martingale. Clearly, M is in-
tegrable because E(||M(1)||) < E(||[M(t)||?) < o, t € [0,T]. Each term
D, (AW, (1)) in M(t), and hence also M(z), is F-measurable in view of
Lemma To prove the martingale property, that is,

Ky t
/ cde:E(/ D AW
0 0
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lett € (ty,tx1], s € (t7,441], and s < ¢, 1 < k. Then

/Ot‘de = ;‘I’n(AWn(f)) — (W (s)) + D (W(s))

-1
= Y Pu(AWL (1)) +Bi(W(s) =W (1))

n=0
N—1
+ (W (11 At) =W (s))+ Y, Pu(AW,(1))
n=I+1
l N—1
=) Du(AWL(s)) + (W (111 At) =W (s))+ Y, Pu(AW,(2)).
n=0 n=I[+1
Therefore,
/cde}; = /cdest)

N—1
HE(R (W (1141 At) —W(s))| %) +E( Y @, (AW,(1))
I+1

)

We saw that [y ®@dW is Fs-measurable and hence E([; ®dW|¥F;) =
Jo®dW. For the second term, let {e;} be an orthonormal basis of
U. Then, for all x € H, using that ®; is strongly (hence weakly) ¥;-
measurable and that W (¢, As) is independent of 75, by Lemma[3.2]

(E(@1(W (11170 =W ()| % ) x)

—ZE( tl+1 /\t W(s),ek)(q)lek,x) }})
:Z @lek,x E( W<tl+l /\t) 6k ,‘7‘})
k
=Y (Pre, )E((W (i1 A1) — W (s),er)) =0.
k

This shows that E(®;(W (1,1 At) —W(s))| Fs) = 0. The rest of the terms
are of the form E(®,,(W(t) —W(0)| %)), where s <6 <1<t 1, < 0.
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Let A € ¥,. Then

/ACIDm(W(‘c)—W(G))dP:/A;IQTL;”(W(‘c)—W(G))dP

Since A € 5 C Js and Q' € ¥, C F5 and W(t) — W(o) is independent
of ¥, it follows from Corollary and the definition of the condi-

tional expectation that

AﬂQ’"

ZL"/ Wc-W(c))dp:ZLg/ E(W (1) - W(o)| Fo)dP
_ j .

Thus, by the uniqueness of the conditional expectation, it follows that

E(®,(W(t) -W(0)| %)) = 0. B
Remark 3.4. Since M = [ ®dW is a martingale it follows that
E(/()tQDdW) — E(M(0)) = 0.
For ® € ‘E, define

|/l = (E / |es)ov|”

or, equivalently,

Ly(U,H) ds)) "

ol =E( [ (5)12ds).

The following identity, called the It6-isometry, will be crucial when we

extend the stochastic integral to a larger class of integrands.
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Proposition 3.5 (Ito-isometry). If ® € ‘E, then

oo | saw) -u( ] ovie

or, equivalently,

ds) ,
Ly(UH)

| [ oaw] . =i
0 My (H)

Proof. Let ® € ‘E. By definition,

T N—1
/ QAW = ) D, (AW,),
0 n=0

where AW, = W (t,11) — W (t,). Then,
N-1

H/ cdeH << Z D, AW, Z AWy ) )

_E< Z |2 AW,|7) +2E( Y (@AW, @AW}

m<n

=T+ 1.

We will show that 7 = ||®||% and that T, = 0. Let {f }ten be an or-
thonormal basis of H and {e; }ren be an orthonormal basis of U. Then,
using Parseval’s formula, the Monotone Convergence Theorem, and the

law of double expectation,

E(||<1>,,AWn||2> = ( l Y (D, AWy, f; 2) ZE( (D AW, 1) )

— Y E(E(@aW,. /)| 7)) = L E(E((aW,, @37 7,) ).
I I
By Parseval’s formula in U,

(W@ = (L (AW ) (@) )

k

- (ZM\(A%, ek > (Zakbk =Y awajbib;.

k k
=day :bk J

45



Thus,

E<<AWn,CI):;fl>2 ﬂ"tn> :E<Zakajbkbj ﬂ"tn>
k.j
(3.3) - ZE(akajbkbj 55”)
k.j
(3.4) =Y aa;E(bibj| F,,) = Y aka;E(bibj)
k,j k,j

= ) {fi, @uew) (fi, Pae ) E((AW,, ex) (AW, )
k,j

(3.5)

Zflaq) €k fl7 nej>Atn<Qek7ej>
k,j

Atnz <Q<(I)nfl,€k>€k,Z<q):;fl,€j>ej>

k J

= Aty Y (O(®; f1,ex) ek, P i)

k

= Al’n<z<q);<zflaek>ek7 Q(I):;fl>
k
= A0V ;£ as.

We used the Dominated Convergence Theorem in (3.3), Corollary
on R and Lemma[3.2]in (3.4), and the assumption on the increments of

a 0-Wiener process in (3.5). Hence, using property (1) in Remark|I.4]

= (z z M| 012 | ) ( 2 810} 1.0 )

—E( Z Aty || @2 02|, UH / |D(s) 1/2||L2(U,H)ds>-

Similarly to the diagonal terms above, for a typical term in 73, using
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Parseval’s formula twice, we obtain

(D,AW,, D, AW,,) = - -

(3.6) = Y (AW ex) (@} fiex) (AW, ) (@ fir€5)
L,jk

Finally, using Corollary on R and Lemma the expectation of

each term in (3.6) equals zero as

E ((AWa, e0) (@i e0) (AW €)) (@)1 e5) )
= E(E (AW, ) (i fise) AWonse)) (@fie)| 5,))

= E (@ f1,€0) (@ f1€) (AW E (AW, €[ 7,) ) =0.
By the Dominated Convergence Theorem we conclude 75 = 0. 0

Corollary 3.6. If |, P, € E, then

E(</0Td>1dW,/OTd>2dW>H)
—u( [ (@610, @2(5)0" )y 85)

Proof. The statement follows from Itd’s Isometry, the linearity of the

integral, and polarization first in H, then in L,(U,H). O

Remark 3.7. The functional || - ||z is only a seminorm on E. Let ® € £

and assume that

T
@l =& ( [ 19010, 00)5)

- ;E</OT Hcp(s)Ql/zekuzds) = 0.
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Then ||®(s)Q'/?e;|| = 0, Pr-a.s., for all k € N, and thus ®(s)Q'/?¢; =
0, Pr-a.s., for all k € N, which implies, by countable additivity, that
®(5s)Q'/2 = 0, Pr-a.s. Therefore, ® = 0 on Q'/2(U), Pr-a.s. Let

Fo:= {CID € E:d=00nQ'"?(U), PT—a.s.}.

We re-define ‘£ to be the quotient space E := E/%y. Then |- |7 is a

norm on ‘E.

3.2 Extension of the stochastic integral to more general

Processes

Propositions [3.3] and [3.5| show that the map
Int: (E,|-lIr) — (M7, ]| | az2)

is isometric (hence continuous). Since, by Proposition the space
(MZ, ||- HMTz) is complete, Int extends uniquely to an isometric mapping

to the abstract completion ‘E of E, by

Int(®) := lim Int(®,), ®cE, {P,}C Ewith lim P, = .
n—oo

n—oo

Since the abstract completion of a normed space contains objects that
are hard to work with (equivalence classes), we will characterize Eina

different way. Let us introduce the c-algebras
LPDO:G({(S,I]XF:O§S<I, Fefs}u{{O}xF:Fe%})
and

Pr=o({(s)xF:0<s<1<T, Fe F}u{{0}xF:FeR}).
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Definition 3.8. If H is a separable Hilbert space and Y : (Qr,Pr) —
(H,B(H)) is measurable, then Y is called H-predictable.

The next proposition shows that the class of predictable processes is

rich.

Proposition 3.9. If H is a separable Hilbert space, then the following

G-algebras coincide.
1. P| = 6(adapted continuous processes)
2. P, = o(adapted left continuous processes with right hand limits)
3. Py = o(adapted left continuous processes)
4. P,
Here, processes are considered as mappings Q x [0,00) — H.

Proof. Since H is separable, it is enough to consider R-valued processes
by Corollary Clearly, Py C P, C ‘P5. To show that P; C P, let X

be an adapted left continuous process and define

o0 ) ik

X, () = X(0)1o(t) + i x( £ ) s (0):
k=0

Then, X, is an adapted piecewise constant process. Since X is left con-
tinuous, it follows that X, (z,®) — X(¢f,®). But X, is P.-measurable
and therefore X is P.-measurable. Thus, 3 C P.. Finally, to see that
Po CP,fix0<s<t and let R = (s,¢] x F, F € F5. Let {f,} be a

sequence of trapezoidal functions such that
lim f, = L( 0, fu(x) =0, ifx€]0,s).
n—oo
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Define X,, := f,,- 1r. Then X, is adapted and continuous and thus P;-
measurable. But lim,_,. X;, = 1g and this implies that R € ;. Let F €
To and define

x=0,
fn(x) =4 -—nmx+1, xe (07%)7
0, x € [100).
Then X, := f,, - 1 is adapted and continuous and hence P;-measurable.
But limX, = 14y« and thus {0} x F € P;. Therefore, oo C 7. [

Remark 3.10. Of course, an analogous statement holds for Pr.
Theorem 3.11. There is an explicit characterization of E given by
Ny = Ny (0, T+ H)
= {CI) :[0,T) x Q — LY : @ is LY-predictable and || ®||7 < 00}

= L>([0,T] x Q,Pr,m x P;L3).
Proof. Since Lg is complete by Lemma , it follows that
Ly(Qr, Pr,Pr;LY)

is complete. By Lemma , L(U,H)y C Lg and therefore ® € £ is
Lg—predictable by construction. Thus, we need show that E is dense in
57\&2,(0, T;H), that is, if @ is an Lg-predictable process such that | ®||7 <
oo, then there is a sequence {®,} C E such that |® — ®,||r — 0 as

n—oo Ifde 57\642, then there is a sequence of simple random variables
M,
@, =Y Lily, Ac€Pr, Lj €Ly,
k=1
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such that ||® — ®,||7 — O (this follows from the construction of the

Bochner integral.) Therefore it is enough to consider
d=L1y, Leld AcPr.

Let A € Pr and L € LY. By Lemma|l.7| there is {L,} C L(U,H)o such

that L, — L in Lg and by the Dominated Convergence Theorem
|IL14 —Lylallr — 0 asn— co.
Therefore, we may consider
=Ly, AP, LeL(U,H)o.

Ifd=LI1s, A€ Pr, LeL(U,H)p, then we need to show that there is
{®,} C E such that ||®, —L14||r — 0 as n — oo. The case L =0 is

clear so assume that L # 0. Let
ﬂ::{(s,t]xF:Ogsgth, FETS}U{{O}XF:FETO)}

be the set of predictable rectangles. Define

N
G = {A € Pr: forall e >0, thereis A = UAn,A,- €A,
(3.7

n=1

with A;NA; = 0 for i # j and Pr((A\A)U(A\A)) < e}

and

%= {JAi: Lis finite, 4, € 4.
icl
It is not difficult to check that X is IT-system and G is a A-system. Note
that X C G (by writing A € X as a disjoint union). By Dynkin’s lemma
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we have 6(X) C G. But6(X) = Pr and G C Pr and therefore Pr = G.
Let A € Pr, € > 0 and choose A as in (3.7)) with

€
Pr(A\AUA\A) < .
Ll
Then
N 2 T N 2 e
LL-Yiull =x HLI—I <Ll o—— —¢.
I R e O et
- - 2

Finally, Zﬁlvzl L1y, only differs (possibly) from an elementary process
in a term Llggy.p, F € F. But [[Llg)«r|r =0, so by taking & =

YN Lla, — L1oyxF, we obtain an elementary process. ]

Remark 3.12. Both It6’s Isometry (3.2)) and Corollary [3.6]still hold for
D € NG
Remark 3.13. By a so-called localization procedure, one can extend the

class of integrands even further to

T
ANy = {CID : Qr — LS : @ is predictable, P(/ ||CI>||iO ds < oo) = 1}.
0 2

The integral in this case becomes a local martingale, only, and the Itd
isometry does not hold. For the type of equations we study here, this
extension is not necessary and therefore we do not pursue this issue any

further.

4 Stochastic integral for cylindrical Wiener

Processes

We would like to consider a Wiener process {W(¢) };>o with covariance

operator Q such that Tr(Q) = oo, for example, Q = I. Recall that, if
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QeL(U),Q>0,Tr(Q) < oo, then

[

W)=Y eBr(r)

k=1

where e, = 7»,1/ 2 fi is an orthonormal basis for Uy = Q'/ 2(U) and the

series converges in L, (Q, ¥, P;U). Note that the inclusion
J: (Uo,(-,)0) — (U,{(-,+)), withx— Jx=x,

is Hilbert-Schmidt if and only if Tr(Q) < . Indeed, if {ex} is an
ortonormal basis for Uy, then

WL wow) = Y Jexdenu = Y (e, exdu
%

k
=Y (0207 2¢, 0207 Pey)y
k

= Z<Q1/2fkaQ1/2fk>U =Tr(Q) = ||W(1)||1%2(Q,U)7
%

since { f;} = {Q'/2¢;} is an orthonormal basis for (kerQl/z)L. Thus,
the series defining W converges or diverges in L,(Q,H) depending on
whether J is a Hilbert-Schmidt operator or not. Therefore, if Tr(Q) = eo,
then we need to consider another Hilbert space (U, [-,-]) with norm [ - |
such that there is an embedding J : Uy — U which is Hilbert-Schmidt in

order to define a Q-Wiener process.

Remark 4.1. Given Q € L(U), Q > 0, we may always find U such that
there is an embedding J : Uy — U. Set U := U and let oz > 0, k € N,
with Y Oc,% < oo, Define

J:Up—U, uw—Y olu,er)oer,
k
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where {e;} is an orthonormal basis of Uy. Then J is one-to-one and
Hilbert-Schmidt. Indeed, if u,v € Uy, then

u=v< (uer)o = (v,ex)o, Vk €N,
g (Xk<u,€k>() = (Xk<V, €k>0, Vk €N,

= ZOCk<u,ek>()ek = ZOCk<V, ek>oek, Vk €N,
k k

< J(u)=J(v).

V2|l = [lexllo=L1,

M llesoo) = X el = 2 | z (e €x)oen

and, since ||Q~

=Y llogex]|7
k=1

o] Q20™ el < (107 Z o < oo,
k=1

HM8|

We recall the following elementary fact from real-valued probability

theory.

Lemmad4.2. Let X € L1(Q, F,P;R) be a random variable and G, G C
F be G-algebras. If G, is independent of 6(6(X) U G2), then

E(X|o(G1UGy) =E(X|G2).
Proposition 4.3 (Cylindrical Wiener process). Let {ex}ren be an or-
thonormal basis of Uy = Q'/*(U) and let {By }xex be a family of inde-
pendent real-valued Brownian motions. Let (U,[-,-]) with norm [ - || be
a separable Hilbert space such that there is an embedding J : Uy — U
which is Hilbert-Schmidt. Then Q : U — U defined by Q := JJ* is
bounded, Q > 0, Tr(Q) < oo, and the series

4.1) i (t)Jer, t€][0,T],
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converges in M7 (U) and defines a Q-Wiener process on U. Moreover;
Uy = 0"%(0) = J(Up)
and, for all u € Uy,
lullo = [0™"/2Ju]) := [Julo.
That is, J : Uy — U, is an isometric isomorphism.

Proof. We show first that that {W(t)}te[O,T]’ defined in (@.1)) is a O-
Wiener process on U. Let &;(t) = B;(t)Je;, j € N, and define

thZG(O {BJ }s<t> t€10,T].

Then {&;(t) },c[o,7) is a continuous U-valued martingale with respect to
{G}i>o for all j € N. Indeed, take 0 < s <7 < T and then

E(B;(1)|G5) = E(Bs(1)|o({B; () }uss ) = By

which follows from Lemma {.2| with X = B(1), Go = 6({Bj(u) }u<s),
and Gi = G(Uk;ﬁj{ﬁk(s)}sg). Therefore

n
Z (t)Jej, t€][0,T]

is also a continuous U-valued martingale with respect to {g,},e[oﬂ.
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Moreover, since J : Uy — U is a Hilbert-Schmidt operator,

il 0, = st E(nWmm—Wn(r)n)z

j=n+1
<E ( Z BT Z [Je;]°) = f E<BJ( )) i I]Je]”z
j=n+1 j=n+1 j=n+1 j=n+1
=T Z Je] , n<m,n— oo

Therefore, W, converges in M7 (U) and its limit W € MZ(T) is contin-
uous almost surely. The mean of W is clearly is zero. The increments

are Gaussian since, for all u € U,
(W) — Z s))Jej,u]

is Gaussian being an L (Q, ¥, P; R) limit of Gaussian random variables.
To compute the covariance operator of the increments, take u,v € U,
0 <s <t <T and write

Ms

=

E([ (t —s)[Jex,u][Jek, V]

(1) =W (s),u - [W(r) = W(s),]) =

k

I
_

(t —8){ex, T u)olex, T v)o = (t — ) {(J u,J u)o = (t — s)[JJ u,v],

Mz

k

where we used that E(B;(r) — B;(s)) (Bx(r) — Bx(s)) = 8x. Thus, O =
JJ*. One easily checks that the increments are independent. Finally, we

1

have to show that

0'2(T) = J(Uy)
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and that
lullo = [0~ *Jull = |Julo, Vu € Up.

We recall the fact from functional analysis that if Uy,U, and H are sep-
arable Hilbert spaces, T} € L(U|,H), T» € L(U,H), and
1T x[ly = Ty xll2, VxeH,
then
T(Ur) =T2(U2)

and
177 %l = |y w2, Vxe Ti(Uy).

For all u € U, we have that
10" 2ul* = [J7*u,u] = ||Jull3.

Thus, taking Uy = H = U, Uy=Uy T = Ql/z, and 7, = J, it follows
that 0'/2(0) = J(Up) and that [Q~'/2u] = ||J " ul|o, for all u € J(Uy).
Finally, if v € Uy, then [Q~'/2Jv] = ||v||o and hence [Jv]o = ||[v[jo. O

Remark 4.4. The Wiener process constructed in Proposition is in-
dependent of the choice of the orthonormal basis chosen for Uy. Indeed,
the proof shows that with any such orthonormal basis, {W(t)},e[oﬂ is
a JJ*-Wiener process on U. As such, by Proprosition it can be

obtained as (2.8)), where the series converges in
L,(Q,7,P;C([0,T],U)).

Therefore, the paths of its limit are determined P-almost surely, that is,
using two different orthonormal bases for Uy we get two indistinguish-

able versions of {W () },c(0,7]-
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Remark 4.5. If Tr(Q) < oo, then one may choose U = U and J = I.
By Remark the process {W(t)},doﬂ is an indistinguishable ver-
sion of the Q-Wiener process obtained by (2.8)). The orthonormal basis
{7»,1/ Zex: My > 0} used in is just a particular choice of an orthonor-

mal basis for Uj.

Now we are ready to define the stochastic integral with respect to
a cylindrical Wiener process. Since Tr(Q) < oo, we can integrate pro-
cesses {®D(r) },c(o,r) which are Ly(Up, H )-predictable and

d 2
E( /0 B(5)2, 7 41 05) < o=

But we are aiming at integrating processes with values in L, (Up, H). We
saw that Uy is isometrically isomorphic to Uy under J. Hence, if {ex}keN
is an orthonormal basis for Uy, then {Jei }ren is an orthonormal basis
for Up. Therefore,

®clyUpH) < @&J el (UyH),
since

1PIZ, o) = X (Pew, ex) = Y (DI Ter, DT Jex)
k=1 k=1

—1y2
LY

Note that an Ly(Up,H)-valued process is {®(¢)}c(0,r) is La(Uo, H)-
predictable if and only if {®(¢)J ! }eefo,r] 18 Ly (U, H)-predictable.

Let Q € L(U),Q > 0, let {ex }xen be an orthonormal basis of Uy =
Q'/2(U) and let {By }ren be a family of independent real valued Brow-

nian motions. Define

)

4.2) W)=Y eBi(t), t€]0,T],

k=1
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where the sum is understood only formally if Tr(Q) = co.

Definition 4.6 (Integral with respect to a cylindrical Wiener process).

Let {W (1) }1c(o,r] be given by [@.2). For processes {®(t)},c01) € Nz,
where

AZ = {cp 110,T] x Q — Ly (Up, H),

such that ® is L, (Uy, H)-predictable and | P||r < oo},

we define the stochastic integral by

/tcp(s) dw (s) := /ICID(S)JldW(s), t€[0,7),
0 0

where the integral on the right hand side is the stochastic integral de-
fined in Section |3 of {®(t)J ! }eejo,7] with respect to the U-Wiener pro-
cess {W(t)}te[O,T] defined in Proposition

Remark 4.7. If Tr(Q) = o, then E ¢ Afy, where E denotes the set of

L(U,H)-valued elementary process from Definition To see this, let
U =H,®(t) =1, and {e;} be an orthonormal basis for Uy. Then

D7 =T Y (erer) =T Y. (00 e, 07 2er) = TTr(Q) = .
k=1 k=1

Remark 4.8. The cylindrical Wiener process {W(t)},e[oﬂ constructed
in Proposition depends on J but fé ®dW does not. The proof is left

to the reader as an exercise.
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5 Stochastic evolution equations with additive

noise

In the present section we introduce solution concepts to certain type of
stochastic evolution problems and prove existence and uniqueness of
their solutions. The mathematical framework is based on the theory of

strongly continuous operator semigroups.

5.1 Linear equations

Let {W(t) },[o0,r) be an U-valued Q-Wiener process on the probability
space (L, F,P), adapted to a normal filtration { % }c[o 7] We consider
equations written formally as

dX(r) = (AX(t)+ f(r))dt +BdW (¢), 0<r<T,

X(0) =¢,

where we make the following assumptions.

5.1

(Al) A:D(A) C H — H is linear operator, generating a strongly con-
tinuous semigroup (Cp-semigroup) of bounded linear operators
{S(2)}+>0, that is,

-S00)=1
- S(t+s) = S(¢)S(s) for all s, > 0;

— {S(¢)}+>0 is strongly continuous on [0, o), that is, t — S()x

is continuous on [0, o) for all x € H;

- limy,_o+ w = Ax for all x € D(A);
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(A2) Be L(U,H);

(A3) {f(#)}icjo,r] a predictable H-valued process with Bochner inte-
grable trajectories, that is, r — f(,) is Bochner integrable on
[0,T] for P-almost all ® € Q;

(A4) & is an Fy-measurable H-valued random variable.

Under assumption (Al) the deterministic evolution problem (ab-
stract Cauchy problem)
u'(t) =Au(t)+ f(t), >0,
u(0) =x,

is well-posed (under some weak assumptions on f) and its unique (mild)

solution is given by the variation of constants formula

u(t) = S(1)x+ /O St — 5)f(s)ds.

For an exhaustive introduction to the theory of operator semigroups, see,

for example, [1] and [3].

Remark 5.1. Since H is, in particular, a reflexive Banach space it fol-
lows that {S(7)* };>0 is also a Co-semigroup on H with generator given
by A*, the adjoint of A. In non-reflexive Banach spaces this is not true

in general.

Next we discuss what we mean by the solution of the formal equa-
tion (3.1)). In this section we always assume (A1)-(A4).

Definition 5.2 (Strong solution). An H-valued process {X(t)}c(0,r] is
a strong solution of (S.1) if {X()}iejo,r) is H-predictable, X(t,®) €
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D(A) Pr-almost surely, fOT |AX (¢)|| dt < oo P-almost surely, and, for all
t€0,T],

X(1) :§+/Ot (AX(s)—i—f(s))dH—/OthW(s), P-a.s.

Recall that the integral [ BdW (s) is defined if and only if ||B ||1240 =
2
Tt(BOB*) < os.
Form € H, we define

(5.2) In:H—R, In(h):=(hn), heH.

Definition 5.3 (Weak solution). An H-valued process {X(t)}cjo,1] is
a weak solution of (1) if {X(t)}cjo,r) is H-predictable, {X(t)};c(0,1]

has Bochner integrable trajectories P-almost surely and
t
K@) = Em)+ [ (XA +(F(5).m) ds
1
+ / WBAW(s), P-a.s., V€ D(A), 1 € [0,T).
0
Note that the stochastic integral may be written formally as

/OtlanW(s) :/Ot<BdW(s),n).

We will show that the unique weak solution of (5.1) is given by the

variation of constants formula

X(1) = S(t)§+/OZS(t —9)f(s) ds+/0tS(t — $)BAW(s).

We will need the following lemma about interchanging the stochastic

integral with closed operators.
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Lemma 5.4. Let E be a separable Hilbert space. Let ® € 9\@‘2, A
D(A) C H — E be a closed, linear operator with ‘D(A) being a Borel
subset of H. If ®(t)u € D(A) P-almost surely for allt € [0,T] andu € U
and AP € 9\&‘2,, then

P(/Och(s)dW(s) € @(A)) —1

and

T T
63 A / P(s) AW (5)) = / AD(s)dW(s), P-a.s.
0 0
Proof. The lemma is a special case of [4, Proposition 4.15]. [

Note that if A € L(H,E), then (5.3) holds for all ® € .‘7\6,‘2, We define

the stochastic convolution

Wa(t) == /0 St $)BAW (s)

and the operator
t
Q= / S(s)BOB*S(s)*ds,
0

where the integral is a strong Bochner integral. The following theorem

provides the basic properties of the stochastic convolution.

Theorem 5.5. If for some T > 0,
T T
/ IS(2)B||% ds = / TH(S(1)BOB*S(1)") di = Tr(Qr) < oo,
0 2 0
then

1. Wy € C([0,T],Lo(Q, F,P;H)) and Wy has an H-predictable ver-

sion;
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2. {Wa(t)}iepo,r is a Gaussian process and
Cov(Wy(t) / S(s)BOB*S(s)*ds = Q.
Proof. Let0 <s <t <T and define
®(r) = S(t—r)B, M,(s /cpdw / (t = r)BAW(r).

Then
! 2 ! 2 ! 2
E [ I @lar= [ 156 nBlZar= [ IS0BIdr
0 2 0 2 0 2

T
< [T IsBlydr <o

Thus, M, (s) is well defined, in particular, for s = ¢ it follows that M, (t) =
Wy (t) is well defined. To show mean square continuity, let0 <s <7 <T.
Then

N

Wa () — Wa(s) = /O St —r)BaW (r) — /O S(s — r)BAW (1)
(5.4) =/s (S(t—r)—S(s—r))BdAW(r)
+/ L S(t — P)BAW(r) = X +Y.

The random variables X and Y are independent with zero mean and

)

therefore, using also Itd’s isometry,
E(HWA(t)—WA(s)Hz):E H/ (S(t—s5) —1)S(s — r)BAW ()
+E H/ 1(5.S(t = r)BAW (r) 2)
= [T =)= DS()BQI, 1y 0

t—s
—i—/ HS(r)BQl/ZH%Z(UH)drHO ass — f.
O )
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The second integral converges 0 by the Dominated Convergence Theo-

rem. For the first one, we have

Lo (IS =) = DS(BR (17w

) 122
< ZOTSHSEE(T ||S(S)||L(H)||S(F)BQ ||L2(U’H)’

and therefore we may use again dominated convergence together with
the fact that S(t —s) — I — O strongly as t —s — 0.

For the existence of a predictable version of {Wj(¢)};c[o,r] note that
if {X (t)}te[O’T] 1s mean square continuous, then it is uniformly stochas-
tically continuouﬁ on [0,7]. This follows from the observation that the
mean square continuity of {X () }c[o, ] means that X (-) is continuous as
a function [0, 7] — Lp(Q, F,P;H). Since [0,T] is compact {X (¢) },c[0,7]

is uniformly mean square continuous on [0, 7']. We have that
2 2 1 2
P(IX(r) =X ()| 2 &%) < ZE(IX(1) =X (5)]")

and hence {X (7) }¢[o,7] is uniformly stochastically continuous on [0, 77].
By [4, Proposition 3.6], {X(t) },c[o,r] has a predictable version since it
is clearly adapted and stochastically continuous.

For ¢ fixed, the random variable Wy (¢) is Gaussian. This follows
from the construction of the integral and the fact that for elementary de-
terministic processes the stochastic integral is a Gaussian random vari-
able. An easy calculation shows, similar to the one in (5.4), that for all
upup, ... uy €U, ((Wa(ty),ur),...,(Wa(ty),u,)) is an R"-valued Gaus-
sian random variable using also Lemma([5.4|forA =1,, i=1,...,n. Fi-

2A process {X (1) }o,7] is uniformly stochastically continuous on [0, 7] if Ve >
0, V8 >0, Iy > 0, such that P(||X(t) — X (s)|| > €) <8, [t —s| <7, t,5s €[0,T].
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nally, the covariance operator Q; of Wy (¢) can be computed in a straight-
forward fashion using Lemma [5.4] Corollary [3.6] and Parseval’s for-

mula. O]

Before proving the existence and uniqueness of weak solutions of
(5.1) we need a few preparatory results which we state with only a ref-

erence to the proofs. Consider the following assumptions.

1. Let (Q, F,P) be a probability space and {7 },;>0 a filtration. Let
oY= 9\&42, [0,T], ¢ be an H-valued predictable process, Bochner in-
tegrable on [0, T'] P-almost surely, and X (0) be an Fy-measurable

H-valued random variable.

2. Let F:[0,T] x H — R and assume that the Fréchet derivatives
Fi(t,x), Fx(t,x), and Fy(t,x) are uniformly continuous as func-
tions of (¢,x) on bounded subsets of [0,7] x H. Note that, for
fixed , Fx(t,x) € L(H,R) and we consider Fy,(t,x) as an element
of L(H).

Theorem 5.6 (It6’s formula). Under assumptions (1) and (2) above, let
X (1) =X(0) —I—/Ot(I)(s)ds—i—/OtCID(s)dW(s)7 t€10,7T].
Then, P-almost surely and for allt € [0,T],
F(t.X(1)) = F(0,X(0)) + /0 ' Fu(s, X (5))(s) dW (s)

+ [ (Bls.X () + Rl X(5)(005)
1T (Fu5, X () (@(5)02) (@(5)0'?)") ) ds.
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Proof. See [4, Theorem 4.17]. O

The next result is the stochastic version of Fubini’s Theorem. Con-

sider the following.
(3) Let (E,‘E) be a measurable space and
®: (Qr xE,Pr x E) — (L3, B(LY))
be a measurable mapping.
(4) Let u be a finite positive measure on (E, E).
(5) Assume that [ [|P(-,-,x) |7 du(x) <

Note, that, in particular for fixed x € E, the process ®(-,-,x) is Lg—
predictable and ®(-,-,x) € AGZ[0,T).

Theorem 5.7 (Stochastic Fubini’s Theorem). Assuming (3)—(5) above,

we have P-almost surely,

(5.5) // (¢,x)dW (¢) du(x //CI)txd,u YW (2).

Proof. See [4, Theorem 4.18]. O

Note that the inner integral on the right hand side of (5.3) is an L3-
valued Bochner integral. Now we can the prove existence of weak solu-
tions of (5.1). Let

5.6  X(0) §+/St—s (s)ds+Wa () = Y (1) + Wa(1).
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Theorem 5.8 (Existence of weak solutions). Assume (Al)—(A4) and

T
| Is@)BIZydr <o
0 2

Then {X (t) },c(0,1) defined in (5.6) has a version which is a weak solution
of (G.1).

Proof. The process {X () };c[0,r) has Bochner integrable trajectories and
an H-predictable version by Theorem Since {Y (1) },efo,r) is the
(unique) weak solution of

Y'(t) =AY (¢) + f(t), t>0,

Y(O) =g,
it follows that {X (7)} is a weak solution of (5.3)) if and only if Wy (z) =
X(t) — Y (¢) is a weak solution of

dX(1) =AX(t)dt+BdW(t), 0<t<T,
X(0)=0.

5.7

Therefore, without loss of generality, we may set § =0, f = 0 and show
that Wy (¢) is a weak solution of (5.7). If t € [0,T] and | € D(A*), then

t t t
[ amma@yas= [ (a%, [ 10,456 —rBaw () as.
Following (5.2)), we set l4(u) := (A*n,u). Then, by Lemma [5.4| and
Theorem[5.7]

/0 AT WA () ds = /O e ( /0 Loy (NS(s PBAW(r) ) ds
= /Ot /Ol 110, (r)lanS(s — r)BAW (r) ds
= /Ot /0[ Ljo,5)(r)lamS(s —r)BdsdW (r)

:/Ot/rtlA*nS(s—r)Bdde(r).
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Forallu e U,
lasnS(s —r)Bu = (A™,S(s — r)Bu) = (S(s —r)*"A™n, Bu),

and hence, using that | € D(A*),

/rt IasnS(s —r)Buds = /:(S(s— r)*A™n,Bu) ds
:/rt<A*S(s—r)*n,Bu> ds
:/rt%<s(s—r)*n,3u) ds
= (M,S(s —r)Bu) — (n,Bu).

Finally, by Lemma (5.4}

[ [ oSt —rpasaw(s) = [ st —rpaw (s
_/0[ [yBAW (s) = (N, Wa(2)) —/OtlanW(s)7 P-as.
O

To prove uniqueness of weak solutions of (5.1) we need the follow-

ing two results.

Lemma 5.9. Let (C,D(C)) be the generator of a Cy-semigroup on the
separable Hilbert space H. Then, the vector space D(C) endowed with
inner product (x,y)c := (x,y)u + (Cx,Cy)m and norm ||x||c := ()c,)c)lc/2

is a separable Hilbert space.

The proof is left to the reader as a (non-trivial) exercise.
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Proposition 5.10. Ler {X(t)},>0 be a weak solution of with f =0
and & = 0. Then, for all p € C'([0,T], D(A*)) and t € [0,T],
t t
X@)p@) = [ (X(5),9'(5)+A"p() ds+ [ Ly BAW (s).

Proof. First, let p(s) := pod(s), po € D(A*), ¢ € C'(]0,T],R) and define

Yy (1) = /O (X (s),A%po) ds + /0 1o BAW (s).

Note that if {X(t) },c[0,7] is a weak solution with f = 0 and € = 0, then

(5.8) (X(1),p0) = Yo (1), 1€ [0,T].

If F(t,x) == 0(t)x,x € R, 1 € [0,T], then
Ft(t7x>:x¢/<t)7 Fx<t7x):¢<t)7 Fxx(tax):()a

and hence, by Theorem [5.6/and (5.8)),

(X(0),p(0)) = 0(1) (X (1),p0) = 0(1) Yo (1) = F (1, (1)
= [ o)pBaws +/ oo (5)0/(5) + 0(5) (X (). 4"po) ) ds

—/l yBAW (s +/ s)+A*p(s)) ds.

Next consider a general p € C'(]0, 7], D(A*)). By Remark |5.1| the op-
erator A* is the generator of the Cp-semigroup {S(#)* };>0 and hence, by
Lemma D(A*) becomes a separable Hilbert space with inner prod-
uct (x,y)a+ := (x, ) + (A", A*y)y and norm ||x||4- == (x,x)}/%. Let
{er}ken be an orthonormal basis for (D(A*), || - ||a=) and consider the

orthogonal expansions

[e]

=Y (p(r),ex)arer  and  p'(t) =Y (p'(r),ex)avex.
=1 k=1
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For N € N, define

)s €k)A*ex, PN )s €k) A€k

I Mz
I Mz

Then, by the first part of the proof and linearity,

X0 P = [ (X()PA)+ (X(5).A"p(5)r)
—i—/ot le(s)BdW(S).

For the second integral on the right hand side of (5.9) we have, using

5.9

Itd’s isometry, that

EH/sz Bdw (s /z Baw ()] o,

since, by the Dominated Convergence Theorem,

t
1/2)2
/0 onts) = fo(s))B 1,01 45
t
= [ 1025 (pw(s) ~p(s)) [ ds — 0.
Finally, we may select a subsequence {py, } such that

! t

/0 Loy, (syBAW (s) — /0 lp(yBAW (s)  P-almost surely, as k — oo.

For the sake of simplicity we denote the sequence {py, } by {pn} again.
To deal with the first integral on the right hand side of (5.9)), we note that
pn(?) and pjy(¢) converge in the || - ||4+-norm to p(r) and p’(z), respec-

tively. Hence, it follows that
(X(),pn (1)) — (X(2),p(t)) 1,
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(X (s),p(s))m — (X (5),p"(5))
and
(X(s),A"pn(s))m — (X(5),A™p(s))m

as N — oo, We also have

(X (s), P ()7 < IX )z lle () 17 < IX I Iy ()13
<Xzl ()IZ- < KIX (5)II7,

and thus,

(5.10) (X (), pi ()| < K[IX(5)]|ar

Similarly, for the other term,

G [(X(s), A% ()| < - < [[X(5)lmllp(s)]las < K[IX (s)|[ar-

Since {X(¢)};c[o,r] is a weak solution of (5.1)) it has Bochner integrable
trajectories P-almost surely and hence, by (5.10), (5.10), and the Dom-
inated Convergence Theorem, we may pass to the limit in inside
the first integral on the right hand side P-almost surely and the proof is

complete. [

Theorem 5.11 (Uniqueness).  If {X(¢)}cjo,r] is @ weak solution of
(5.1), then X (t) is given by (5.6) P-almost surely, that is, {X (t) },c[o,1] is
a version of (5.6).

Proof. As in the proof of existence of weak solutions of (5.1)) it suffices

to consider the case when f =0 and § = 0. Let
p(s) :=S(t—s)"po, s€[0,T], po€D((A*)?).

72



Then p/(s) = —A*S(t — 5)*po = —A*p(s) and by Lemma|5.10}

(X(0),p0) = (X(0):p0)) = [ o BAW ).

Furthermore,

(p(s)B) () = (S(t = 5)"Po, Bu) = (IpyS(t — 5)B) (u)

and hence, by Lemma

(0,00) = [ 1oBaW () = [ 1y STe —5)BAWs)

= o (st -5)BaW(5)) = (Wa(0).po)

Finally, using the fact from semigroup theory that D((A*)?) is dense in
H, we conclude that X (1) = Wy(¢) P-almost surely. O

5.2 Semilinear equations with globally Lipschitz non-

linearity

As before, let {W(t)},c0,7) be an U-valued Q-Wiener process on the
probability space (Q, ¥, P), adapted to a normal filtration { % },c[0.7)-
Here we consider equations written formally as
dX(t) = (AX(t)+ f(X(t)))dt+BdW(¢), 0<t<T,
X(0)=¢.

The main difference when dealing with this kind of equations compared

(5.12)

to the one before is that, in general, there is no explicit representation of
the solution of (5.12). We need another solution concept.
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Definition 5.12 (Mild solution). An H-valued process {X(t) },c[o,1) is @
mild solution of (5.12) if {X(t)},(0,r) is adapted,

X e C([0,T);Lo(Q, F,P;H))
and, for allt € [0,T),
X(1) = S(1)E + /0 St — ) F(X(s)) ds + /0 "S(t—$)BAW(s) P-as.
Lemma 5.13. Let 0 < a < b. The space
Zip) = {X € C([a,b);Lr(Q, F ,P;H)) : X is adapted}
with norm ||Y ||z, = supc(q (E[IY (2) 12))1/2 is a Banach space.
Proof. Exercise. Hint: show that Z, ) is a closed subspace of
C(la,b];L2(Q, F,P;H)).
O

Theorem 5.14. Let A : D(A) C H — H be a linear operator, gener-
ating a Cy-semigroup {S(t)};>0 on H. Assume that B € L(U,H), & €
Ly(Q, %o, P;H),

T
| 1S6)BQ 2 3,y s <

and that f : H — H satisfies the global Lipschitz condition

1/ () =fO)ll < Klx—ylla,  vx,yeH,

for some K > 0. Then, there is a unique mild solution of (5.12)).
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Proof. Define

F(Y)(1) = S(E+ /O St — 5) £(¥ (s))ds + /0 St — s)BaW (s),
G(Y)(1) = /0 St — ) F(Y (5))ds.

We will show that the equation X = F(X) in Zj 7}, where Z 7} is de-
fined in Lemma [5.13] has a unique solution by Banach’s fixed point
theorem.

(1) Let T > 0. It is not difficult to see that F' : Zj ) — Zjoq), that is,
S(-)E, G(Y), and Wy are mean square continuous and adapted on [0, T].
This is left as an exercise.

(2) To show that F' is a contraction on Zj ;] for some T, we consider
E(|F(¥1)(1) ~ F(1)(0)|P)

k(| [ st-900i6s) - i)

<E((/ ()l LA ()~ Al s) ).

With

My = sup ||S(6)|lLam)
t€[0,T]
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and the Lipschitz condition, we obtain
E(|IF() (1) - F() (1))

2 12 ' 2

< M2K E(( [ (s) ~ va(s)] ) )
2 2 N _ 2

< M2K E(’E [ 1)~ na(s)]ds
2 22 f _ 2

< MPK*TE( [ 19— na(s)]Pds

:M%KZT/OTE(HYl(s) “h(s)|?) ds

-

<supjoq E(|Y1-Y2[?)

< MiK*T Y - D7, .

Thus,
|1F (Y1) _F(YZ)HZ[O@ < MrKt||¥, _YZHZ[O,‘C]'

Choose T so that M7KT < 1. Note that T can be chosen independently
of & Then F : Ziy1) — Zjpq) 1s a contraction and therefore, by Banach’s
fixed point theorem, F has a unique fixed point X; € Z 5), which is the
unique mild solution of (5.12)) on [0, 7).

(3) Now consider the equation

Y(r) :S(t—'c)Xl(’c)+/;S(t—s)f(Y(s))ds—l—/TtS(t—s)BdW(s),

where ¢ € [1,21]. As above, we get an unique fixed point Y € Loy 1t
is important here that the length 7 of the interval can be chosen indepen-
dently of the initial value X; (7). Define

Xi(r), te]0,1],
Y(t), t€]lr,21].

X(t):=
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Then X € Zj 5y and for ¢ € [t,21] we have that

=5t —7) (S(0)5 + /O "S(t—s) F(X(s))ds+ /O TS(I—s)BdW(s))
+/;S(t—s)f(X(s))ds—k/TtS(t—s)BdW(s)
:S(t)i—l—/olS(t—s)f(X(s))ds—l—/OtS(t—s)BdW(s).

Thus, X is the unique mild solution of (5.12)) on [0,27]. By repeating

the above procedure a finite number of times, we obtain the unique mild

solution of (5.12)) on [0,T]. O

Remark 5.15. Since the mild solution of (5.12) is mean square continu-
ous and adapted, it has a predictable version, c.f., the proof of Theorem
5.5 Also, as in the case of linear equations with additive noise, the

solution is unique up to modification.

6 Examples

In this section we apply the abstract framework to the stochastic heat

and wave equations driven by additive noise.

7



6.1 The heat equation

Let D C R, d = 1,2,3, be a spatial domain with smooth boundary 9D

and consider the stochastic heat equation
dX(&,1) =AX(&,t)dr +dW (E,1), E€ D, >0,
(6.1) X(E&,1)=0, E€aD, t>0,
X(,0) =Xo(5),

where A = Y'¢_,9/0E? denotes the Laplace operator. In order to put
the equation into the semigroup framework of the previous section we
define H = U = L(“D) and recall the Sobolev spaces

H* = HK(D) = {v € Ly(D) : D% € Ly (D), |of < k},
Hl = H} (D) = {vEHl(@):vbg):O}.

We consider A = —A as an unbounded linear operator on H with domain
of definition D(A) = H>NH}. It is well known that A is self-adjoint

positive definite and that the eigenvalue problem

AQj = ujb;

provides an orthonormal basis {¢ j};'ozl for H and an increasing sequence

of eigenvalues
62) O0<m<m<-<p<-o, gl oeas joo

The operator —A is the infinitesimal generator of the semigroup S(7) =
e "4 € L(H) defined by

Sy =e v =Y e Hi(r,0,)9);
=
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The semigroup is analytic and, in particular, by a simple calculation

using Parseval’s identity we have
T T 1
63) [ 1A P dr = [ Ve i (n0)dr < S o]
0 (i
j
We define norms
1/2
2
vl = (Leiv0)) =147, seR.
J
For s > 0 we define the corresponding spaces:
H = {v EH:|v|g < 00},
H™* is the closure of H with respect to the H*-norm.

The negative order space H* can be identified with the dual space
(H*)*. Then we have H® C H=H° C H™S. It is known that ' = H],
H?=H?’NH} = D(A).

Let Q€ L(U) =L(H), 0 >0,Uy=Q"?(U) CU =H, and let {e;}

~1/2

be an orthonormal basis in Uy and f = Q™ '/“¢y, so that {f;} is an or-

thonormal basis in U = H.
There are two possibilities for the choice of U and J as required in
Section[4l The first one is

UO=U=H, J:Uy—U, J=A"2
We must choose s so that J is Hilbert-Schmidt:
2 2012 —s/241/22
(6.4) Iz o) = 170" 1Ly = lIA 20l 17, ) < oo

In order to see what this means, we compute s under some assumptions

on Q. If Tr(Q) < o, then we may take s = 0, because
10" 217, 1y = Tr(Q) < eo.
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If O =1, then using we obtain
12, HA—S/anz(H)=z||A-S/2¢,-|F

=L R =L e
Y

J

HA 9/2 1/2

if —2s5/d < —1, thatis s > %. More generally, if Q = A~Y, v > 0, then

J— —_ 1 d
1A~ s/201/2 =|lA /24 Y/2H%2(H) <oo, ifs>——v.

HL2 H) s )

Now, according to Proposition 4.3] we have that
=Y B(t)ex =Y Be(t)A™er, W e ME(H),
k k
is a O-Wiener process in H = U. Moreover,
Q — JJ* :A—S :A—S/ZQl/Z(A—S/ZQl/Z)*
with, according to our assumption (6.4)),
Tr(Q) = A0 2|[Z, )y < o=
Now

11330y = sup E I (1))

= SupZZE Bk BJ s/zek,Ais/zeﬁ
—16]](
ZII exl|” = ZII 070" fe Al
=Jk

=TY A0 2 fi> = T2 Q 27 ) < oo
k
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Note also
W(t) =AY Bi(t)ex =A"?W(r)
k

with W € MZ(H ).
The other choice of U is U = H*. Recallthat H=U =H° Cc H* =
U for s > 0, let J : H — H* be the inclusion, and require that

V17, wo.0) = 10" 1E, .-+ = I1AT2Q 2117 a1y < o,

which is the same condition on s as (6.4)). Now
W(t)=W(t) =Y Be(t)ex,
k

with W € MZ(H ). Thus, in both cases we define a (possibly cylin-
drical) Wiener process W (t) = Y Bx(t)ex, where W € MZA(H %), if s
satisfies (6.4). The stochastic integral féCDdW is independent of the
choice of J according to Remark 4.8]

The stochastic heat equation (6.1]) can now be written

dX +AX dr =dW, >0,
X(0)=0,

(6.5)

where, for simplicity, we have set Xo = 0, f = 0. It is of the form (5.1)
with B = I, and according to Theorems [5.8] and [5.11] its unique weak

solution is given by the stochastic convolution

X(£) = Wa(t) = /OtS(t —5)dW(s)

provided that

T
©6) 180021,y < o=
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Using and an orthonormal basis { f;} we compute
r 1/2)2 T a2
IS0 21 gy dr = [ 170,
T
= [ Tl 0!l ar
0 %
T
:Z/ HAI/ZeftAAfI/ZQI/kaH2dt
= Jo

_ L.
< ;HA 1/2Q1/2fk||2:5|’A 1/2Q1/2H%2(H)'

| =

Thus (6.6) holds if
(6.7) IA™2QV2 1y 1) < oo,

which is (6-4) with s = 0. Then Wy € C([0,T],L2(Q, F,P;H)) accord-
ing to Theorem 5.5}

More generally, using the isometry (3.2) and we compute, for
>0,

t 2
(W3 (0)[5) = B(14PWy0)) =B(| [ 4P ¢ aws)|)
t
- /0 [AB/2e=t=g12 2 g
t
_ / Y 4B 2e= =901 2 |2, ds
0 7%
t
:Z/O 14126 AAB=D/201/2 £ 12 g
k
1 _ 1 5
e Y e i i A
k
So
(6.8) IWa ()l (.5 pasy < IAP2QV2 1 1),
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provided that
(6.9) JAB=D2QU2| ) < eo.

In particular, if Tr(Q) < oo, then we may take § = 1, while if Q = I, then
we have, by (6.2),

(6.10) JAB=D2)2 = D ITARED W S
k k

if2(B—1)/d < —1, that is, we need 0 < B < 1 —d/2, which only holds
ifd =1 and B < 1/2. Thus, for a cylindrical Wiener process (Q = I) the
solution exists only if d = 1. In higher dimensions we need a covariance

operator with stronger smoothing effect, for example, if Q = A~" then
(6.9) implies y > B —1+4d/2.

6.2 The wave equation

We consider the stochastic wave equation

dit — Audt = dW inDxRy,
(6.11) u=0 ondD xR,
u(-,0) =ug, u(-,0) =u; in D.
We let A = —A with D(A) = H*NH} = H*, U = H° = [5(D) and W

be a Q-Wiener process on U as in the previous section. We put

u
X =
u

, &= [u()], H=HxH"
i
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Now we can write

[ du idr
dX p— p—
_du Audt +dW
- % O_
= dr + dw
__AX1 -
[0 1 [0
= Xdr+ dw
- _I
=AX dr+Bdw,
where
- 0 I 0
= , B =
—A 0 1
So we have
dX = AXdr+BdW, >0,
(6.12)
X(0)=¢,
where

D(A) = {x CH:Ax= [—Axl

X . . . .
2 ] eH:H"xH*l}:HleO.

The operator A is the generator of a strongly continuous semigroup
S(t) = e on H and B € L(U,H). Hence, in this case, U # H and B # I.

In order to see what S is, we note that y(z) = S(¢)x is the solution of
y=4y; y(0)=ux,

that is,
V1+Ay1 =0;  y1(0) =x1, y1(0) =x2.
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We solve it using an eigenfunction expansion:
o l )
yi(1) =Y cos(\/mjt) (x1,0;) 0 + — sin(\/ijt ) (x2,0;)0;
VEi
= cos(tA"/?)x; + A% sin(1A"/?)xs,

and
y2 = y1(t) = —AY2sin(tA"/?)x) + cos(tA'/?)x;.

These are called cosine and sine operator functions. Now we can write

the semigroup as

S() = cos(tA'/?)  A=1/2sin(1A/?)
= =

—AY2sin(tA'/?) cos(tAl/?)

With & = 0 the evolution problem (6.12) has the unique weak solution
t
X(£) = Wi (t) = / S(t —s)BAW (s)
0
t
/ A2 in((t — 5)AV/2) AW (s)
0
t

/ cos(( — s)A1/2) dw (s)
0
Theorem [5.3]says that X € C([0,T];L,(Q, F,P;H)) if

T
| 1808,y <

This condition is

r 1 r 1
| ISOBOHE, e = [ X IS8 il e
k

T

= [ X (1At sin(a?) @2 fll3n + lcos(oa? Q3 Al )
k

L SN NN 1 1ol

:/0 <HA 2s1n(tA2)Qz”iz(Ho)-|—HA 2cos(tA2)QzHi2(H0)>dt.
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This must be finite. For example, if Tr(Q) < co:
1, 1, 1 _1 ) 1
|A™2sin(tA2)Q2 ||%2(H0) <A 2”%(1‘10)” sm(tA2)||i(Ho)Tr(Q) < oo,
and similarly for cosine, so the condition holds. Here we used
IST [ 10y < IS Loy 1T Nl 10y
see Remark[1.4] For Q = I we have
1. 11 1. 1
|A"2sin(rA2)Q2 )= ||A”2sin(rA?)

17, s 17,z
L (HO Ly(HO)

) . N —312
< NA72117, o) 1SN CAZ) 17 0y < A2 117, 10)-

Here [|A=2 ||, g0) < e if and only if d = 1, see (&T0) with B = 0.
More generally, we compute the norm of order B > 0. For the first

component X; = u we have:
(0l 0) =E(| [ 424 sin((e - s)abyaw )
= [ 1A% 02506 )QH o 0
- /Ot [sin(sA2)A(B-1D/2g2 12, 0, ds

ro. 1 _ 1
< [ sin(sa b3 o, as4®2QH . o ds
<1

< 1]]aB-D/2 g} 12, 0,

So we get the same condition for regularity of order B as for the heat
equation, see (6.9). For the second component X, = i we obtain simi-

larly
1
E(|X (1)) <t[aPD202 )2 0.
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