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Abstract

We introduce the Hilbert space-valued Wiener process and the

corresponding stochastic integral of Itô type. This is then used to-

gether with semigroup theory to obtain existence and uniqueness

of weak solutions of linear and semilinear stochastic evolution

problems in Hilbert space. Finally, this abstract theory is applied

to the linear heat and wave equations driven by additive noise.
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1 Functional analysis essentials

In this section we discuss a few concepts and results form the theory of

operators in Hilbert spaces. We either give a proof or give a reference to

the proof. Consider two separable Hilbert spaces (U,〈·, ·〉U),(H,〈·, ·〉H)

where the respective subscripts will be suppressed whenever it is clear

from the context which one is meant.

1.1 Spaces of linear operators

Let L(U,H) denote the Banach space of bounded linear operators from

U to H. If U = H, then we simply write L(U). For T ∈ L(U) we

write T ≥ 0 if T is self-adjoint positive semidefinite, that is, T ∗ = T

and 〈Tu,u〉U ≥ 0 for all u ∈U . Let L1(U,H) denote the set of nuclear

operators from U to H, that is, T ∈ L1(U,H) if T ∈ L(U,H) and there

are sequences {a j} j∈N ⊂ H,{b j} j∈N ⊂U with ∑
∞
j=1 ‖a j‖‖b j‖< ∞ and

such that

(1.1) T f =
∞

∑
j=1
〈 f ,b j〉a j ∀ f ∈U.

Sometimes these operators are referred to as trace class operators from

U to H. It is well known that L1(U,H) is a Banach space with the norm

‖T‖L1(U,H) = inf
{ ∞

∑
j=1
‖a j‖‖b j‖ : T f =

∞

∑
j=1
〈 f ,b j〉a j ∀ f ∈U

}
.

We note that T ∈ L1(U,H) is compact because (1.1) means that it can

be approximated by operators of finite rank. Another characterization

of L1(U,H) can be obtained via the polar decomposition of compact

operators (see, for example, [6, Chapter 30] and [8, Chapter 7]).
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Lemma 1.1. Let T ∈ L1(H,H) and {ek}k∈N be an orthonormal basis

for H. Then the trace of T ,

(1.2) Tr(T ) =
∞

∑
k=1
〈Tek,ek〉,

exists and is independent of the choice of the orthonormal basis.

Proof. Since T ∈ L1(H,H) we have (1.1) for some {a j} j∈N,{b j} j∈N in

H. Then

〈Tek,ek〉=
∞

∑
j=1
〈ek,b j〉〈a j,ek〉

and hence
∞

∑
k=1
|〈Tek,ek〉| ≤

∞

∑
k=1

∞

∑
j=1
|〈ek,b j〉〈a j,ek〉|=

∞

∑
j=1

∞

∑
k=1
|〈ek,b j〉〈a j,ek〉|

≤
∞

∑
j=1

( ∞

∑
k=1
|〈ek,b j〉|2

) 1
2
( ∞

∑
k=1
|〈a j,ek〉|2

) 1
2 ≤

∞

∑
j=1
‖a j‖‖b j‖< ∞.

Therefore, the series in (1.2) converges absolutely and, by Fubini’s the-

orem,
∞

∑
k=1
〈Tek,ek〉=

∞

∑
k=1

∞

∑
j=1
〈ek,b j〉〈a j,ek〉

=
∞

∑
j=1

∞

∑
k=1
〈ek,b j〉〈a j,ek〉=

∞

∑
j=1
〈a j,b j〉

is independent of the orthonormal basis.

Lemma 1.2. If T ∈ L1(H1,H2), S1 ∈ L(H2,H3) and S2 ∈ L(H3,H1), then

S1T ∈ L1(H1,H3) and T S2 ∈ L1(H3,H2). Moreover, if T ∈ L1(H1,H2),

S ∈ L(H2,H1), then Tr(ST ) = Tr(T S)≤ ‖S‖‖T‖L1(H1,H2). If T ≥ 0, then

T ∈ L1(H,H) if and only if the series in (1.2) converges for some or-

thonormal basis {ek}k∈N and in this case ‖T‖L1(H,H) = Tr(T ).
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Proof. The proofs for Hi = H are given in [4, Appendix C]. The general

cases are proved in the same way.

Definition 1.3 (Hilbert-Schmidt operator). An operator T ∈ L(U,H) is

Hilbert-Schmidt if ∑
∞
k=1 ‖Tek‖2 < ∞ for an orthonormal basis {ek}k∈N

of U.

A straightforward calculation shows that if T is Hilbert-Schmidt,

then the sum in Definition 1.3 is independent of the choice of the or-

thonormal basis. It is clear that Hilbert-Schmidt operators form a linear

space denoted by L2(U,H) which, as Proposition 1.5 shows, becomes a

Hilbert space with scalar product and norm

(1.3) 〈T,S〉L2(U,H) =
∞

∑
k=1
〈Tek,Sek〉H , ‖T‖L2(U,H) =

( ∞

∑
k=1
‖Tek‖2

H

) 1
2
,

where {ek}k∈N is any orthonormal basis of U .

Remark 1.4. We list a few facts about Hilbert Schmidt operators.

1. An operator T ∈ L2(U,H) if and only if T ∗ ∈ L2(H,U) and

‖T‖L2(U,H) = ‖T ∗‖L2(H,U).

2. An operator T ∈ L2(U,H) if and only if T T ∗ ∈ L1(H,H) if and

only if T ∗T ∈ L1(U,U) and in this case

‖T‖2
L2(U,H) = Tr(T T ∗) = Tr(T ∗T ).

3. If T ∈ L2(U,H) and S ∈ L(U), then T S ∈ L2(U,H) and

‖T S‖L2(U,H) ≤ ‖T‖L2(U,H)‖S‖L(U).
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4. If T ∈ L2(U,H), then ‖T‖L(U,H) ≤ ‖T‖L2(U,H).

The proofs are elementary and are left as an exercise.

Proposition 1.5. The space L2(U,H) of Hilbert-Schmidt operators is a

separable Hilbert space with scalar product and norm defined in (1.3).

If { fk}k∈N is an orthonormal basis of H and {ek}k∈N is an orthonormal

basis of U, then the rank one operators { f j⊗ ek} j,k∈N defined by ( f j⊗
ek)(u) := f j〈ek,u〉, u ∈U, form an orthonormal basis for L2(U,H).

Proof. We first prove completeness. Let {Tn}n∈N ⊂ L2(U,H) be a Cau-

chy sequence. Then {Tn}n∈N is also a Cauchy sequence in L(U,H) since

‖T‖L(U,H) ≤ ‖T‖L2(U,H) for all T ∈ L2(U,H). Since L(U,H) is com-

plete there is T ∈ L(U,H) such that

‖Tn−T‖L(U,H)→ 0, as n→ ∞.

Let ε > 0. If n is large enough, then by Fatou’s lemma,

‖Tn−T‖2
L2(U,H) =

∞

∑
k=1
‖(Tn−T )ek‖2

H

=
∞

∑
k=1

lim
m→∞
‖(Tn−Tm)ek‖2

H

≤ liminf
m→∞

∞

∑
k=1
‖(Tn−Tm)ek‖2

H

= liminf
m→∞

‖(Tn−Tm)‖2
L2(U,H) ≤ ε.

This shows that Tn→ T in L2(U,H) as n→ ∞ and that T ∈ L2(U,H).

To show separability observe first that f j⊗ei ∈ L2(U,H) for all i, j ∈N.

If T ∈ L2(U,H), then

(1.4) 〈 f j⊗ ei,T 〉L2(U,H) =
∞

∑
n=1
〈ei,en〉〈 f j,Ten〉 = 〈 f j,Tei〉.
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By setting T equal to fk ⊗ el in (1.4) it follows that { f j ⊗ ei}i, j∈N is

an orthonormal system. To show that it is a complete system let T ∈
L2(U,H) and assume that 〈 f j⊗ ei,T 〉L2(U,H) = 0 for all i, j ∈ N. Then

〈 f j,Tei〉 = 0 for all i, j ∈ N and thus Tei = 0 for all i ∈ N. Therefore,

T = 0.

The following proposition summarizes well-known results from the

spectral theorem for self-adjoint compact linear operators on Hilbert

space. For the proofs we refer to [6] and [8].

Proposition 1.6. If Q ∈ L(U), Q ≥ 0, and Tr(Q) < ∞, then there is an

orthonormal basis {ek}k∈N of U such that Qek = λkek, λ1 ≥ λ2 ≥ ·· · ≥
λk ≥ λk+1 ≥ ·· · ≥ 0, λk→ 0 as k→ ∞, and 0 is the only accumulation

point of {λk}k∈N. Moreover,

Qx =
∞

∑
k=1

λk〈x,ek〉ek, x ∈U.

1.2 Pseudo-inverse and the Cameron-Martin space

Let T ∈ L(U,H) and define ker(T ) = {x ∈ U : T x = 0}. Recall that

T is one-to-one with inverse T−1 if and only if ker(T ) = 0. Since the

restriction T
∣∣
(ker(T ))⊥ is one-to-one we may define the pseudo-inverse of

T , still denoted T−1, by

T−1 =
(

T
∣∣
(ker(T ))⊥

)−1

and thus T−1 is defined on the range of T ,

T−1 : T (U)→
(

ker(T )
)⊥

.
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In the particular situation of Proposition 1.6 we have

Q−1x =
∞

∑
λk>0

λ
−1
k 〈x,ek〉ek, x ∈U.

Let Q ∈ L(U), Q ≥ 0, and let Q1/2 ∈ L(U) denote its unique pos-

itive square root, that is, Q1/2 ≥ 0 and Q1/2Q1/2 = Q. (Every positive

operator in L(U) has a unique positive square root, see [6, 31.2].) Let us

introduce the Cameron-Martin space U0 = Q1/2(U) with inner product

〈u0,v0〉0 = 〈Q−1/2u0,Q−1/2v0〉U , u0,v0 ∈U0,

where Q−1/2 denotes the pseudo-inverse of Q1/2 in case it is not one-to-

one. Since

‖Q1/2u‖2
0 = 〈Q−1/2Q1/2u,Q−1/2Q1/2u〉U = ‖u‖2

U , u ∈U,

it follows that

Q1/2 :
((

ker(Q1/2)
)⊥

,〈·, ·〉U
)
→ (U0,〈·, ·〉0)

is an isometric isomorphism. Hence, (U0,〈·, ·〉0) is a separable Hilbert

space. If {gk}k∈N is an orthonormal basis for (ker(Q1/2))⊥, then it

follows that {Q1/2gk}k∈N is an orthonormal basis for (U0,〈·, ·〉0). Let

L0
2 = L2(U0,H) be the space of Hilbert-Schmidt operators from U0→H

and let L(U,H)0 = {T |U0 : T ∈ L(U,H)} denote the space of bounded

linear operators U → H restricted to U0. Notice that L0
2 may contain

unbounded operators U → H. However, the next result shows that if

Tr(Q) < ∞, then L(U,H)0 is dense in L0
2.

Lemma 1.7. There is an orthonormal basis of L0
2 = L2(U0,H) consist-

ing of elements of L(U,H)0. If Tr(Q) < ∞, then L(U,H)0 ⊂ L0
2 and

hence L(U,H)0 is dense in L0
2.
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Proof. Let {gk}k∈N be an orthonormal basis for
(

ker(Q)
)⊥. Then, by

the previous discussion,
{

Q1/2gk
}

k∈N is an orthonormal basis of U0.

By Lemma 1.5 the set { f j⊗Q1/2gk} j,k∈N is an orthonormal basis for

L2(U0,H), if { f j} j∈N is an orthonormal basis for H. This proves the

first statement. To prove the second statement we complement {gk}k∈N

to an orthonormal basis of U , still denoted by {gk}k∈N, by adding an or-

thonormal basis of ker(Q1/2) . Since Tr(Q) < ∞, it follows that Q1/2 ∈
L2(U,U) by property (2) in Remark 1.4. If T ∈ L(U,H)0, then, by prop-

erty (3) in Remark 1.4,

‖T‖2
L0

2
=

∞

∑
k=1
‖T Q1/2gk‖2 = ‖T Q1/2‖2

L2(U,H)

≤ ‖T‖2
L(U,H)‖Q

1/2‖2
L2(U,U) < ∞

and thus L(U,H)0 ⊂ L0
2.

2 Elements of Banach space-valued stochas-

tic analysis

Let (U,〈·, ·〉U) be a separable Hilbert space and let (Ω,F ,P) be a prob-

ability space. In the present section we review some constructions and

results from the theory of Banach space-valued stochastic analysis.

2.1 Infinite-dimensional Wiener processes

Let B(U) denote the Borel σ-algebra of U , that is, the smallest σ-algebra

which contains all open subsets of U . Let µ be a probability mea-

sure on (U,B(U)). By a real random variable on the probability space
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(U,B(U),µ) we understand a measurable function X : (U,B(U)) →
(R,B(R)), where B(R) is the real Borel σ-algebra. The law of X is

the probability measure µ◦X−1. For v ∈U let v′ ∈U∗ denote the func-

tional given by v′(u) = 〈v,u〉U , u ∈U .

Definition 2.1. A probability measure µ on (U,B(U)) is Gaussian if for

all v∈U, v′ has a Gaussian law as a real-valued random variable on the

probability space (U,B(U),µ). That is, for all v ∈U there are mv ∈ R
and σv ∈ R+, such that, if σv > 0,

(
µ◦ (v′)−1)(A) = µ

(
{u ∈U : v′(u) ∈ A}

)
=

1√
2πσ2

v

Z
A

e
− (s−mv)2

2σ2v ds,

for all A ∈ B(R). If σv = 0, then we require that µ ◦ (v′)−1 = δmv , the

Dirac measure concentrated at mv.

We need the following lemma.

Lemma 2.2. Let ν be a probability measure on (U,B(U)) and k ∈N be

such that Z
U
|〈z,x〉|k dν(x) < ∞ ∀z ∈U.

Then there is a constant C(ν,k) > 0 such that for all h1, . . . ,hk ∈U,Z
U
|〈h1,x〉 · · · 〈hk,x〉| dν(x)≤C(ν,k)‖h1‖ · · ·‖hk‖.

In particular, the symmetric k-form

(h1, . . . ,hk) 7→
Z

U
〈h1,x〉 · · · 〈hk,x〉 dν(x)

is continuous.
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Proof. Let n ∈ N and define

Un =
{

z ∈U :
Z

U

∣∣〈z,x〉∣∣k dν(x)≤ n
}

.

Then, by construction, U =
S

∞
n=1Un. Notice that Un is closed for all

n ∈ N. Indeed, let z ∈Un and take a sequence Un 3 z j → z as j→ ∞.

Then
∣∣〈z j,x〉

∣∣k→ |〈z,x〉|k as j→ ∞ and thus, by Fatou’s lemma,Z
U
|〈z,x〉|k dν(x)≤ liminf

j→∞

Z
U

∣∣〈z j,x〉
∣∣k dν(x)≤ n,

so that z ∈Un.

Since U is a complete metric space, it follows from the Baire cate-

gory theorem that there is n0 such that Un0 is not nowhere dense1. There-

fore there are r0 > 0 and z0 ∈Un0 such that the closed ball B(z0,r0) ⊂
Un0 = Un0 . Therefore,Z

U
|〈z0 + y,x〉|k dν(x)≤ n0 ∀y ∈ B(0,r0),

and hence, for all y ∈ B(0,r0),Z
U
|〈y,x〉|k dν(x) =

Z
U
|〈z0 + y,x〉 −〈z0,x〉|k dν(x)

≤ 2k−1
Z

U
|〈z0 + y︸ ︷︷ ︸
∈Un0

,x〉|k dν(x)

+2k−1
Z

U
|〈 z0︸︷︷︸
∈Un0

,x〉|k dν(x)≤ 2kn0.

(2.1)

Let z ∈U with ‖z‖ = 1 and y = r0z so that y ∈ B(0,r0). By (2.1),Z
U
|〈z,x〉|k dν(x) = r−k

0

Z
U
|〈y,x〉|k dν(x)≤ 2kn0r−k

0 .

1A set A⊂U is nowhere dense, if A has empty interior.
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Finally, if h1, . . . ,hk ∈U \{0}, then by Hölder’s inequality,Z
U

∣∣∣〈 h1

‖h1‖
,x
〉
· · ·
〈 hk

‖hk‖
,x
〉∣∣∣dν(x)

≤
(Z

U

∣∣∣〈 h1

‖h1‖
,x
〉∣∣∣k dν(x)

)1/k
· · ·
(Z

U

∣∣∣〈 hk

‖hk‖
,x
〉∣∣∣k dν(x)

)1/k

≤ 2kn0r−k
0 .

We next characterize Gaussian measures is terms of their Fourier

transforms.

Theorem 2.3 (Characterization of Gaussian measure). A finite measure

µ on (U,B(U)) is Gaussian if and only if

µ̂(u) :=
Z

U
ei〈u,v〉U dµ(v) = ei〈m,u〉U− 1

2 〈Qu,u〉U ,

where m ∈ U and Q ∈ L(U),Q ≥ 0, with Tr(Q) < ∞. In this case we

write µ = N(m,Q), and m and Q are called the mean and the covariance

operator of µ. The measure µ is uniquely determined by m and Q.

Proof. Assume that µ has Fourier transform

µ̂(u) = ei〈m,u〉− 1
2 〈Qu,u〉.

We must check that for v′ ∈ U∗ with v′(u) = 〈v,u〉 the measure µv =

µ◦ (v′)−1 is Gaussian on R. For t ∈ R we have, by assumption,

µ̂(tv) = eit〈m,v〉− 1
2 t2〈Qv,v〉.

On the other hand, by the definition of the Fourier transform,

µ̂(tv) =
Z

U
ei〈tv,w〉 dµ(w) =

Z
U

eit〈v,w〉 dµ(w)

=
Z

R
eits dµv(s) = µ̂v(t).

(2.2)
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Therefore, µ̂v(t) = eit〈m,v〉− 1
2 t2〈Qv,v〉 and by uniqueness of the Fourier

transform of finite measures on R, the measure µv is Gaussian with mean

mv = 〈m,v〉 and covariance σ2
v = 〈Qv,v〉. The parameters m and Q de-

termine µ uniquely by the uniqueness of the Fourier transform on U , see

[4, p. 36].

Conversely, assume that µ is Gaussian on (U,B(U)) as in Defini-

tion 2.1. Since,

dµv(s) =
1√

2πσ2
v

e
− (s−mv)2

2σ2v ds or µv = δmv,

we have Z
U
|〈x,v〉|dµ(x) =

Z
U
|v′(x)|dµ(x) =

Z
R
|s|dµv(s) < ∞,

and it follows from Lemma 2.2 that

v 7→
Z

U
〈x,v〉 dµ(x)

is continuous. Thus, by the Riesz representation theorem there is a

unique m ∈U such that Z
U
〈x,v〉 dµ(x) = 〈m,v〉.

Moreover, we haveZ
U
|〈x,v〉|2 dµ(x) =

Z
R
|s|2 dµv(s) < ∞

and thus the bilinear form

(h1,h2) 7→
Z

U
〈x,h1〉〈x,h2〉 dµ(x)−〈m,h1〉〈m,h2〉

13



is continuous by Lemma 2.2. Hence, by the Riesz representation theo-

rem, there is a symmetric operator Q ∈ L(U) such that

〈Qh1,h2〉 =
Z

U
〈x,h1〉〈x,h2〉 dµ(x)−〈m,h1〉〈m,h2〉.

Note that Q≥ 0 because

〈Qh,h〉 =
Z

U
〈x,h〉2 dµ(x)−〈m,h〉2

=
Z

U
〈x,h〉2 dµ(x)−

(Z
U
〈x,h〉 dµ(x)

)2
≥ 0.

In order to determine the Fourier transform of µ first note that

〈m,v〉 =
Z

U
〈x,v〉 dµ(x) =

Z
R

sdµv(s) = mv,

and

〈Qv,v〉 =
Z

U
〈x,v〉2 dµ(x)−

(Z
U
〈x,v〉 dµ(x)

)2

=
Z

R
s2 dµv(s)−

(Z
R

sdµv(s)
)2

= σ
2
v .

Therefore, by (2.2) and the uniqueness of the Fourier transform on R,

µ̂(v) = µ̂v(1) = eimv− 1
2 σ2

v = ei〈m,v〉− 1
2 〈Qv,v〉

as required.

Finally, we show that Tr(Q) < ∞. Without loss of generality we may

assume that m = 0. Otherwise, the translated measure µ̃(A) = µ(A+m)

has zero mean and the same covariance operator as µ. Let c ∈ (0,∞).

Since m = 0, we have

e−
1
2 〈Qh,h〉 =

Z
U

ei〈h,x〉 dµ(x) =
Z

U
cos〈h,x〉 dµ(x).
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Therefore, using that 1− cosx≤ 1
2x2,

1− e−
1
2 〈Qh,h〉 =

Z
U

(1− cos〈h,x〉) dµ(x)

≤ 1
2

Z
‖x‖≤c

|〈h,x〉|2 dµ(x)+2µ({x : ‖x‖ > c}.
(2.3)

Define Qc ∈ L(U), Qc ≥ 0, by

〈Qch1,h2〉 =
Z
‖x‖≤c

〈h1,x〉〈h2,x〉 dµ(x), h1,h2 ∈U.

We have that Tr(Qc) < ∞, since

Tr(Qc) =
∞

∑
k=1
〈Qcek,ek〉 =

∞

∑
k=1

Z
‖x‖≤c

〈ek,x〉2 dµ(x)

=
Z
‖x‖≤c

∞

∑
k=1
〈ek,x〉2 dµ(x)

=
Z
‖x‖≤c

‖x‖2 dµ(x)≤ c2 < ∞,

(2.4)

where we used the monotone convergence theorem to interchange the

sum and integral. We will show that there is c > 0 such that

(2.5) 〈Qh,h〉 ≤ 2log4〈Qch,h〉, ∀h ∈U,

which implies that Tr(Q)≤ 2log4Tr(Qc) < ∞ in view of (2.4). Choose

c such that

µ{x ∈U : ‖x‖ > c} ≤ 1
8
,

and let h ∈U be such that 〈Qch,h〉 ≤ 1. Then, (2.3) implies

1− e−
1
2 〈Qh,h〉 ≤ 1

2
+

1
4

=
3
4
,

which yields 〈Qh,h〉 ≤ 2log4. So if h ∈U is arbitrary but 〈Qch,h〉 6= 0,

then we replace h by h√
〈Qch,h〉

and deduce (2.5). On the other hand, if
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〈Qch,h〉 = 0, then 〈Qcnh,nh〉 = 0 ≤ 1 for all n ∈ N. Thus, 〈Qh,h〉 ≤
n−22log4. Since this is true for all n ∈ N it follows that 〈Qh,h〉 = 0,

which shows (2.5) in this case as well.

Corollary 2.4. Let µ be a Gaussian measure on U with mean m and

covariance operator Q. Then, for all u,v ∈U,Z
U
〈x,u〉U dµ(x) = 〈m,u〉U ,Z

U
〈x−m,u〉U〈x−m,v〉U dµ(x) = 〈Qu,v〉U ,Z

U
‖x−m‖2

U dµ(x) = Tr(Q).

Proof. The statement follows by inspecting the proof of Theorem 2.3

and is left to the reader as an exercise.

Definition 2.5. A U-valued random variable X on a probability space

(Ω,F ,P), that is, a measurable mapping X : (Ω,F ,P)→ (U,B(U)),

is Gaussian if the law µ = P ◦ X−1 of X is a Gaussian measure on

(U,B(U)), that is, P ◦X−1 = N(m,Q) for some m ∈U and Q ∈ L(U).

We call m the mean and Q the covariance operator of X.

Proposition 2.6. If X is a U-valued Gaussian random variable with

mean m and covariance operator Q, then for all u,v ∈U,

E(〈X ,u〉U) = 〈m,u〉U ,

E(〈X−m,u〉U〈X−m,v〉U) = 〈Qu,v〉U ,

E(‖X−m‖2
U) = Tr(Q).

Proof. This follows from Corollary 2.4 by a change of variables.

16



The following proposition gives a representation of a Gaussian ran-

dom variable in terms the eigenpairs of its covariance operator, see

Proposition 1.6.

Proposition 2.7. Let m ∈U and Q ∈ L(U), Q ≥ 0, with Tr(Q) < ∞. A

U-valued random variable X on (Ω,F ,P) is Gaussian with P ◦X−1 =

N(m,Q) if and only if

(2.6) X = m+
∞

∑
k=1

√
λkβkek,

where (λk,ek) are the eigenpairs of Q and βk are independent real ran-

dom variables with P ◦ β
−1
k = N(0,1) if λk > 0 and βk = 0 otherwise.

The series in (2.6) converges in L2(Ω,F ,P;U).

Proof. Let X be Gaussian with P◦X−1 = N(m,Q). Since {ek}k∈N is an

orthonormal basis for U , it follows that, for fixed ω ∈Ω,

X(ω) =
∞

∑
k=1
〈X(ω),ek〉ek.

Since X is Gaussian we have that 〈X ,ek〉 is a real Gaussian random

variable. By Proposition 2.6 we have

E(〈X ,ek〉) = 〈m,ek〉,

E(〈X−m,ek〉〈X−m,el〉) = 〈Qek,el〉 = λkδkl.

Define

βk =

λ
− 1

2
k 〈X−m,ek〉, if λk > 0,

0, if λk = 0.

If λk > 0, then βk is a Gaussian random variable with P◦β
−1
k = N(0,1)

and X = m + ∑
∞
k=1

√
λkβkek. It remains to show that the random vari-

ables {βk} are independent. We will use the well-known fact that if

17



Y = (Y1, . . . ,Yn) is an Rn-valued Gaussian random variable, then the

family {Yk}n
k=1, of real random variables are independent if and only

if for k 6= l, E(YkYl) = 0. Here, β = (β1, . . . ,βn), where n ∈ N is fixed

but arbitrary, is an Rn-valued Gaussian random variable. Indeed, since

X is Gaussian it follows that, for any v ∈ Rn,

〈β,v〉Rn =
n

∑
k=1

vkβk = ∑
λk>0

vkλ
− 1

2
k 〈X−m,ek〉U =

〈
X , ∑

λk>0
vkλ
− 1

2
k ek

〉
U

+C

is real Gaussian and, hence, that β is Rn-valued Gaussian. Moreover,

E(βkβl) = δkl for k 6= l so that β1, . . . ,βn are independent.

Finally, the series in (2.6) converges in L2(Ω,F ,P;U), since by Par-

seval’s identity and the fact that ∑
∞
k=1 λk = Tr(Q) < ∞,∥∥∥ m

∑
k=n

λ
1
2
k βkek

∥∥∥2

L2(Ω,F ,P;U)
=

Z
Ω

∥∥∥ m

∑
k=n

λ
1
2
k βkek

∥∥∥2

U
dP

= E
(∥∥∥ m

∑
k=n

λ
1
2
k βkek

∥∥∥2

U

)
= E

( m

∑
k=n

λkβ
2
k

)
=

m

∑
k=n

λkE
(
β

2
k
)

=
m

∑
k=n

λk→ 0 as m,n→ ∞.

Conversely, let βk, ek and λk be as assumed. Define

X = m+
∞

∑
k=1

√
λkβkek,

which converges in L2(Ω,F ,P;U) by the above computation. We have

to show that X is a Gaussian random variable with mean m and covari-

ance operator Q. If u ∈U , then

(2.7)
〈

m+
n

∑
k=1

√
λkβkek,u

〉
= 〈m,u〉+

n

∑
k=1

√
λkβk〈ek,u〉

18



is real a real Gaussian random variable since β1, . . . ,βn are indepen-

dent Gaussian random variables. Moreover, the series on the right side

of (2.7) converges in L2(Ω,F ,P;R) and hence its limit 〈X ,u〉 is real

Gaussian. Therefore, X is a Gaussian random variable. Finally, by the

assumption on {βk}, for the mean we obtain E(〈X ,u〉) = 〈m,u〉 and for

the covariance we have

E(〈X−m,u〉〈X−m,v〉) = E
(〈 ∞

∑
k=1

√
λkβkek,u

〉〈 ∞

∑
l=1

√
λlβlel,v

〉)
=

∞

∑
k=1

∞

∑
l=1

√
λkλlE(βkβl)〈ek,u〉〈el,v〉

=
∞

∑
k=1

λk〈ek,u〉〈ek,v〉 = 〈Qu,v〉.

Corollary 2.8 (Existence of Gaussian measures). For each m ∈U and

Q ∈ L(U), Q≥ 0, with Tr(Q) < ∞, there exists µ = N(m,Q).

Proof. For the given m and Q, construct a Gaussian random variable X

according to Proposition 2.7 and take µ = P◦X−1.

Remark 2.9. In the above construction we assumed that there exist a

probability space with a countably infinite family of independent real

Gaussian random variables. This is a nontrivial fact from probability

theory.

Definition 2.10. Let (Ω,F ,P) be a probability space and I ⊂ R be an

interval (possibly infinite). A U-valued stochastic process {X(t)}t∈I is

a set of U-valued random variables X(t) on (Ω,F ,P) where t ∈ I. Two
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stochastic processes {X(t)}t∈I and {Y (t)}t∈I are versions (or modifica-

tions) of each other, if

P({X(t) 6= Y (t)}) = 0, for all t ∈ I.

They are indistinguishable (or indistinguishable versions of each other),

if

P
([

t∈I

{X(t) 6= Y (t)}
)

= 0.

Since I is uncountable, being indistinguishable is much stronger than

being versions. This is because the exceptional null sets, where the pro-

cesses do not coincide, may depend on t, with t ranging in an uncount-

able set in case two processes are only versions of each other.

Definition 2.11. A U-valued stochastic process {W (t)}t≥0 is called a

(nuclear) Q-Wiener process if

1. W (0) = 0;

2. {W (t)}t≥0 has continuous paths almost surely, that is, the map-

ping t 7→W (t,ω) is continuous for almost every ω ∈Ω;

3. {W (t)}t≥0 has independent increments, that is, for any finite par-

tition 0 = t0 ≤ t1 ≤ ·· · ≤ tm−1 ≤ tm < ∞ the random variables

W (t1),W (t2)−W (t1), · · · ,W (tm)−W (tm−1), are independent;

4. the increments have Gaussian laws, more precisely,

P◦ (W (t)−W (s))−1 = N(0,(t− s)Q), 0≤ s≤ t.
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It follows from the definition that Tr(Q) < ∞ and that we may as well

assume that {W (t)}t≥0 has continuous paths for all ω∈Ω by re-defining

W (t,ω) = 0 for those ω where t 7→W (t,ω) is not continuous.

Proposition 2.12 (Representation of Q-Wiener process). Let Q ∈ L(U),

Q ≥ 0, with Tr(Q) < ∞. A U-valued process {W (t)}t≥0 is a U-valued

Q-Wiener process if and only if

(2.8) W (t) =
∞

∑
k=1

√
λkβk(t)ek,

where (λk,ek) are the eigenpairs of Q and {βk(t)}t≥0 are independent

real-valued standard Brownian motions on (Ω,F ,P). For each T > 0,

the series in (2.8) converges in L2
(
Ω,F ,P;C([0,T ],U)

)
. In particular,

for every Q ∈ L(U) with Q≥ 0 and Tr(Q) < ∞, there exists a Q-Wiener

process.

Proof. Let {W (t)}t≥0 be a Q-Wiener process. Since

P◦W (t)−1 = N(0, tQ),

it follows, as in the proof of Proposition 2.7, that

W (t) =
∞

∑
k=1

√
λkβk(t)ek,

where

βk(t) =

λ
− 1

2
k 〈W (t),ek〉, if λk > 0,

0, if λk = 0,

and the sum converges in L2(Ω,F ,P;U). Also, P ◦ βk(t)−1 = N(0, t)

and the random variables {βk(t)}k∈N are independent, for fixed t. We
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have to show that, in fact, {βk(·)}k∈N is a family of independent standard

real Brownian motions. Since

(2.9) βk(tn)−βk(tn−1) = λ
1/2
k 〈W (tn)−W (tn−1),ek〉, 0≤ tn−1 ≤ tn,

for all k ∈ N, it follows that βk(0) = 0, {βk(t)}t≥0 has continuous paths

almost surely, {βk(t)}t≥0 has independent increments and P ◦
(
βk(t)−

βk(s)
)−1 = N(0, t− s) for t ≥ s. It remains to show that {βk(·)}k∈N is

a family of independent stochastic processes. Take {ki}n
i=1 ⊂ N distinct

and 0 = t0 ≤ t1 ≤ ·· · ≤ tm < ∞. We must show that the σ-algebras

σ
(
βk1(t1), . . . ,βk1(tm)

)
, . . . ,σ

(
βkn(t1), . . . ,βkn(tm)

)
are independent. We proceed by induction on m. For m = 1, the random

variables {βki(t1)}n
i=1 are independent as observed before. Now take

0 = t0 ≤ t1 ≤ ·· · ≤ tm+1 and assume that

σ
(
βk1(t1), . . . ,βk1(tm)

)
, . . . ,σ

(
βkn(t1), . . . ,βkn(tm)

)
are independent. Note first that

σ
(
βki(t1), . . . ,βki(tm+1)

)
= σ

(
βki(t1), . . . ,βki(tm),βki(tm+1)−βki(tm)

)
.

Also, (2.9) and the fact that W (tn)−W (tn−1) is Gaussian imply, as

in the proof of Proposition 2.7, that the random variables {βk(tn)−
βk(tn−1)}m+1

n=2 are independent. Then, for Ai j ∈ B(R), i = 1, . . . ,n, j =
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1, . . . ,m,

P
( n\

i=1

{
βki(t1) ∈ Ai,1, . . . ,βki(tm) ∈ Ai,m,βki(tm+1)−βki(tm) ∈ Ai,m+1

})
= P

( n\
i=1

m\
j=1

{
βki(t j) ∈ Ai, j

} n\
i=1

{
βki(tm+1)−βki(tm) ∈ Ai,m+1

})
= P

( n\
i=1

m\
j=1

{
βki(t j) ∈ Ai, j

})
P
( n\

i=1

{
βki(tm+1)−βki(tm) ∈ Ai,m+1

})
=

n

∏
i=1

P
( m\

j=1

{
βki(t j) ∈ Ai, j

}) n

∏
i=1

P
({

βki(tm+1)−βki(tm) ∈ Ai,m+1

})
=

n

∏
i=1

P
( m\

j=1

{
βki(t j) ∈ Ai, j

})
P
({

βki(tm+1)−βki(tm) ∈ Ai,m+1

})
=

n

∏
i=1

P
( m\

j=1

{
βki(t j) ∈ Ai, j

}
∩
{

βki(tm+1)−βki(tm) ∈ Ai,m+1

})
,

which finishes the proof of the induction step and hence the induction.

Conversely, let {βk(·)}k∈N and Q be given as in the statement of the

theorem. Define

(2.10) W (t) =
n

∑
k=1

√
λkβk(t)ek,

where for fixed t is the series converges in L2(Ω,F ,P;U) as Q has fi-

nite trace. It is straightforward to check that W (0) = 0, {W (t)}t≥0 has

independent Gaussian increments with the required covariance operator

(compare with the proof of Proposition 2.7). The almost sure continuity

of the paths will follow from the L2
(
Ω,F ,P;C([0,T ],U)

)
convergence

of (2.10). In order to prove this we recall that Doob’s maximal inequal-

23



ity states that if {M(t)}t≥0 is a real-valued martingale, then(
E
(

sup
0≤t≤T

|M(t)|p
)) 1

p ≤ p
p−1

(
E
(
|M(T )|p

)) 1
p
, 1 < p < ∞.

It is well known that a real-valued Brownian motion is a martingale

(with respect to itself) and therefore

E
(

sup
0≤t≤T

∥∥∥ m

∑
k=n

√
λkβk(t)ek

∥∥∥2

U

)
= E

(
sup

0≤t≤T

m

∑
k=n

λkβk(t)2
)

≤
m

∑
k=n

λkE
(

sup
0≤t≤T

βk(t)2
)
≤ 4

m

∑
k=n

λkE
(
βk(T )2)= 4T

m

∑
k=n

λk→ 0,

as n→ ∞. The fact that the space L2
(
Ω,F ,P;C([0,T ],U)

)
is complete

finishes the proof.

Remark 2.13. As in the proof of the existence of a Gaussian measure,

we used here the nontrivial fact that there is a probability space with

a countably infinite set of independent Brownian motions. Even the

existence of a single Brownian motion is far from obvious. We refer to

the standard literature on probability theory.

2.2 Wiener processes with respect to a filtration

We start with a few definitions.

Definition 2.14. A filtration is a family of σ-algebras
{

Ft
}

t≥0 with Ft ⊂
Fs ⊂ F for t ≤ s. A filtration

{
Ft
}

t≥0 on (Ω,F ,P) is called normal if

• F0 contains all sets A ∈ F such that P(A) = 0;

• Ft = Ft+ :=
T

s>t Fs, ∀t ∈ [0,T ].
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Definition 2.15. A Q-Wiener process
{

W (t)
}

t≥0 is called a Q-Wiener

process with respect to the filtration
{

Ft
}

t≥0 if

• {W (t)}t≥0 is adapted to {Ft}t≥0, that is, W (t) is Ft measurable

for all t ≥ 0;

• the random variable W (t)−W (s) is independent of Fs for all fixed

s ∈ [0, t].

To see that for a given Q-Wiener process
{

W (t)
}

t≥0 there is always

a normal filtration
{

Ft
}

t≥0 such that
{

W (t)
}

t≥0 becomes a Q-Wiener

process with respect to
{

Ft
}

t≥0, define

N := {A∈F : P(A) = 0}, F̃s := σ(W (r) : r≤ s), F̃ 0
s := σ(N ∪ F̃s)

and

(2.11) Fs :=
\
r>s

F̃ 0
s .

Proposition 2.16. If
{

W (t)
}

t≥0 is a U-valued Q-Wiener process on the

measure space (Ω,F ,P), then
{

W (t)
}

t≥0 is a Q-Wiener process with

respect to the normal filtration defined in (2.11).

Proof. That {W (t)}t≥0 is adapted to {Ft}t≥0 is clear from the construc-

tion. Thus, we only need to show that W (t)−W (s) independent of Fs

for all fixed s ∈ [0, t]. We first show that W (t)−W (s) is independent of

F̃s. Fix 0≤ s≤ t and take 0≤ t1 < t2 < · · ·< tn ≤ s. Then

σ
(
W (t1), . . . ,W (tn)

)
= σ

(
W (t1),W (t2)−W (t1), . . . ,W (tn)−W (tn−1)

)
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is independent of W (t)−W (s) as {W (t)}t≥0 has independent incre-

ments. Then W (t)−W (s) is also independent of F̃ 0
s . Finally, we show

that W (t)−W (s) is independent of Fs. By the continuity of paths,

W (t)−W (s) = lim
n→∞

(
W (t)−W (s+ 1

n)
)
.

If n is large enough (such that s+ 1
n ≤ t), then W (t)−W (s+ 1

n) is inde-

pendent of F̃ 0
s+ 1

n
⊃ Fs and hence of Fs. Therefore, W (t)−W (s) is also

independent of Fs.

2.3 Martingales in Banach space

Let E be a Banach space. An E-valued random variable X on (Ω,F ,P)

is Bochner integrable if X : (Ω,F ,P)→ (E,B(E)) is measurable andR
Ω
‖X(ω)‖ dP(ω) < ∞. A Banach space E is called separable if there is

a countable dense subset of E. If E is separable then X is measurable if

and only if l(X) : (Ω,F ,P)→ (R,B(R)) is measurable for all l ∈ E∗ as

shown in Corollary 2.19 below.

Lemma 2.17. Let E be a separable Banach space. Then there is a

countable subset {ln}n∈N ⊂ E∗ such that for all x,y ∈ E, x 6= y, there is

ln∗ ∈ {ln}n∈N with ln∗(x) 6= ln∗(y), that is, {ln}n∈N separates the points

of E. Moreover, ‖x‖ = supn∈N ln(x).

Proof. Since E is separable, there is {xn}n∈N ⊂ E such that {xn}n∈N is

dense in E. By the Hahn-Banach theorem, there is {ln}n∈N ⊂ E∗ such

that ln(xn) = ‖xn‖ and ‖ln‖ = 1. If x ∈ E is arbitrary, then there is a

sequence {xnk}k∈N ⊂ {xn}n∈N such that xnk → x as k→ ∞. We have

lnk(x) = lnk(−xnk + x)+ lnk(xnk) = lnk(x− xnk)+‖xnk‖.
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Since ‖xnk‖→‖x‖ and |lnk(x−xnk)| ≤ ‖lnk‖E∗‖x−xnk‖= ‖x−xnk‖→ 0

as k→ ∞, we conclude that lnk(x)→‖x‖ as k→ ∞. It follows that there

is n∗ such that ln∗(x) > 0 if x 6= 0. Thus, {ln} separates the points of

E. Finally, since ln(x) ≤ ‖x‖ for all x ∈ E, n ∈ N, and lnk(x)→ ‖x‖ as

k→ ∞, it follows that ‖x‖ = supn∈N ln(x) for all x ∈ E.

Lemma 2.18. If E is a separable Banach space and

(2.12) C :=
{
{x ∈ E : l(x)≤ α}

}
α∈R, l∈E∗

,

then σ(C ) = B(E).

Proof. By Lemma 2.17, there is {ln}n∈N ⊂ E∗ with ‖x‖ = supn∈N ln(x)

for all x ∈ E. Let a ∈ E and r > 0, and denote the open ball centered at

a with radius r by B(a,r). Then,

B(a,r) =
∞[

m=1

B
(
a,r(1− 1

m)
)

=
∞[

m=1

{
x ∈ E : ‖x−a‖ ≤ r(1− 1

m)
}

=
∞[

m=1

∞\
n=1

{x ∈ E : ln(x−a)≤ r(1− 1
m)}.

Thus σ(C ) contains open balls of E and therefore, B(E) ⊂ σ(C ). But

σ(C )⊂ B(E), since all l ∈ E∗ are continuous. Thus, B(E) = σ(C ).

Corollary 2.19 (Weak versus strong measurability). If E is a separable

Banach space and (Ω,F ,P) is a measure space, then X is an E-valued

random variable if and only if l(X) is an R-valued random variable for

all l ∈ E∗. In other words: X is strongly measurable if and only if it is

weakly measurable.
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Proof. If X is measurable, then l(X) is measurable for all l ∈ E∗, since

l is continuous. Conversely, since B(E) = σ(C ), where C is defined in

(2.12), it is enough to show that X−1(C) ∈ F for all C ∈ C . Let l ∈ E∗

and take a typical set C = {x ∈ E : l(x) ≤ α} from C . Since l(X) is

measurable, we have

X−1(C) = {ω ∈Ω : X(ω) ∈C}= {ω ∈Ω : l(X(ω))≤ α} ∈ F .

Proposition 2.20 (Conditional expectation). Let E be a real separable

Banach space, let X be an E-valued Bochner integrable random vari-

able on (Ω,F ,P), and let G ⊂F be a σ-algebra. Then there is a unique,

up to a set of P-measure 0, Bochner integrable E-valued G-measurable

random variable Z such that

(2.13)
Z

A
X dP =

Z
A

Z dP for all A ∈ G .

The random variable Z is called the conditional expectation of X given

G and is denoted by Z = E(X |G). Furthermore,

(2.14) ‖E(X |G)‖ ≤ E
(
‖X‖

∣∣G) P-a.e.

Proof. We first prove uniqueness. Suppose that Z1,Z2 are Bochner inte-

grable and G-measurable E-valued random variables such thatZ
A

X dP =
Z

A
Z1 dP =

Z
A

Z2 dP ∀A ∈ G .

Since E is separable, there is a subset {ln}n∈N that separates the points

of E. For all n ∈ N and A ∈ G we have

ln
(Z

A
Z1 dP

)
= ln

(Z
A

Z2 dP
)
,
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which implies, by the continuity of ln, thatZ
A

ln(Z1)dP =
Z

A
ln(Z2)dP.

Therefore, Z
A

(
ln(Z1)− ln(Z2)

)
dP = 0, ∀n ∈ N, A ∈ G .

By taking first A to be {ω ∈ Ω : ln(Z1(ω)) > ln(Z2(ω))}, then to be

{ω ∈ Ω : ln(Z1(ω)) < ln(Z2(ω))} (both of these sets belong to G), it

follows that ln(Z1) = ln(Z2), P-a.e. Therefore, the set

Ω0 =
\

n∈N
{ω ∈Ω : ln(Z1(ω)) = ln(Z2(ω))}

satisfies P(Ω0) = 1. If ω∈Ω0, then ln(Z1(ω)) = ln(Z2(ω)) for all n∈N.

But this is only possible if Z1(ω) = Z2(ω) for all ω ∈ Ω0 as {ln}n∈N

separates points. This finishes the proof the uniqueness part of the state-

ment.

Next we show existence. Assume first that X is a simple random

variable, that is, there are X1, . . . ,XN ∈E and disjoint sets A1, . . . ,An ∈F
such that

X =
N

∑
k=1

Xk1Ak

and define

(2.15) Z =
N

∑
k=1

XkE(1Ak |G).

It is clear from the definition, by the properties of the conditional ex-

pectation of real random variables, that Z is G-measurable and thatR
A Z dP =

R
A X dP for all A ∈ G . Moreover,

‖Z‖ ≤
N

∑
k=1
‖Xk‖E(1Ak |G) = E

( N

∑
k=1
‖Xk‖1Ak

∣∣∣G)= E
(
‖X‖

∣∣G).
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Taking expectations and using the law of double expectation for real

random variables, we get

(2.16) E(‖Z‖)≤ E
(

E
(
‖X‖

∣∣G))= E(‖X‖).

Let X be a general E-valued Bochner-integrable random variable. Then

then there is a sequence of simple functions Xn such that ‖Xn(ω)−
X(ω)‖ → 0 as n→ 0 in a decreasing way, see, for example, [4, Lemma

1.1]. By Lebesgue’s dominated convergence theorem this also holds in

L1(Ω,F ,P;E). Define Zn as in (2.15), replacing X by Xn. Then, by

(2.16), for all m,n ∈ N,

E(‖Zn−Zm‖)≤ E(‖Xn−Xm‖).

Thus, {Zn} is a Cauchy sequence in L1(Ω,G ,P;E) as {Xn} is a Cauchy

sequence in L1(Ω,F ,P;E). Since L1(Ω,G ,P;E) is complete, there ex-

ists Z ∈ L1(Ω,G ,P;E) such that Zn→ Z in L1(Ω,G ,P;E) and, in par-

ticular, Z is G-measurable. Then, for all A ∈ G ,Z
A

X dP =
Z

A
lim
n→∞

Xn dP = lim
n→∞

Z
A

Xn dP = lim
n→∞

Z
A

Zn dP =
Z

A
Z dP.

Finally, since Zn→ Z as n→∞ in L1(Ω,G ,P;E), it follows that there is

a subsequence {Znk} of {Zn} which converges P-a.e. to Z. Clearly, the

corresponding subsequence Xnk → X as k→ ∞ both in L1(Ω,F ,P;E)

and pointwise for all ω ∈Ω. Therefore, P-a.e.,

‖E(X |G)‖ = ‖Z‖ = lim
k→∞
‖Znk‖ ≤ lim

k→∞
E
(
‖Xnk‖

∣∣G)= E
(
‖X‖

∣∣G).
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For later reference we note the ”law of double expectation”

(2.17) E
(

E(X |G)
)

= E(X)

which is obtained by taking A = Ω in (2.13).

Lemma 2.21. If E is a separable Banach space and X is an E-valued

random variable on (Ω,F ,P) with E(‖X‖) < ∞ and G ⊂ F , then

(2.18) l
(
E(X |G)

)
= E(l(X)|G), for all l ∈ E∗.

Proof. By definition, the right hand side of (2.18) is G-measurable. The

left hand side is G-measurable, too, since l is continuous. For all A ∈G ,Z
A

l(E(X |G))dP = l
(Z

A
E(X |G)dP

)
= l
(Z

A
XdP

)
=

Z
A

l(X)dP =
Z

A
E(l(X)|G)dP.

By uniqueness of conditional expectation the statement follows.

Corollary 2.22. Let E be a separable Banach space, let the random

variable X ∈ L1(Ω,F ,P;E), and let G ⊂ F be a σ-algebra. If X is

independent of G , then l(X) is independent of G for all l ∈ E∗ and

E(X |G) = E(X).

Proof. Let l ∈ E∗, A ∈ B(R), and B ∈ G . Then

P({l(X) ∈ A}∩B) = P({X ∈ l−1(A)}∩B})

= P({X ∈ l−1(A)})P(B) = P({l(X) ∈ A})P(B),

and hence l(X) is independent of G . Thus, using the corresponding re-

sult for real random variables, and Lemma 2.21, we get l(E(X |G)) =
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E(l(X)|G) = E(l(X)) = l(E(X)) almost surely. The proof can be com-

pleted in the same fashion as in the proof of the uniqueness part of The-

orem 2.20, by taking l from a countable subset of E∗ separating points

of E.

Definition 2.23. Let M(t)t≥0 be an E-valued stochastic process on a

probability space (Ω,F ,P) and let {Ft}t≥0 be a filtration on (Ω,F ,P).

The process {M(t)}t≥0 is called a martingale with respect to {Ft}t≥0

(or {M(t)}t≥0 is an {Ft}t≥0-martingale) if

1. E(‖M(t)‖) < ∞ for t ≥ 0;

2. {M(t)}t≥0 is adapted to {Ft}t≥0;

3. E(M(t)|Fs) = M(s) for 0≤ s≤ t < ∞.

Note that, by (2.17), E(M(s)) = E
(
E(M(t)|Fs)

)
= E(M(t)) and thus

E(M(t)) = E(M(0)) for t ≥ 0. This shows that, in the first condition of

the definition, it would be enough to assume that E(‖M(0)‖) < ∞. The-

orem 2.24 below shows that known theorems about real-valued martin-

gales can be transferred to Banach space-valued martingales by applying

functionals.

Theorem 2.24. Let E be a separable Banach space, let {M(t)}t≥0 be an

E-valued process on (Ω,F ,P), and let {Ft}t≥0 ⊂ F be a filtration. If

{M(t)}t≥0 is an {Ft}t≥0-martingale, then {l(M(t))}t≥0 is a real-valued

{Ft}t≥0-martingale for all l ∈ E∗. If E(‖M(t)‖) < ∞ for all t ≥ 0, then

the converse holds as well.
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Proof. Assume first that {M(t)}t≥0 is an {Ft}t≥0-martingale. Then, for

all l ∈ E∗,

E(|l(M(t))|) =
Z

Ω

|l(M(t))|dP≤
Z

Ω

‖l‖‖M(t)‖ dP

= ‖l‖E(‖M(t)‖) < ∞.

Since M(t) is Ft-measurable for all t ≥ 0 and l is continuous, it follows

that l(M(t)) is Ft-measurable for all t ≥ 0 and l ∈E∗. Finally, by Lemma

2.21, for all l ∈ E∗,

E(l(M(t)|Fs) = l(E(M(t)|Fs)) = l(M(s)), 0≤ s≤ t.

Therefore, l(M) is an {Ft}t≥0-martingale.

We now prove the converse statement. By assumption, E(‖M(t)‖) <

∞. The measurability of M(t) with respect to Ft , for all t ≥ 0, follows

from that of l(M(t)) by Corollary 2.24. Since {l(M(t))}t≥0 is a martin-

gale for all l ∈ E∗ it follows that

E(l(M(t))|Fs) = l(M(s)), 0≤ s≤ t,

which implies, by Lemma 2.21, that

l(E(M(t)|Fs)) = l(M(s)), 0≤ s≤ t.

The proof can be completed, as in the proof of the uniqueness part of

Theorem 2.20, by taking l from a countable subset of E∗ separating

points of E.

Remark 2.25. The assumption E(‖M(t)‖) < ∞ in Theorem 2.24 is es-

sential, that is, it is possible that l(Z) ∈ L1(Ω,F ,P;R) for all l ∈ E∗ but

Z /∈ L1(Ω,F ,P;E).
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Proof. Let E := c0 be the Banach space of all complex sequences X =

{Xn}n∈N with limn→∞ Xn = 0, endowed with norm ‖X‖ = supn∈N |Xn|.
Let (Ω,F ,P) = ([0,1],B([0,1]),m), where m is the Lebesgue measure

on [0,1], and let Z = (Zn)n∈N be given by Zn(ω) = n1(0, 1
n ](ω) for ω ∈

[0,1]. It is well known that c∗0 can be identified with l1, the space of

complex sequences l = {ln} such that ∑
∞
n=1 |ln|< ∞, endowed with norm

‖l‖ = ∑
∞
n=1 |ln|. It is also known that c0 is separable. If l = {ln} ∈ c∗0,

then l(Z) = ∑
∞
n=1 lnn1[0, 1

n ] and l(Z) is thus measurable for all l ∈ c∗0.

Therefore, by Lemma 2.19, Z is measurable. Also,

E
(
|l(Z)|

)
≤

∞

∑
n=1

Z 1

0
|ln|n1(0, 1

n ] dm =
∞

∑
n=1
|ln|= ‖l‖,

and thus l(Z) ∈ L1(Ω,F ,P;R) for all l ∈ c∗0. But ‖Z(ω)‖ = n if ω ∈
( 1

n+1 , 1
n ] and henceZ 1

0
‖Z(ω)‖ dm(ω) =

∞

∑
n=1

Z
( 1

n+1 , 1
n ]
‖Z(ω)‖ dm(ω) =

∞

∑
n=1

n
1

n(n+1)
= ∞.

Recall that Jensen’s inequality for real-valued conditional expecta-

tion states that if ψ : R→R is convex, if the random variables X ,ψ(X)∈
L1(Ω,F ,P;R), and if G ⊂ F is a σ-algebra, then

(2.19) ψ(E(X |G))≤ E(ψ(X)|G).

Theorem 2.26 (Doob’s maximal inequality). Let E be a separable Ba-

nach space and let {M(t)}t≥0 be an E-valued {Ft}t≥0-martingale. If

M(t) ∈ Lp(Ω,F ,P;E), t ≥ 0, for some p ∈ [1,∞), then {‖M(t)‖p}t≥0 is

a non-negative real-valued {Ft}t≥0-submartingale, that is,

(2.20) ‖M(s)‖p ≤ E
(
‖M(t)‖p∣∣Fs

)
, 0≤ s≤ t.
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Moreover, if p > 1 and T > 0, then

E
(

sup
t∈[0,T ]

‖M(t‖p
)
≤
( p

p−1

)p
E(‖M(T )‖p).

Proof. That {‖M(t)‖p}t≥0 is a non-negative real-valued {Ft}t≥0-sub-

martingale follows from Definition 2.23, (2.14), and Jensen’s inequality

(2.19) with ψ(x) = xp, because, for 0≤ s≤ t,

‖M(s)‖p = ‖E(M(t)|Fs)‖p ≤
(

E
(
‖M(t)‖

∣∣Fs
))p
≤ E

(
‖M(t)‖p∣∣Fs)

)
.

Now the rest of the proof is a direct consequence of Doob’s maximal

inequality for positive real-valued submartingales.

Next we define one of the most important spaces that we will work

with when defining the stochastic integral. Let T > 0 and define

M 2
T (E) :=

{
{M(t)}t∈[0,T ] : t 7→M(t) is continuous P-a.s.,

{M(t)}t∈[0,T ] is an E-valued {Ft}t∈[0,T ]-martingale,

and sup
t∈[0,T ]

Z
Ω

‖M(t)‖2 dP < ∞

}
endowed with norm

‖M‖M 2
T (E) := sup

t∈[0,T ]

(
E(‖M(t)‖2

)1/2
=
(

E(‖M(T )‖2
)1/2

.

In the last equality we used E(‖M(t)‖)2 ≤ E(‖M(T )‖)2, which follows

from (2.20) by taking expectations.

Proposition 2.27. The space M 2
T (E) is a Banach space and for all M ∈

M 2
T (E), we have

(2.21) ‖M‖M 2
T (E) ≤

(
E
(

sup
t∈[0,T ]

‖M(t)‖2
))1/2

≤ 2‖M‖M 2
T (E).
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Proof. The first inequality in (2.21) is obvious and the second one fol-

lows immediately from Theorem 2.26. Let {Mn}⊂M 2
T (E) be a Cauchy

sequence. Then, by (2.21), it is a Cauchy sequence in

X := L2
(
Ω,F ,P;C([0,T ],E)

)
as well. But X is a Banach space. Thus {Mn} converges to an almost

surely continuous process M in X , and also in the norm of M 2
T (E)

in view of (2.21). Finally, to see that M is a martingale, we observe

that Mn(t)→ M in L2(Ω,F ,P;E), for all t ∈ [0,T ] and hence also in

L1(Ω,F ,P;E), as n→∞. Thus, there is a subsequence {Mnk} of {Mn},
which converges to M almost surely, too. If 0≤ s≤ t ≤ T , then Mnk(s) =

E(Mnk(t)|Fs) almost surely. By letting k→∞ the proof is complete.

We now apply this to a Q-Wiener process on an Hilbert space U as

in Proposition 2.16.

Proposition 2.28. Let {W (t)}t≥0 be a U-valued Q-Wiener process with

respect to a normal filtration {F }t≥0 on (Ω,F ,P). Then W ∈M 2
T (U)

for all T > 0.

Proof. By definition W ∈C([0,T ],U) almost surely and

E(‖W (t)‖2) = t Tr(Q)≤ T Tr(Q) < ∞, for all t ∈ [0,T ].

Also, by assumption, {W (t)}t≥0 is adapted to {F }t≥0. Thus, it re-

mains to show that W (s) = E(W (t)|Fs) for 0 ≤ s ≤ t or, equivalently,R
AW (s)dP =

R
AW (t)dP for 0 ≤ s ≤ t and A ∈ Fs. But W (t)−W (s) is

independent of Fs by assumption and thus, by Corollary 2.22,Z
A
(W (t)−W (s))dP =

Z
A

E(W (t)−W (s)|Fs)dP

=
Z

A
dP E(W (t)−W (s)) = 0.
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2.4 Measurability of operator valued random variables

We are going to integrate operator-valued processes against a Wiener

process. We therefore discuss briefly various concepts of measurabil-

ity of operator-valued random variables. Since the space of bounded

linear operators L(U,H) becomes a Banach space with respect to the

operator norm ‖T‖ = sup‖x‖≤1 ‖T x‖, T ∈ L(U,H), it is tempting to en-

dow L(U,H) with its uniform Borel σ-algebra Buni(L(U,H)), that is,

the smallest σ-algebra which contains all open balls

Br(T ) = {L ∈ L(U,H) : ‖L−T‖ < r}, r > 0, T ∈ L(U,H).

This leads to a σ-algebra with too many measurable sets. To see this, we

show that, in general, L(U,H) is not separable and thus it has too many

open sets. This implies that the class of measurable L(U,H)-valued

functions is so small that even very simple operator-valued functions are

not measurable. Let U := H := L2(R). We show that (L(H),‖ ·‖) is not

separable. Define the function S : R→ L(H) by (S(t) f )(x) = f (x + t),

f ∈ H. If t > s and f ∈ H, then

‖S(t) f −S(s) f‖H = ‖S(s)(S(t− s) f − f )‖H = ‖S(t− s) f − f‖H .

Take f ∈H such that supp( f )⊂
( s−t

2 , t−s
2

)
. Then, supp( f )∩ supp(S(t−

s) f ) = /0, and thus f and S(t− s) f are orthogonal in H. Therefore,

‖S(t− s) f − f‖2 = ‖S(t− s) f‖2 +‖ f‖2 = 2‖ f‖2,

which implies that ‖S(t) f − S(s) f‖2 = 2‖ f‖2. Hence, ‖S(t)− S(s)‖ ≥
√

2 implying that (L(H),‖ · ‖) is not separable. Next, consider S as a
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mapping

S : (R,B(R))→ (L(H),Buni(L(H))).

Consider a set A /∈ B(R) and define

D :=
[
t∈A

{
G ∈ L(H) : ‖G−S(t)‖ <

√
2

2

}
.

This is an open set and hence D ⊂ Buni(L(H)). But S−1(D) = {s ∈ R :

S(s) ∈ D}= A. Therefore, S is not measurable.

Instead we consider the strong Borel σ-algebra of L(U,H) denoted

by Bstr(L(U,H)), or simply B(L(U,H), which is defined to be the small-

est σ-algebra containing all sets of the form{
T ∈ L(U,H) : T x ∈ A, A ∈ B(H), x ∈U

}
.

Definition 2.29. Let (Ω,F ) be a measure space and G ⊂ F be a σ-

algebra. A mapping L : (Ω,F )→ L(U,H) is said to be strongly G-

measurable if it is G-measurable if we endow L(U,H) with the strong

Borel σ-algebra Bstr(L(U,H)), that is, if Lx : (Ω,F )→ (H,B(H)) is

G-measurable for all x ∈ U. If G = F , then L is said to be strongly

measurable.

One can check that the mapping S considered above is continuous

with respect to the strong operator topology of L(H), that is, t 7→ S(t)x

is continuous for every x ∈ H, and it is therefore strongly measurable.

Thus, in general, Bstr(L(U,H)) ( Buni(L(U,H)) (strict inclusion).

To see that this is not always the case, consider L(H,R), where H is sep-

arable Hilbert space. By the Riesz representation theorem L(H,R) and

H are isometrically isomorphic and hence L(H,R) is separable. Thus,
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if we identify L(H,R) and H under the Riesz isomorphism, then by

Lemma 2.18,

Buni(L(H,R)) = B(H) = σ({x : l(x)≤ α, l ∈ H∗, α ∈ R})

= σ({x : 〈y,x〉 ≤ α, y ∈ H, α ∈ R})

= Bstr(L(H,R)).

Next, we prove that B(L2(U,H))⊂ Bstr(L(U,H)) which implies, in

particular, that L2(U,H) is a strongly measurable subset of L(U,H).

Lemma 2.30. The containment B(L2(U,H))⊂ Bstr(L(U,H)) holds.

Proof. It is enough to show that every open ball in L2(U,H) also be-

longs to Bstr(L(U,H)). Indeed, if { fk} is an orthonormal basis for U

and T0 ∈ L2(U,H), then{
T ∈ L2(U,H) : ‖T −T0‖L2 < r

}
=
{

T ∈ L(U,H) : ‖T −T0‖L2 < r
}

=
∞[

m=1

{
T ∈ L(U,H) : ‖T −T0‖2

L2
≤ r2(1− 1

m
)
}

=
∞[

m=1

{
T ∈ L(U,H) :

∞

∑
k=1
‖(T −T0) fk‖2

H ≤ r2(1− 1
m

)
}

=
∞[

m=1

∞\
n=1

{
T ∈ L(U,H) :

n

∑
k=1
‖(T −T0) fk‖2

H ≤ r2(1− 1
m

)
}

.

(2.22)

The map

L(U,H)→ Hn :=
n︷ ︸︸ ︷

H×·· ·×H→ R

T 7→
(
(T −T0) f1, · · · ,(T −T0) fn

)
7→

n

∑
k=1
‖(T −T0) fk‖2
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is continuous if we endow L(U,H) with the strong topology, Hn with the

product topology and R with the natural topology. Thus it is measurable

with respect to the Borel σ-algebras generated by the respective topolo-

gies. Thus, the set in (2.22) belongs to BStr(L(U,H)) and the proof is

complete.

Finally, we will need the following lemma.

Lemma 2.31. Let L be and L(U,H)-valued strongly measurable map-

ping and ξ be a U-valued measurable mapping on a measurable space

(Ω,F ). Then Lξ is an H-valued measurable mapping on (Ω,F ).

Proof. Since H is separable, Lξ is measurable if and only if 〈Lξ,x〉 is

R-valued measurable for all x ∈ H by Lemma 2.18. Let {ek} be an or-

thonormal basis for U . Then, 〈Lξ,x〉 = 〈ξ,L∗x〉 = ∑k〈ξ,ek〉〈x,Lek〉 is

measurable as both ξ and Lek are measurable and hence weakly measur-

able and the sum converges for all ω ∈Ω.

3 The stochastic integral for nuclear Wiener

processes

Let (U,〈·, ·〉U) and (H,〈·, ·〉H) be separable Hilbert spaces and assume

that {W (t)}t∈[0,T ] is a U-valued Q-Wiener process on a probability space

(Ω,F ,P) with respect to the normal filtration {Ft}t∈[0,T ], where T > 0

is fixed. Let ΩT = [0,T ]×Ω and PT = m×P, where m is the Lebesgue

measure on [0,T ], be the product measure on ΩT . We first define the

stochastic integral for elementary processes.
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3.1 The stochastic integral for elementary processes

Definition 3.1. An L(U,H)-valued process {Φ(t)}t∈[0,T ] is called ele-

mentary if there exist 0 = t0 < t1 < · · ·< tN = T , N ∈ N, such that

Φ(t) =
N−1

∑
m=0

Φm1(tm,tm+1](t), t ∈ [0,T ],

where

• Φm : (Ω,F )→ L(U,H) is strongly Ftm-measurable;

• Φm takes only a finite number of values in L(U,H), that is,

Φm(ω) =
km

∑
j=1

1Ωm
j
(ω)Lm

j ,

where Lm
j ∈ L(U,H) and Ω =

Skm
j=1 Ωm

j with the union being dis-

joint.

We denote the (linear) space of elementary process by E .

For Φ ∈ E , define

(3.1) Int(Φ)(t) =
Z t

0
ΦdW :=

N−1

∑
n=0

Φn(∆Wn(t)), t ∈ [0,T ],

where

∆Wn(t) = W (tn+1∧ t)−W (tn∧ t),

and t ∧ s = min(t,s). Note that ∆Wn(0) = 0 and that for t ∈ (tk, tk+1] we

have

∆Wn(t) =


W (tn+1)−W (tn), tn < tk,

W (t)−W (tk), tn = tk,

0, tn > tk.

41



Note also that ∆Wn(t) is Ft-measurable and that ∆Wn(t) is independent

of Fs for s ≤ tn. We recall the following result for real-valued random

variables.

Lemma 3.2. Let X and Y be real-valued random variables on (Ω,F ,P)

and let G ⊂ F be a σ-algebra. If X is G-measurable and Y,XY ∈
L1(Ω,F ,P;R), then E(XY |G) = X E(Y |G).

Proof. The proof is elementary and is left to the reader.

Proposition 3.3. For all Φ ∈ E , the integral {Int(Φ)(t)}t∈[0,T ] defined

in (3.1) is a continuous square integrable {Ft}t∈[0,T ]-martingale, that is,

{Int(Φ)(t)}t∈[0,T ] ∈M 2
T (H).

Proof. Let M(t) :=
R t

0 ΦdW , t ∈ [0,T ]. Then, M : [0,T ]→H is continu-

ous a.s., because ∆Wn(t) : [0,T ]→U is continuous a.s. and Φ : U→H is

continuous for all ω ∈Ω. The process {M(t)}t∈[0,T ] is square integrable

because

E(‖M(t)‖2) = E
(∥∥∥N−1

∑
n=0

Φn(∆Wn(t))
∥∥∥2)

≤ E
(N−1

∑
n=0
‖Φn‖2

L(U,H)‖∆Wn(t)‖2
U

)
≤max

n

( kn

∑
j=1
‖Ln

j‖2
L(U,H)

)N−1

∑
n=0

E
(
‖∆Wn(t)‖2)︸ ︷︷ ︸

<∞

, t ∈ [0,T ].

Finally, we show that M is an {Ft}t∈[0,T ]-martingale. Clearly, M is in-

tegrable because E(‖M(t)‖) ≤ E(‖M(t)‖2) < ∞, t ∈ [0,T ]. Each term

Φn(∆Wn(t)) in M(t), and hence also M(t), is Ft-measurable in view of

Lemma 2.31. To prove the martingale property, that is,Z s

0
ΦdW = E

(Z t

0
ΦdW

∣∣∣Fs

)
, s≤ t,
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let t ∈ (tk, tk+1], s ∈ (tl, tl+1], and s≤ t, l ≤ k. ThenZ t

0
ΦdW =

N−1

∑
n=0

Φn(∆Wn(t))−Φl(W (s))+Φl(W (s))

=
l−1

∑
n=0

Φm(∆Wn(t))+Φl((W (s)−W (tl))

+Φl(W (tl+1∧ t)−W (s))+
N−1

∑
n=l+1

Φn(∆Wn(t))

=
l

∑
n=0

Φn(∆Wn(s))+Φl(W (tl+1∧ t)−W (s))+
N−1

∑
n=l+1

Φn(∆Wn(t)).

Therefore,

E
(Z t

0
ΦdW

∣∣∣Fs

)
= E

(Z s

0
ΦdW

∣∣∣Fs

)
+E
(
Φl(W (tl+1∧ t)−W (s))

∣∣Fs
)
+E
(N−1

∑
l+1

Φn(∆Wn(t))
∣∣∣Fs

)
.

We saw that
R s

0 ΦdW is Fs-measurable and hence E(
R s

0 ΦdW |Fs) =R s
0 ΦdW . For the second term, let {ek} be an orthonormal basis of

U . Then, for all x ∈ H, using that Φl is strongly (hence weakly) Fs-

measurable and that W (tl+1∧ s) is independent of Fs, by Lemma 3.2,〈
E
(

Φl(W (tl+1∧ t)−W (s))
∣∣∣Fs

)
,x
〉

= ∑
k

E
(
〈W (tl+1∧ t)−W (s),ek〉〈Φlek,x〉

∣∣∣Fs

)
= ∑

k
〈Φlek,x〉E

(
〈W (tl+1∧ t)−W (s),ek〉

∣∣∣Fs

)
= ∑

k
〈Φlek,x〉E

(
〈W (tl+1∧ t)−W (s),ek〉

)
= 0.

This shows that E(Φl(W (tl+1∧t)−W (s))|Fs) = 0. The rest of the terms

are of the form E(Φm(W (τ)−W (σ)|Fs)), where s≤ σ≤ τ≤ t, tm ≤ σ.
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Let A ∈ Fs. ThenZ
A

Φm(W (τ)−W (σ))dP =
Z

A
∑

j
1Ωm

j
Lm

j
(
W (τ)−W (σ)

)
dP

= ∑
j

Ln
j

Z
A∩Ωm

j

(W (τ)−W (σ))dP.

Since A ∈ Fs ⊂ Fσ and Ωn
j ∈ Ftm ⊂ Fσ and W (τ)−W (σ) is independent

of Fσ, it follows from Corollary 2.22 and the definition of the condi-

tional expectation that

∑
j

Ln
j

Z
A∩Ωm

j

(W (τ)−W (σ))dP = ∑
j

Ln
j

Z
A∩Ωm

j

E(W (τ)−W (σ) |Fσ)dP

= ∑
j

Ln
j

Z
A∩Ωm

j

E(W (τ)−W (σ))dP = 0.

Thus, by the uniqueness of the conditional expectation, it follows that

E(Φm(W (τ)−W (σ)|Fs)) = 0.

Remark 3.4. Since M =
R

ΦdW is a martingale it follows that

E
(Z t

0
ΦdW

)
= E(M(0)) = 0.

For Φ ∈ E , define

‖Φ‖T :=
(

E
(Z T

0

∥∥∥Φ(s)Q1/2
∥∥∥2

L2(U,H)
ds
))1/2

or, equivalently,

‖Φ‖2
T = E

(Z T

0
‖Φ(s)‖2

L0
2
ds
)
.

The following identity, called the Itô-isometry, will be crucial when we

extend the stochastic integral to a larger class of integrands.
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Proposition 3.5 (Itô-isometry). If Φ ∈ E , then

(3.2) E
(∥∥∥Z T

0
ΦdW

∥∥∥2)
= E

(Z T

0

∥∥∥Φ(s)Q1/2
∥∥∥2

L2(U,H)
ds
)
,

or, equivalently, ∥∥∥Z ·
0

ΦdW
∥∥∥

M 2
T (H)

= ‖Φ‖T .

Proof. Let Φ ∈ E . By definition,Z T

0
ΦdW =

N−1

∑
n=0

Φn(∆Wn),

where ∆Wn = W (tn+1)−W (tn). Then,

E
(∥∥∥Z T

0
ΦdW

∥∥∥2)
= E

(〈N−1

∑
n=0

Φn∆Wn,
N−1

∑
m=0

Φm∆Wm

〉)
= E

(N−1

∑
n=0
‖Φn∆Wn‖2

)
+2E

(
∑

m<n
〈Φn∆Wn,Φm∆Wm〉

)
= T1 +T2.

We will show that T1 = ‖Φ‖2
T and that T2 = 0. Let { fk}k∈N be an or-

thonormal basis of H and {ek}k∈N be an orthonormal basis of U . Then,

using Parseval’s formula, the Monotone Convergence Theorem, and the

law of double expectation,

E
(
‖Φn∆Wn‖2

)
= E

(
∑

l
〈Φn∆Wn, fl〉2

)
= ∑

l
E
(
〈Φn∆Wn, fl〉2

)
= ∑

l
E
(

E
(
〈Φn∆Wn, fl〉2

∣∣Ftn
))

= ∑
l

E
(

E
(
〈∆Wn,Φ

∗
n fl〉2

∣∣Ftn
))

.

By Parseval’s formula in U ,

〈∆Wn,Φ
∗
n fl〉2 =

(
∑
k
〈∆Wn,ek〉〈Φ∗n fl,ek〉

)2

=
(
∑
k
〈 fl,Φnek〉︸ ︷︷ ︸

=ak

〈∆Wn,ek〉︸ ︷︷ ︸
=bk

)2
=
(
∑
k

akbk
)2 = ∑

k, j
aka jbkb j.
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Thus,

E
(
〈∆Wn,Φ

∗
n fl〉2

∣∣∣Ftn

)
= E

(
∑
k, j

aka jbkb j

∣∣∣Ftn

)
= ∑

k, j
E
(

aka jbkb j

∣∣∣Ftn

)
(3.3)

= ∑
k, j

aka jE
(
bkb j

∣∣Ftn
)

= ∑
k, j

aka jE(bkb j)(3.4)

= ∑
k, j
〈 fl,Φnek〉〈 fl,Φne j〉E(〈∆Wn,ek〉〈∆Wn,e j〉)

= ∑
k, j
〈 fl,Φnek〉〈 fl,Φne j〉∆tn〈Qek,e j〉(3.5)

= ∆tn ∑
k

〈
Q〈Φ∗n fl,ek〉ek,∑

j
〈Φ∗n fl,e j〉e j

〉
= ∆tn ∑

k
〈Q〈Φ∗n fl,ek〉ek,Φ

∗
n fl〉

= ∆tn
〈

∑
k
〈Φ∗n fl,ek〉ek,QΦ

∗
n fl

〉
= ∆tn‖Q1/2

Φ
∗
n fl‖2 a.s.

We used the Dominated Convergence Theorem in (3.3), Corollary 2.22

on R and Lemma 3.2 in (3.4), and the assumption on the increments of

a Q-Wiener process in (3.5). Hence, using property (1) in Remark 1.4,

T1 = E
(
∑

l

N−1

∑
n=0

∆tn‖Q1/2
Φ
∗
n fl‖2

)
= E

(N−1

∑
n=0

∆tn‖Q1/2
Φ
∗
n‖2

L2(H,U)

)
= E

(N−1

∑
n=0

∆tn‖ΦnQ1/2‖L2(U,H)

)
= E

(Z T

0
‖Φ(s)Q1/2‖L2(U,H) ds

)
.

Similarly to the diagonal terms above, for a typical term in T2, using
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Parseval’s formula twice, we obtain

〈Φn∆Wn,Φm∆Wm〉 = · · ·

= ∑
l, j,k
〈∆Wn,ek〉〈Φ∗n fl,ek〉〈∆Wm,e j〉〈Φ∗m fl,e j〉.(3.6)

Finally, using Corollary 2.22 on R and Lemma 3.2, the expectation of

each term in (3.6) equals zero as

E
(
〈∆Wn,ek〉〈Φ∗n fl,ek〉〈∆Wm,e j〉〈Φ∗m fl,e j〉

)
= E

(
E
(
〈∆Wn,ek〉〈Φ∗n fl,ek〉〈∆Wm,e j〉〈Φ∗m fl,e j〉

∣∣Ftn
))

= E
(
〈Φ∗n fl,ek〉〈Φ∗m fl,e j〉〈∆Wm,e j〉E

(
〈∆Wn,ek〉

∣∣Ftn
))

= 0.

By the Dominated Convergence Theorem we conclude T2 = 0.

Corollary 3.6. If Φ1,Φ2 ∈ E , then

E
(〈Z T

0
Φ1 dW,

Z T

0
Φ2 dW

〉
H

)
= E

(Z T

0
〈Φ1(s)Q1/2,Φ2(s)Q1/2〉L2(U,H) ds

)
.

Proof. The statement follows from Itô’s Isometry, the linearity of the

integral, and polarization first in H, then in L2(U,H).

Remark 3.7. The functional ‖ ·‖T is only a seminorm on E . Let Φ ∈E
and assume that

‖Φ‖2
T = E

(Z T

0
‖Φ(s)Q1/2‖2

L2(U,H) ds
)

=
∞

∑
k=1

E
(Z T

0
‖Φ(s)Q1/2ek‖2 ds

)
= 0.
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Then ‖Φ(s)Q1/2ek‖ = 0, PT -a.s., for all k ∈ N, and thus Φ(s)Q1/2ek =

0, PT -a.s., for all k ∈ N, which implies, by countable additivity, that

Φ(s)Q1/2 = 0, PT -a.s. Therefore, Φ = 0 on Q1/2(U), PT -a.s. Let

E0 :=
{

Φ ∈ E : Φ = 0 on Q1/2(U), PT -a.s.
}

.

We re-define E to be the quotient space E := E/E0. Then ‖ · ‖T is a

norm on E .

3.2 Extension of the stochastic integral to more general
processes

Propositions 3.3 and 3.5 show that the map

Int :
(
E ,‖ · ‖T

)
→
(
M 2

T ,‖ · ‖M 2
T

)
is isometric (hence continuous). Since, by Proposition 2.27, the space(
M 2

T ,‖·‖M 2
T

)
is complete, Int extends uniquely to an isometric mapping

to the abstract completion E of E , by

Int(Φ) := lim
n→∞

Int(Φn), Φ ∈ E , {Φn} ⊂ E with lim
n→∞

Φn = Φ.

Since the abstract completion of a normed space contains objects that

are hard to work with (equivalence classes), we will characterize E in a

different way. Let us introduce the σ-algebras

P∞ = σ

({
(s, t]×F : 0≤ s < t, F ∈ Fs

}
∪
{
{0}×F : F ∈ F0

})
and

PT = σ

({
(s, t]×F : 0≤ s < t ≤ T, F ∈ Fs

}
∪
{
{0}×F : F ∈ F0

})
.
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Definition 3.8. If H̃ is a separable Hilbert space and Y : (ΩT ,PT )→
(H̃,B(H̃)) is measurable, then Y is called H̃-predictable.

The next proposition shows that the class of predictable processes is

rich.

Proposition 3.9. If H is a separable Hilbert space, then the following

σ-algebras coincide.

1. P1 = σ(adapted continuous processes)

2. P2 = σ(adapted left continuous processes with right hand limits)

3. P3 = σ(adapted left continuous processes)

4. P∞

Here, processes are considered as mappings Ω× [0,∞)→ H.

Proof. Since H is separable, it is enough to consider R-valued processes

by Corollary 2.19. Clearly, P1 ⊂ P2 ⊂ P3. To show that P3 ⊂ P∞, let X

be an adapted left continuous process and define

Xn(t) = X(0)10(t)+
∞

∑
k=0

X
( k

2n

)
1( k

2n , k+1
2n ](t).

Then, Xn is an adapted piecewise constant process. Since X is left con-

tinuous, it follows that Xn(t,ω)→ X(t,ω). But Xn is P∞-measurable

and therefore X is P∞-measurable. Thus, P3 ⊂ P∞. Finally, to see that

P∞ ⊂ P1, fix 0 ≤ s < t, and let R = (s, t]×F , F ∈ Fs. Let { fn} be a

sequence of trapezoidal functions such that

lim
n→∞

fn = 1(s,t], fn(x) = 0, if x ∈ [0,s).
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Define Xn := fn · 1F . Then Xn is adapted and continuous and thus P1-

measurable. But limn→∞ Xn = 1R and this implies that R ∈ P1. Let F ∈
F0 and define

fn(x) =


1, x = 0,

−nx+1, x ∈ (0, 1
n),

0, x ∈ [1
n ,∞).

Then Xn := fn ·1F is adapted and continuous and hence P1-measurable.

But limXn = 1{0}×F and thus {0}×F ∈ P1. Therefore, P∞ ⊂ P1.

Remark 3.10. Of course, an analogous statement holds for PT .

Theorem 3.11. There is an explicit characterization of E given by

N 2
W = N 2

W (0,T ;H)

=
{

Φ : [0,T ]×Ω→ L0
2 : Φ is L0

2-predictable and ‖Φ‖T < ∞

}
= L2

(
[0,T ]×Ω,PT ,m×P;L0

2
)
.

Proof. Since L0
2 is complete by Lemma 1.5, it follows that

L2(ΩT ,PT ,PT ;L0
2)

is complete. By Lemma 1.7, L(U,H)0 ⊂ L0
2 and therefore Φ ∈ E is

L0
2-predictable by construction. Thus, we need show that E is dense in

N 2
W (0,T ;H), that is, if Φ is an L0

2-predictable process such that ‖Φ‖T <

∞, then there is a sequence {Φn} ⊂ E such that ‖Φ−Φn‖T → 0 as

n→ ∞. If Φ ∈N 2
W , then there is a sequence of simple random variables

Φn =
Mn

∑
k=1

Ln
k1An

k
, Ak ∈ PT , Ln

k ∈ L0
2,
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such that ‖Φ−Φn‖T → 0 (this follows from the construction of the

Bochner integral.) Therefore it is enough to consider

Φ = L1A, L ∈ L0
2, A ∈ PT .

Let A ∈ PT and L ∈ L0
2. By Lemma 1.7 there is {Ln} ⊂ L(U,H)0 such

that Ln→ L in L0
2 and by the Dominated Convergence Theorem

‖L1A−Ln1A‖T → 0 as n→ ∞.

Therefore, we may consider

Φ = L1A, A ∈ PT , L ∈ L(U,H)0.

If Φ = L1A, A ∈ PT , L ∈ L(U,H)0, then we need to show that there is

{Φn} ⊂ E such that ‖Φn− L1A‖T → 0 as n→ ∞. The case L = 0 is

clear so assume that L 6= 0. Let

A :=
{

(s, t]×F : 0≤ s≤ t ≤ T, F ∈ Fs

}
∪
{
{0}×F : F ∈ F0)

}
be the set of predictable rectangles. Define

G :=
{

A ∈ PT : for all ε > 0, there is Λ =
N[

n=1

An,Ai ∈ A ,

with Ai∩A j = /0 for i 6= j and PT ((A\Λ)∪ (Λ\A)) < ε

}(3.7)

and

K :=
{[

i∈I

Ai : I is finite, Ai ∈ A
}

.

It is not difficult to check that K is Π-system and G is a λ-system. Note

that K ⊂G (by writing A ∈K as a disjoint union). By Dynkin’s lemma

51



we have σ(K )⊂G . But σ(K ) = PT and G ⊂ PT and therefore PT = G .

Let A ∈ PT , ε > 0 and choose Λ as in (3.7) with

PT
(
(A\Λ)∪ (Λ\A)

)
<

ε

‖L‖L0
2

.

Then∥∥∥L1A−
N

∑
n=1

L1An

∥∥∥2

T
= E

Z T

0

∥∥∥L(1A−
N

∑
n=1

1An)
∥∥∥2

L0
2

ds≤ ‖L‖L0
2

ε

‖L‖L0
2

= ε.

Finally, ∑
N
n=1 L1An only differs (possibly) from an elementary process

in a term L1{0}×F , F ∈ F . But ‖L1{0}×F‖T = 0, so by taking Φ =

∑
N
n=1 L1An−L1{0}×F , we obtain an elementary process.

Remark 3.12. Both Itô’s Isometry (3.2) and Corollary 3.6 still hold for

Φ ∈N 2
W .

Remark 3.13. By a so-called localization procedure, one can extend the

class of integrands even further to

NW =
{

Φ : ΩT → L0
2 : Φ is predictable, P

(Z T

0
‖Φ‖2

L0
2
ds < ∞

)
= 1
}

.

The integral in this case becomes a local martingale, only, and the Itô

isometry does not hold. For the type of equations we study here, this

extension is not necessary and therefore we do not pursue this issue any

further.

4 Stochastic integral for cylindrical Wiener

processes

We would like to consider a Wiener process {W (t)}t≥0 with covariance

operator Q such that Tr(Q) = ∞, for example, Q = I. Recall that, if
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Q ∈ L(U), Q≥ 0, Tr(Q) < ∞, then

W (t) =
∞

∑
k=1

ekβk(t)

where ek = λ
1/2
k fk is an orthonormal basis for U0 = Q1/2(U) and the

series converges in L2(Ω,F ,P;U). Note that the inclusion

J : (U0,〈· , ·〉0)→ (U,〈· , ·〉), with x 7→ Jx = x,

is Hilbert-Schmidt if and only if Tr(Q) < ∞. Indeed, if {ek} is an

ortonormal basis for U0, then

‖J‖2
L2(U0,U) = ∑

k
〈Jek,Jek〉U = ∑

k
〈ek,ek〉U

= ∑
k
〈Q1/2Q−1/2ek,Q1/2Q−1/2ek〉U

= ∑
k
〈Q1/2 fk,Q1/2 fk〉U = Tr(Q) = ‖W (1)‖2

L2(Ω,U),

since { fk}= {Q−1/2ek} is an orthonormal basis for
(

kerQ1/2)⊥. Thus,

the series defining W converges or diverges in L2(Ω,H) depending on

whether J is a Hilbert-Schmidt operator or not. Therefore, if Tr(Q) = ∞,

then we need to consider another Hilbert space (Ũ , [·, ·]) with norm [] · []
such that there is an embedding J : U0→ Ũ which is Hilbert-Schmidt in

order to define a Q-Wiener process.

Remark 4.1. Given Q ∈ L(U), Q≥ 0, we may always find Ũ such that

there is an embedding J : U0→ Ũ . Set Ũ := U and let αk > 0, k ∈ N,

with ∑k α2
k < ∞. Define

J : U0→U, u 7→∑
k

αk〈u,ek〉0ek,
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where {ek} is an orthonormal basis of U0. Then J is one-to-one and

Hilbert-Schmidt. Indeed, if u,v ∈U0, then

u = v⇔ 〈u,ek〉0 = 〈v,ek〉0, ∀k ∈ N,

⇔ αk〈u,ek〉0 = αk〈v,ek〉0, ∀k ∈ N,

⇔∑
k

αk〈u,ek〉0ek = ∑
k

αk〈v,ek〉0ek, ∀k ∈ N,

⇔ J(u) = J(v).

and, since ‖Q−1/2ek‖U = ‖ek‖0=1,

‖J‖L2(U0,Ũ) =
∞

∑
k=1
‖Jek‖2

U =
∞

∑
k=1

∥∥∥ ∞

∑
n=1

αn〈en,ek〉0en

∥∥∥2

U
=

∞

∑
k=1
‖αkek‖2

U

=
∞

∑
k=1

α
2
k‖Q1/2Q−1/2ek‖2

U ≤ ‖Q1/2‖
∞

∑
k=1

α
2
k < ∞.

We recall the following elementary fact from real-valued probability

theory.

Lemma 4.2. Let X ∈ L1(Ω,F ,P;R) be a random variable and G2,G2⊂
F be σ-algebras. If G1 is independent of σ(σ(X)∪G2), then

E
(
X
∣∣σ(G1∪G2)

)
= E

(
X
∣∣G2
)
.

Proposition 4.3 (Cylindrical Wiener process). Let {ek}k∈N be an or-

thonormal basis of U0 = Q1/2(U) and let {βk}k∈N be a family of inde-

pendent real-valued Brownian motions. Let (Ũ , [·, ·]) with norm [] · [] be

a separable Hilbert space such that there is an embedding J : U0→ Ũ

which is Hilbert-Schmidt. Then Q̃ : Ũ → Ũ defined by Q̃ := JJ∗ is

bounded, Q̃≥ 0, Tr(Q̃) < ∞, and the series

(4.1) W̃ (t) =
∞

∑
k=1

βk(t)Jek, t ∈ [0,T ],
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converges in M 2
T (Ũ) and defines a Q̃-Wiener process on Ũ. Moreover,

Ũ0 := Q̃1/2(Ũ) = J(U0)

and, for all u ∈U0,

‖u‖0 = []Q̃−1/2Ju[] := []Ju[]0.

That is, J : U0→ Ũ0 is an isometric isomorphism.

Proof. We show first that that {W̃ (t)}t∈[0,T ], defined in (4.1) is a Q̃-

Wiener process on Ũ . Let ξ j(t) = β j(t)Je j, j ∈ N, and define

Gt := σ

( ∞[
j=1

σ({β j(s)}s≤t)
)
, t ∈ [0,T ].

Then {ξ j(t)}t∈[0,T ] is a continuous Ũ-valued martingale with respect to

{Gt}t≥0 for all j ∈ N. Indeed, take 0≤ s≤ t ≤ T and then

E
(

β j(t)
∣∣∣Gs

)
= E

(
β j(t)

∣∣∣σ({β j(u)}u≤s

)
= β j(s),

which follows from Lemma 4.2 with X = β j(t), G2 = σ({β j(u)}u≤s),

and G1 = σ

(S
k 6= j{βk(s)}s≤t

)
. Therefore

W̃n(t) :=
n

∑
j=1

β j(t)Je j, t ∈ [0,T ]

is also a continuous Ũ-valued martingale with respect to {Gt}t∈[0,T ].
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Moreover, since J : U0→ Ũ is a Hilbert-Schmidt operator,

‖W̃m−W̃n‖2
M 2

T (Ũ) = sup
t∈[0,T ]

E
(
[]W̃m(t)−W̃n(t)[]

)2

= E
(
[]W̃m(T )−W̃n(T )[]2

)
= E

([] m

∑
j=n+1

β j(T )Je j

[]2)
≤ E

( m

∑
j=n+1

β j(T )2
m

∑
j=n+1

[]Je j[]2
)

=
m

∑
j=n+1

E
(

β j(T )2
) m

∑
j=n+1

[]Je j[]2

= T
m

∑
j=n+1

[]Je j[]2→ 0, n < m, n→ ∞.

Therefore, W̃n converges in M 2
T (Ũ) and its limit W̃ ∈M 2

T (Ũ) is contin-

uous almost surely. The mean of W is clearly is zero. The increments

are Gaussian since, for all u ∈ Ũ ,

[W̃ (t)−W̃ (s),u] =
∞

∑
j=1

(β j(t)−β j(s))[Je j,u]

is Gaussian being an L2(Ω,F ,P;R) limit of Gaussian random variables.

To compute the covariance operator of the increments, take u,v ∈ Ũ ,

0≤ s≤ t ≤ T and write

E
(
[W̃ (t)−W̃ (s),u] · [W̃ (t)−W̃ (s),v]

)
=

∞

∑
k=1

(t− s)[Jek,u][Jek,v]

=
∞

∑
k=1

(t− s)〈ek,J∗u〉0〈ek,J∗v〉0 = (t− s)〈J∗u,J∗u〉0 = (t− s)[JJ∗u,v],

where we used that E
(
β j(t)−β j(s))(βk(t)−βk(s)

)
= δ jk. Thus, Q̃ =

JJ∗. One easily checks that the increments are independent. Finally, we

have to show that

Q̃1/2(Ũ) = J(U0)
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and that

‖u‖0 = []Q̃−1/2Ju[] = []Ju[]0, ∀u ∈U0.

We recall the fact from functional analysis that if U1,U2 and H are sep-

arable Hilbert spaces, T1 ∈ L(U1,H), T2 ∈ L(U2,H), and

‖T ∗1 x‖1 = ‖T ∗2 x‖2, ∀x ∈ H,

then

T1(U1) = T2(U2)

and

‖T−1
1 x‖1 = ‖T−1

2 x‖2, ∀x ∈ T1(U1).

For all u ∈ Ũ , we have that

[]Q̃1/2u[]2 = [JJ∗u,u] = ‖J∗u‖2
0.

Thus, taking U1 = H = Ũ , U2 = U0, T1 = Q1/2, and T2 = J, it follows

that Q̃1/2(Ũ) = J(U0) and that []Q̃−1/2u[] = ‖J−1u‖0, for all u ∈ J(U0).

Finally, if v ∈U0, then []Q̃−1/2Jv[] = ‖v‖0 and hence []Jv[]0 = ‖v‖0.

Remark 4.4. The Wiener process constructed in Proposition 4.3 is in-

dependent of the choice of the orthonormal basis chosen for U0. Indeed,

the proof shows that with any such orthonormal basis, {W̃ (t)}t∈[0,T ] is

a JJ∗-Wiener process on Ũ . As such, by Proprosition 2.12, it can be

obtained as (2.8), where the series converges in

L2
(
Ω,F ,P;C

(
[0,T ],U

))
.

Therefore, the paths of its limit are determined P-almost surely, that is,

using two different orthonormal bases for U0 we get two indistinguish-

able versions of {W̃ (t)}t∈[0,T ].
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Remark 4.5. If Tr(Q) < ∞, then one may choose U = Ũ and J = I.

By Remark 4.4, the process {W̃ (t)}t∈[0,T ] is an indistinguishable ver-

sion of the Q-Wiener process obtained by (2.8). The orthonormal basis

{λ1/2
k ek : λk > 0} used in (2.8) is just a particular choice of an orthonor-

mal basis for U0.

Now we are ready to define the stochastic integral with respect to

a cylindrical Wiener process. Since Tr(Q̃) < ∞, we can integrate pro-

cesses {Φ(t)}t∈[0,T ] which are L2(Ũ0,H)-predictable and

E
(Z T

0
‖Φ(s)‖2

L2(Ũ0,H) ds
)

< ∞.

But we are aiming at integrating processes with values in L2(U0,H). We

saw that U0 is isometrically isomorphic to Ũ0 under J. Hence, if {ek}k∈N

is an orthonormal basis for U0, then {Jek}k∈N is an orthonormal basis

for Ũ0. Therefore,

Φ ∈ L2(U0,H) ⇔ ΦJ−1 ∈ L2(Ũ0,H),

since

‖Φ‖2
L2(U0,H) =

∞

∑
k=1
〈Φek,Φek〉 =

∞

∑
k=1
〈ΦJ−1Jek,ΦJ−1Jek〉

= ‖ΦJ−1‖2
L2(Ũ0,H).

Note that an L2(U0,H)-valued process is {Φ(t)}t∈[0,T ] is L2(U0,H)-

predictable if and only if {Φ(t)J−1}t∈[0,T ] is L2(Ũ0,H)-predictable.

Let Q ∈ L(U),Q ≥ 0, let {ek}k∈N be an orthonormal basis of U0 =

Q1/2(U) and let {βk}k∈N be a family of independent real valued Brow-

nian motions. Define

(4.2) W (t) =
∞

∑
k=1

ekβk(t), t ∈ [0,T ],
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where the sum is understood only formally if Tr(Q) = ∞.

Definition 4.6 (Integral with respect to a cylindrical Wiener process).
Let {W (t)}t∈[0,T ] be given by (4.2). For processes {Φ(t)}t∈[0,T ] ∈ N 2

W ,

where

N 2
W =

{
Φ : [0,T ]×Ω→ L2(U0,H),

such that Φ is L2(U0,H)-predictable and ‖Φ‖T < ∞

}
,

we define the stochastic integral byZ t

0
Φ(s)dW (s) :=

Z t

0
Φ(s)J−1 dW̃ (s), t ∈ [0,T ],

where the integral on the right hand side is the stochastic integral de-

fined in Section 3 of {Φ(t)J−1}t∈[0,T ] with respect to the Ũ-Wiener pro-

cess {W̃ (t)}t∈[0,T ] defined in Proposition 4.3.

Remark 4.7. If Tr(Q) = ∞, then E * NW , where E denotes the set of

L(U,H)-valued elementary process from Definition 3.1. To see this, let

U = H,Φ(t)≡ I, and {ek} be an orthonormal basis for U0. Then

‖Φ‖2
T = T

∞

∑
k=1
〈ek,ek〉 = T

∞

∑
k=1
〈QQ−1/2ek,Q−1/2ek〉 = T Tr(Q) = ∞.

Remark 4.8. The cylindrical Wiener process {W̃ (t)}t∈[0,T ] constructed

in Proposition 4.3 depends on J but
R t

0 ΦdW does not. The proof is left

to the reader as an exercise.
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5 Stochastic evolution equations with additive

noise

In the present section we introduce solution concepts to certain type of

stochastic evolution problems and prove existence and uniqueness of

their solutions. The mathematical framework is based on the theory of

strongly continuous operator semigroups.

5.1 Linear equations

Let {W (t)}t∈[0,T ] be an U-valued Q-Wiener process on the probability

space (Ω,F ,P), adapted to a normal filtration {Ft}t∈[0,T ]. We consider

equations written formally as

(5.1)
dX(t) = (AX(t)+ f (t))dt +BdW (t), 0 < t < T,

X(0) = ξ,

where we make the following assumptions.

(A1) A : D(A) ⊂ H → H is linear operator, generating a strongly con-

tinuous semigroup (C0-semigroup) of bounded linear operators

{S(t)}t≥0, that is,

– S(0) = I;

– S(t + s) = S(t)S(s) for all s, t ≥ 0;

– {S(t)}t≥0 is strongly continuous on [0,∞), that is, t 7→ S(t)x

is continuous on [0,∞) for all x ∈ H;

– limh→0+
S(t+h)x−S(t)x

h = Ax for all x ∈D(A);
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(A2) B ∈ L(U,H);

(A3) { f (t)}t∈[0,T ] a predictable H-valued process with Bochner inte-

grable trajectories, that is, t 7→ f (ω, t) is Bochner integrable on

[0,T ] for P-almost all ω ∈Ω;

(A4) ξ is an F0-measurable H-valued random variable.

Under assumption (A1) the deterministic evolution problem (ab-

stract Cauchy problem)

u′(t) = Au(t)+ f (t), t > 0,

u(0) = x,

is well-posed (under some weak assumptions on f ) and its unique (mild)

solution is given by the variation of constants formula

u(t) = S(t)x+
Z t

0
S(t− s) f (s)ds.

For an exhaustive introduction to the theory of operator semigroups, see,

for example, [1] and [5].

Remark 5.1. Since H is, in particular, a reflexive Banach space it fol-

lows that {S(t)∗}t≥0 is also a C0-semigroup on H with generator given

by A∗, the adjoint of A. In non-reflexive Banach spaces this is not true

in general.

Next we discuss what we mean by the solution of the formal equa-

tion (5.1). In this section we always assume (A1)–(A4).

Definition 5.2 (Strong solution). An H-valued process {X(t)}t∈[0,T ] is

a strong solution of (5.1) if {X(t)}t∈[0,T ] is H-predictable, X(t,ω) ∈
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D(A) PT -almost surely,
R T

0 ‖AX(t)‖ dt < ∞ P-almost surely, and, for all

t ∈ [0,T ],

X(t) = ξ+
Z t

0

(
AX(s)+ f (s)

)
ds+

Z t

0
BdW (s), P-a.s.

Recall that the integral
R t

0 BdW (s) is defined if and only if ‖B‖2
L0

2
=

Tr(BQB∗) < ∞.

For η ∈ H, we define

(5.2) lη : H→ R, lη(h) := 〈h,η〉, h ∈ H.

Definition 5.3 (Weak solution). An H-valued process {X(t)}t∈[0,T ] is

a weak solution of (5.1) if {X(t)}t∈[0,T ] is H-predictable, {X(t)}t∈[0,T ]

has Bochner integrable trajectories P-almost surely and

〈X(t),η〉 = 〈ξ,η〉+
Z t

0

(
〈X(s),A∗η〉+ 〈 f (s),η〉

)
ds

+
Z t

0
lηBdW (s), P-a.s., ∀η ∈D(A), t ∈ [0,T ].

Note that the stochastic integral may be written formally asZ t

0
lηBdW (s) =

Z t

0
〈BdW (s),η〉.

We will show that the unique weak solution of (5.1) is given by the

variation of constants formula

X(t) = S(t)ξ+
Z t

0
S(t− s) f (s)ds+

Z t

0
S(t− s)BdW (s).

We will need the following lemma about interchanging the stochastic

integral with closed operators.
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Lemma 5.4. Let E be a separable Hilbert space. Let Φ ∈ N 2
W , A :

D(A) ⊂ H → E be a closed, linear operator with D(A) being a Borel

subset of H. If Φ(t)u∈D(A) P-almost surely for all t ∈ [0,T ] and u∈U

and AΦ ∈N 2
W , then

P
(Z T

0
Φ(s)dW (s) ∈D(A)

)
= 1

and

(5.3) A
(Z T

0
Φ(s)dW (s)

)
=

Z T

0
AΦ(s)dW (s), P-a.s.

Proof. The lemma is a special case of [4, Proposition 4.15].

Note that if A ∈ L(H,E), then (5.3) holds for all Φ ∈N 2
W . We define

the stochastic convolution

WA(t) :=
Z t

0
S(t− s)BdW (s)

and the operator

Qt =
Z t

0
S(s)BQB∗S(s)∗ ds,

where the integral is a strong Bochner integral. The following theorem

provides the basic properties of the stochastic convolution.

Theorem 5.5. If for some T > 0,Z T

0
‖S(t)B‖2

L0
2
ds =

Z T

0
Tr(S(t)BQB∗S(t)∗)dt = Tr(QT ) < ∞,

then

1. WA ∈C
(
[0,T ],L2(Ω,F ,P;H)

)
and WA has an H-predictable ver-

sion;
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2. {WA(t)}t∈[0,T ] is a Gaussian process and

Cov(WA(t)) =
Z t

0
S(s)BQB∗S(s)∗ ds = Qt .

Proof. Let 0≤ s≤ t ≤ T and define

Φ(r) = S(t− r)B, Mt(s) =
Z s

0
ΦdW =

Z s

0
S(t− r)BdW (r).

Then

E
Z t

0
‖Φ‖2

L0
2
dr =

Z t

0
‖S(t− r)B‖2

L0
2
dr =

Z t

0
‖S(r)B‖2

L0
2
dr

≤
Z T

0
‖S(r)B‖2

L0
2
dr < ∞.

Thus, Mt(s) is well defined, in particular, for s = t it follows that Mt(t) =

WA(t) is well defined. To show mean square continuity, let 0≤ s≤ t ≤ T .

Then

WA(t)−WA(s) =
Z t

0
S(t− r)BdW (r)−

Z s

0
S(s− r)BdW (r)

=
Z s

0

(
S(t− r)−S(s− r)

)
BdW (r)

+
Z t

0
1(s,t]S(t− r)BdW (r) = X +Y.

(5.4)

The random variables X and Y are independent with zero mean and

therefore, using also Itô’s isometry,

E(‖WA(t)−WA(s)‖2) = E
(∥∥∥Z s

0

(
S(t− s)− I

)
S(s− r)BdW (r)

∥∥∥2)
+E
(∥∥∥Z t

0
1(s,t]S(t− r)BdW (r)

∥∥∥2)
=

Z s

0
‖(S(t− s)− I)S(r)BQ1/2‖2

L2(U,H) dr

+
Z t−s

0
‖S(r)BQ1/2‖2

L2(U,H) dr→ 0 as s→ t.
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The second integral converges 0 by the Dominated Convergence Theo-

rem. For the first one, we have

1(0,s](r)‖(S(t− s)− I)S(r)BQ1/2‖2
L2(U,H)

≤ 2 max
0≤s≤T

‖S(s)‖2
L(H)‖S(r)BQ1/2‖2

L2(U,H),

and therefore we may use again dominated convergence together with

the fact that S(t− s)− I→ 0 strongly as t− s→ 0.

For the existence of a predictable version of {WA(t)}t∈[0,T ] note that

if {X(t)}t∈[0,T ] is mean square continuous, then it is uniformly stochas-

tically continuous2 on [0,T ]. This follows from the observation that the

mean square continuity of {X(t)}t∈[0,T ] means that X(·) is continuous as

a function [0,T ]→ L2(Ω,F ,P;H). Since [0,T ] is compact {X(t)}t∈[0,T ]

is uniformly mean square continuous on [0,T ]. We have that

P(‖X(t)−X(s)‖2 ≥ ε
2)≤ 1

ε2 E(‖X(t)−X(s)‖2)

and hence {X(t)}t∈[0,T ] is uniformly stochastically continuous on [0,T ].

By [4, Proposition 3.6], {X(t)}t∈[0,T ] has a predictable version since it

is clearly adapted and stochastically continuous.

For t fixed, the random variable WA(t) is Gaussian. This follows

from the construction of the integral and the fact that for elementary de-

terministic processes the stochastic integral is a Gaussian random vari-

able. An easy calculation shows, similar to the one in (5.4), that for all

u1,u2, . . . ,un ∈U , (〈WA(t1),u1〉, . . . ,〈WA(tn),un〉) is an Rn-valued Gaus-

sian random variable using also Lemma 5.4 for A = lui, i = 1, . . . ,n. Fi-

2A process {X(t)}t∈[0,T ] is uniformly stochastically continuous on [0,T ] if ∀ε >

0, ∀δ > 0, ∃γ > 0, such that P(‖X(t)−X(s)‖ ≥ ε)≤ δ, |t− s|< γ, t,s ∈ [0,T ].
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nally, the covariance operator Qt of WA(t) can be computed in a straight-

forward fashion using Lemma 5.4, Corollary 3.6 and Parseval’s for-

mula.

Before proving the existence and uniqueness of weak solutions of

(5.1) we need a few preparatory results which we state with only a ref-

erence to the proofs. Consider the following assumptions.

1. Let (Ω,F ,P) be a probability space and {Ft}t≥0 a filtration. Let

Φ ∈N 2
W [0,T ], φ be an H-valued predictable process, Bochner in-

tegrable on [0,T ] P-almost surely, and X(0) be an F0-measurable

H-valued random variable.

2. Let F : [0,T ]×H → R and assume that the Fréchet derivatives

Ft(t,x), Fx(t,x), and Fxx(t,x) are uniformly continuous as func-

tions of (t,x) on bounded subsets of [0,T ]×H. Note that, for

fixed t, Fx(t,x) ∈ L(H,R) and we consider Fxx(t,x) as an element

of L(H).

Theorem 5.6 (Itô’s formula). Under assumptions (1) and (2) above, let

X(t) = X(0)+
Z t

0
φ(s)ds+

Z t

0
Φ(s)dW (s), t ∈ [0,T ].

Then, P-almost surely and for all t ∈ [0,T ],

F(t,X(t)) = F(0,X(0))+
Z t

0
Fx(s,X(s))Φ(s)dW (s)

+
Z t

0

(
Ft(s,X(s))+Fx(s,X(s))(φ(s))

+ 1
2 Tr

(
(Fxx(s,X(s)))(Φ(s)Q1/2)(Φ(s)Q1/2)∗

))
ds.
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Proof. See [4, Theorem 4.17].

The next result is the stochastic version of Fubini’s Theorem. Con-

sider the following.

(3) Let (E,E) be a measurable space and

Φ : (ΩT ×E,PT ×E)→ (L0
2,B(L0

2))

be a measurable mapping.

(4) Let µ be a finite positive measure on (E,E).

(5) Assume that
R

E ‖Φ(·, ·,x)‖T dµ(x) < ∞.

Note, that, in particular, for fixed x ∈ E, the process Φ(·, ·,x) is L0
2-

predictable and Φ(·, ·,x) ∈N 2
W [0,T ].

Theorem 5.7 (Stochastic Fubini’s Theorem). Assuming (3)–(5) above,

we have P-almost surely,

(5.5)
Z

E

Z T

0
Φ(t,x)dW (t)dµ(x) =

Z T

0

Z
E

Φ(t,x)dµ(x)dW (t).

Proof. See [4, Theorem 4.18].

Note that the inner integral on the right hand side of (5.5) is an L0
2-

valued Bochner integral. Now we can the prove existence of weak solu-

tions of (5.1). Let

(5.6) X(t) := S(t)ξ+
Z t

0
S(t− s) f (s)ds+WA(t) = Y (t)+WA(t).
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Theorem 5.8 (Existence of weak solutions). Assume (A1)–(A4) andZ T

0
‖S(r)B‖2

L0
2
dr < ∞.

Then {X(t)}t∈[0,T ] defined in (5.6) has a version which is a weak solution

of (5.1).

Proof. The process {X(t)}t∈[0,T ] has Bochner integrable trajectories and

an H-predictable version by Theorem 5.5. Since {Y (t)}t∈[0,T ] is the

(unique) weak solution of

Y ′(t) = AY (t)+ f (t), t > 0,

Y (0) = ξ,

it follows that {X(t)} is a weak solution of (5.3) if and only if WA(t) =

X(t)−Y (t) is a weak solution of

(5.7)
dX(t) = AX(t)dt +BdW (t), 0 < t < T,

X(0) = 0.

Therefore, without loss of generality, we may set ξ = 0, f = 0 and show

that WA(t) is a weak solution of (5.7). If t ∈ [0,T ] and η ∈D(A∗), thenZ t

0
〈A∗η,WA(s)〉 ds =

Z t

0

〈
A∗,

Z t

0
1[0,s](r)S(s− r)BdW (r)

〉
ds.

Following (5.2), we set lA∗η(u) := 〈A∗η,u〉. Then, by Lemma 5.4 and

Theorem 5.7,Z t

0
〈A∗η,WA(t)〉 ds =

Z t

0
lA∗η
(Z t

0
1[0,s](r)S(s− r)BdW (r)

)
ds

=
Z t

0

Z t

0
1[0,s](r)lA∗ηS(s− r)BdW (r)ds

=
Z t

0

Z t

0
1[0,s](r)lA∗ηS(s− r)BdsdW (r)

=
Z t

0

Z t

r
lA∗ηS(s− r)BdsdW (r).
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For all u ∈U ,

lA∗ηS(s− r)Bu = 〈A∗η,S(s− r)Bu〉 = 〈S(s− r)∗A∗η,Bu〉,

and hence, using that η ∈D(A∗),Z t

r
lA∗ηS(s− r)Buds =

Z t

r
〈S(s− r)∗A∗η,Bu〉 ds

=
Z t

r
〈A∗S(s− r)∗η,Bu〉 ds

=
Z t

r

d
ds
〈S(s− r)∗η,Bu〉 ds

= 〈η,S(s− r)Bu〉 −〈η,Bu〉.

Finally, by Lemma 5.4,Z t

0

Z t

0
1[0,s](r)lA∗ηS(s− r)BdsdW (r) =

Z t

0
lηS(t− r)BdW (s)

−
Z t

0
lηBdW (s) = 〈η,WA(t)〉 −

Z t

0
lηBdW (s), P-a.s.

To prove uniqueness of weak solutions of (5.1) we need the follow-

ing two results.

Lemma 5.9. Let (C,D(C)) be the generator of a C0-semigroup on the

separable Hilbert space H. Then, the vector space D(C) endowed with

inner product 〈x,y〉C := 〈x,y〉H + 〈Cx,Cy〉H and norm ‖x‖C := 〈x,x〉1/2
C

is a separable Hilbert space.

The proof is left to the reader as a (non-trivial) exercise.
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Proposition 5.10. Let {X(t)}t≥0 be a weak solution of (5.1) with f = 0

and ξ = 0. Then, for all ρ ∈C1([0,T ],D(A∗)) and t ∈ [0,T ],

〈X(t),ρ(t)〉 =
Z t

0
〈X(s),ρ′(s)+A∗ρ(s)〉 ds+

Z t

0
lρ(s)BdW (s).

Proof. First, let ρ(s) := ρ0φ(s), ρ0 ∈D(A∗), φ∈C1([0,T ],R) and define

Yρ0(t) :=
Z t

0
〈X(s),A∗ρ0〉 ds+

Z t

0
lρ0BdW (s).

Note that if {X(t)}t∈[0,T ] is a weak solution with f = 0 and ξ = 0, then

(5.8) 〈X(t),ρ0〉 = Yρ0(t), t ∈ [0,T ].

If F(t,x) := φ(t)x, x ∈ R, t ∈ [0,T ], then

Ft(t,x) = xφ
′(t), Fx(t,x) = φ(t), Fxx(t,x) = 0,

and hence, by Theorem 5.6 and (5.8),

〈X(t),ρ(t)〉 = φ(t)〈X(t),ρ0〉 = φ(t)Yρ0(t) = F(t,Yρ0(t))

=
Z t

0
φ(s)lρ0BdW (s)+

Z t

0

(
Yρ0(s)φ

′(s)+φ(s)〈X(s),A∗ρ0〉
)

ds

=
Z t

0
lρ(s)BdW (s)+

Z t

0
〈X(s),ρ′(s)+A∗ρ(s)〉 ds.

Next consider a general ρ ∈C1([0,T ],D(A∗)). By Remark 5.1 the op-

erator A∗ is the generator of the C0-semigroup {S(t)∗}t≥0 and hence, by

Lemma 5.9, D(A∗) becomes a separable Hilbert space with inner prod-

uct 〈x,y〉A∗ := 〈x,y〉H + 〈A∗x,A∗y〉H and norm ‖x‖A∗ := 〈x,x〉1/2
A∗ . Let

{ek}k∈N be an orthonormal basis for (D(A∗),‖ · ‖A∗) and consider the

orthogonal expansions

ρ(t) =
∞

∑
k=1
〈ρ(t),ek〉A∗ek and ρ

′(t) =
∞

∑
k=1
〈ρ′(t),ek〉A∗ek.
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For N ∈ N, define

ρN(t) :=
N

∑
k=1
〈ρ(t),ek〉A∗ek, ρ

′
N(t) =

N

∑
k=1
〈ρ′(t),ek〉A∗ek.

Then, by the first part of the proof and linearity,

〈X(t),ρN(t)〉H =
Z t

0

(
〈X(s),ρ′N(s)〉H + 〈X(s),A∗ρN(s)〉H

)
dt

+
Z t

0
lρN(s)BdW (s).

(5.9)

For the second integral on the right hand side of (5.9) we have, using

Itô’s isometry, that

E
∥∥∥Z t

0
lρN(s)BdW (s)−

Z t

0
lρ(s)BdW (s)

∥∥∥2
→ 0,

since, by the Dominated Convergence Theorem,Z t

0
‖lρN(s)− lρ(s))BQ1/2‖2

L2(U,R) ds

=
Z t

0
‖Q1/2B∗(ρN(s)−ρ(s))‖2

U ds→ 0.

Finally, we may select a subsequence {ρNk} such thatZ t

0
lρNk (s)BdW (s)→

Z t

0
lρ(s)BdW (s) P-almost surely, as k→ ∞.

For the sake of simplicity we denote the sequence {ρNk} by {ρN} again.

To deal with the first integral on the right hand side of (5.9), we note that

ρN(t) and ρ′N(t) converge in the ‖ · ‖A∗-norm to ρ(t) and ρ′(t), respec-

tively. Hence, it follows that

〈X(t),ρN(t)〉H → 〈X(t),ρ(t)〉H ,
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〈X(s),ρ′N(s)〉H → 〈X(s),ρ′(s)〉H ,

and

〈X(s),A∗ρN(s)〉H → 〈X(s),A∗ρ(s)〉H

as N→ ∞. We also have

|〈X(s),ρ′N(s)〉|2 ≤ ‖X(s)‖2
H‖ρ′N(s)‖2

H ≤ ‖X(s)‖2
H‖ρ′N(s)‖2

A∗

≤ ‖X(s)‖2
H‖ρ′(s)‖2

A∗ ≤ K‖X(s)‖2
H ,

and thus,

(5.10) |〈X(s),ρ′N(s)〉| ≤ K‖X(s)‖H .

Similarly, for the other term,

(5.11) |〈X(s),A∗ρN(s)〉| ≤ · · · ≤ ‖X(s)‖H‖ρ(s)‖A∗ ≤ K‖X(s)‖H .

Since {X(t)}t∈[0,T ] is a weak solution of (5.1) it has Bochner integrable

trajectories P-almost surely and hence, by (5.10), (5.10), and the Dom-

inated Convergence Theorem, we may pass to the limit in (5.9) inside

the first integral on the right hand side P-almost surely and the proof is

complete.

Theorem 5.11 (Uniqueness). If {X(t)}t∈[0,T ] is a weak solution of

(5.1), then X(t) is given by (5.6) P-almost surely, that is, {X(t)}t∈[0,T ] is

a version of (5.6).

Proof. As in the proof of existence of weak solutions of (5.1) it suffices

to consider the case when f = 0 and ξ = 0. Let

ρ(s) := S(t− s)∗ρ0, s ∈ [0,T ], ρ0 ∈D((A∗)2).
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Then ρ′(s) =−A∗S(t− s)∗ρ0 =−A∗ρ(s) and by Lemma 5.10,

〈X(t),ρ0〉 = 〈X(t),ρ(t)〉 =
Z t

0
lρ(s)BdW (s).

Furthermore,

(lρ(s)B)(u) = 〈S(t− s)∗ρ0,Bu〉 = (lρ0S(t− s)B)(u)

and hence, by Lemma 5.4,

〈X(t),ρ0〉 =
Z t

0
lρ(s)BdW (s) =

Z t

0
lρ0S(t− s)BdW (s)

= lρ0

(Z t

0
S(t− s)BdW (s)

)
= 〈WA(t),ρ0〉.

Finally, using the fact from semigroup theory that D((A∗)2) is dense in

H, we conclude that X(t) = WA(t) P-almost surely.

5.2 Semilinear equations with globally Lipschitz non-
linearity

As before, let {W (t)}t∈[0,T ] be an U-valued Q-Wiener process on the

probability space (Ω,F ,P), adapted to a normal filtration {Ft}t∈[0,T ].

Here we consider equations written formally as

(5.12)
dX(t) = (AX(t)+ f (X(t)))dt +BdW (t), 0 < t < T,

X(0) = ξ.

The main difference when dealing with this kind of equations compared

to the one before is that, in general, there is no explicit representation of

the solution of (5.12). We need another solution concept.
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Definition 5.12 (Mild solution). An H-valued process {X(t)}t∈[0,T ] is a

mild solution of (5.12) if {X(t)}t∈[0,T ] is adapted,

X ∈C
(
[0,T ];L2(Ω,F ,P;H)

)
and, for all t ∈ [0,T ],

X(t) = S(t)ξ+
Z t

0
S(t− s) f (X(s))ds+

Z t

0
S(t− s)BdW (s) P-a.s.

Lemma 5.13. Let 0≤ a < b. The space

Z[a,b] :=
{

X ∈C
(
[a,b];L2(Ω,F ,P;H)

)
: X is adapted

}
with norm ‖Y‖Z[a,b] = supt∈[a,b](E‖Y (t)‖2

H)1/2 is a Banach space.

Proof. Exercise. Hint: show that Z[a,b] is a closed subspace of

C
(
[a,b];L2(Ω,F ,P;H)

)
.

Theorem 5.14. Let A : D(A) ⊂ H → H be a linear operator, gener-

ating a C0-semigroup {S(t)}t≥0 on H. Assume that B ∈ L(U,H), ξ ∈
L2(Ω,F0,P;H), Z T

0
‖S(s)BQ1/2‖2

L2(U,H) ds < ∞

and that f : H→ H satisfies the global Lipschitz condition

‖ f (x)− f (y)‖H ≤ K‖x− y‖H , ∀x,y ∈ H,

for some K > 0. Then, there is a unique mild solution of (5.12).
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Proof. Define

F(Y )(t) := S(t)ξ+
Z t

0
S(t− s) f (Y (s))ds+

Z t

0
S(t− s)BdW (s),

G(Y )(t) :=
Z t

0
S(t− s) f (Y (s))ds.

We will show that the equation X = F(X) in Z[0,T ], where Z[0,T ] is de-

fined in Lemma 5.13, has a unique solution by Banach’s fixed point

theorem.

(1) Let τ > 0. It is not difficult to see that F : Z[0,τ]→ Z[0,τ], that is,

S(·)ξ, G(Y ), and WA are mean square continuous and adapted on [0,τ].

This is left as an exercise.

(2) To show that F is a contraction on Z[0,τ] for some τ, we consider

E
(
‖F(Y1)(t)−F(Y2)(t)‖2)
= E

(∥∥∥Z t

0
S(t− s)( f (Y1(s))− f (Y2(s)))ds

∥∥∥2)
≤ E

((Z t

0
‖S(t− s)‖L(H)‖ f (Y1(s))− f (Y2(s))‖H ds

)2)
.

With

MT := sup
t∈[0,T ]

‖S(t)‖L(H)
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and the Lipschitz condition, we obtain

E
(
‖F(Y1)(t)−F(Y2)(t)‖2)
≤M2

T K2E
((Z

τ

0
‖Y1(s)−Y2(s)‖ ds

)2
)

≤M2
T K2E

(
τ

Z
τ

0
‖Y1(s)−Y2(s)‖2 ds

)
≤M2

T K2
τE
(Z

τ

0
‖Y1(s)−Y2(s)‖2 ds

)
= M2

T K2
τ

Z
τ

0
E
(
‖Y1(s)−Y2(s)‖2)︸ ︷︷ ︸
≤sup[0,τ] E(‖Y1−Y2‖2)

ds

≤M2
T K2

τ
2‖Y1−Y2‖2

Z[0,τ]
.

Thus,

‖F(Y1)−F(Y2)‖Z[0,τ] ≤MT Kτ‖Y1−Y2‖Z[0,τ].

Choose τ so that MT Kτ < 1. Note that τ can be chosen independently

of ξ. Then F : Z[0,τ]→ Z[0,τ] is a contraction and therefore, by Banach’s

fixed point theorem, F has a unique fixed point X1 ∈ Z[0,τ], which is the

unique mild solution of (5.12) on [0,τ].

(3) Now consider the equation

Y (t) = S(t− τ)X1(τ)+
Z t

τ

S(t− s) f (Y (s))ds+
Z t

τ

S(t− s)BdW (s),

where t ∈ [τ,2τ]. As above, we get an unique fixed point Y ∈ Z[τ,2τ]. It

is important here that the length τ of the interval can be chosen indepen-

dently of the initial value X1(τ). Define

X(t) :=

X1(t), t ∈ [0,τ],

Y (t), t ∈ [τ,2τ].
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Then X ∈ Z[0,2τ] and for t ∈ [τ,2τ] we have that

X(t) = Y (t)

= S(t− τ)
(

S(τ)ξ+
Z

τ

0
S(τ− s) f (X(s))ds+

Z
τ

0
S(τ− s)BdW (s)

)
+

Z t

τ

S(t− s) f (X(s))ds+
Z t

τ

S(t− s)BdW (s)

= S(t)ξ+
Z t

0
S(t− s) f (X(s))ds+

Z t

0
S(t− s)BdW (s).

Thus, X is the unique mild solution of (5.12) on [0,2τ]. By repeating

the above procedure a finite number of times, we obtain the unique mild

solution of (5.12) on [0,T ].

Remark 5.15. Since the mild solution of (5.12) is mean square continu-

ous and adapted, it has a predictable version, c.f., the proof of Theorem

5.5. Also, as in the case of linear equations with additive noise, the

solution is unique up to modification.

6 Examples

In this section we apply the abstract framework to the stochastic heat

and wave equations driven by additive noise.
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6.1 The heat equation

Let D ⊂ Rd , d = 1,2,3, be a spatial domain with smooth boundary ∂D
and consider the stochastic heat equation

dX(ξ, t) = ∆X(ξ, t)dt +dW (ξ, t), ξ ∈D, t > 0,

X(ξ, t) = 0, ξ ∈ ∂D, t > 0,

X(ξ,0) = X0(ξ),

(6.1)

where ∆ = ∑
d
k=1 ∂/∂ξ2

k denotes the Laplace operator. In order to put

the equation into the semigroup framework of the previous section we

define H = U = L2(D) and recall the Sobolev spaces

Hk = Hk(D) =
{

v ∈ L2(D) : Dαv ∈ L2(D), |α| ≤ k
}

,

H1
0 = H1

0 (D) =
{

v ∈ H1(D) : v|∂D = 0
}

.

We consider A =−∆ as an unbounded linear operator on H with domain

of definition D(A) = H2 ∩H1
0 . It is well known that A is self-adjoint

positive definite and that the eigenvalue problem

Aφ j = µ jφ j

provides an orthonormal basis {φ j}∞
j=1 for H and an increasing sequence

of eigenvalues

0 < µ1 < µ2 ≤ ·· · ≤ µ j ≤ ·· · , µ j ≈ j2/d → ∞ as j→ ∞.(6.2)

The operator −A is the infinitesimal generator of the semigroup S(t) =

e−tA ∈ L(H) defined by

S(t)v = e−tAv =
∞

∑
j=1

e−tµ j〈v,φ j〉φ j.
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The semigroup is analytic and, in particular, by a simple calculation

using Parseval’s identity we haveZ T

0
‖A1/2e−tAv‖2 dt =

Z T

0
∑

j
µ je−2tµ j〈v,φ j〉2 dt ≤ 1

2
‖v‖2.(6.3)

We define norms

‖v‖Ḣs =
(
∑

j
µs

j〈v,φ j〉
)1/2

= ‖As/2v‖, s ∈ R.

For s≥ 0 we define the corresponding spaces:

Ḣs =
{

v ∈ H : ‖v‖Ḣs < ∞

}
,

Ḣ−s is the closure of H with respect to the Ḣs-norm.

The negative order space Ḣ−s can be identified with the dual space

(Ḣs)∗. Then we have Ḣs ⊂ H = Ḣ0 ⊂ Ḣ−s. It is known that Ḣ1 = H1
0 ,

Ḣ2 = H2∩H1
0 = D(A).

Let Q ∈ L(U) = L(H), Q≥ 0, U0 = Q1/2(U)⊂U = H, and let {ek}
be an orthonormal basis in U0 and fk = Q−1/2ek, so that { fk} is an or-

thonormal basis in U = H.

There are two possibilities for the choice of Ũ and J as required in

Section 4. The first one is

Ũ = U = H, J : U0→U, J = A−s/2.

We must choose s so that J is Hilbert-Schmidt:

‖J‖2
L2(U0,U) = ‖JQ1/2‖2

L2(U) = ‖A−s/2Q1/2‖2
L2(H) < ∞.(6.4)

In order to see what this means, we compute s under some assumptions

on Q. If Tr(Q) < ∞, then we may take s = 0, because

‖Q1/2‖2
L2(H) = Tr(Q) < ∞.
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If Q = I, then using (6.2) we obtain

‖A−s/2Q1/2‖2
L2(H) = ‖A−s/2‖L2(H) = ∑

j
‖A−s/2

φ j‖2

= ∑
j

µ−s
j ≈∑

j

(
j2/d)−s = ∑

j
j−2s/d < ∞,

if −2s/d <−1, that is s > d
2 . More generally, if Q = A−γ, γ≥ 0, then

‖A−s/2Q1/2‖2
L2(H) = ‖A−s/2A−γ/2‖2

L2(H) < ∞, if s >
d
2
− γ.

Now, according to Proposition 4.3, we have that

W̃ (t) = ∑
k

βk(t)Jek = ∑
k

βk(t)A−s/2ek, W̃ ∈M 2
T (H),

is a Q̃-Wiener process in H = Ũ . Moreover,

Q̃ = JJ∗ = A−s = A−s/2Q1/2(A−s/2Q1/2)∗

with, according to our assumption (6.4),

Tr(Q̃) = ‖A−s/2Q1/2‖2
L2(H) < ∞.

Now

‖W̃‖2
M 2

T (H) = sup
t

E
(
‖W̃ (t)‖2)

= sup
t

∑
j
∑
k

E(βk(t)β j(t))︸ ︷︷ ︸
=tδ jk

〈A−s/2ek,A−s/2e j〉

= T ∑
k
‖A−s/2ek‖2 = T ∑

k
‖A−s/2Q1/2 Q−1/2ek︸ ︷︷ ︸

= fk

‖2

= T ∑
k
‖A−s/2Q1/2 fk‖2 = T‖A−s/2Q1/2‖2

L2(H) < ∞.

80



Note also

W̃ (t) = A−s/2
∑
k

βk(t)ek = A−s/2W (t)

with W ∈M 2
T (Ḣ−s).

The other choice of Ũ is Ũ = Ḣ−s. Recall that H =U = Ḣ0⊂ Ḣ−s =

Ũ for s≥ 0, let J : H ↪→ Ḣ−s be the inclusion, and require that

‖J‖2
L2(U0,Ũ) = ‖Q1/2‖2

L2(H,Ḣ−s) = ‖A−s/2Q1/2‖2
L2(H) < ∞,

which is the same condition on s as (6.4). Now

W̃ (t) = W (t) = ∑
k

βk(t)ek,

with W ∈M 2
T (Ḣ−s). Thus, in both cases we define a (possibly cylin-

drical) Wiener process W (t) = ∑k βk(t)ek, where W ∈M 2
T (Ḣ−s), if s

satisfies (6.4). The stochastic integral
R t

0 ΦdW is independent of the

choice of J according to Remark 4.8.

The stochastic heat equation (6.1) can now be written

dX +AX dt = dW, t > 0,

X(0) = 0,
(6.5)

where, for simplicity, we have set X0 = 0, f = 0. It is of the form (5.1)

with B = I, and according to Theorems 5.8 and 5.11 its unique weak

solution is given by the stochastic convolution

X(t) = WA(t) =
Z t

0
S(t− s)dW (s)

provided that Z T

0
‖S(t)Q1/2‖2

L2(H) dt < ∞.(6.6)
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Using (6.3) and an orthonormal basis { fk} we computeZ T

0
‖S(t)Q1/2‖2

L2(H) dt =
Z T

0
‖e−tAQ1/2‖2

L2(H) dt

=
Z T

0
∑
k
‖e−tAQ1/2 fk‖2 dt

= ∑
k

Z T

0
‖A1/2e−tAA−1/2Q1/2 fk‖2 dt

≤ 1
2 ∑

k
‖A−1/2Q1/2 fk‖2 =

1
2
‖A−1/2Q1/2‖2

L2(H).

Thus (6.6) holds if

‖A−1/2Q1/2‖L2(H) < ∞,(6.7)

which is (6.4) with s = 0. Then WA ∈C
(
[0,T ],L2(Ω,F ,P;H)

)
accord-

ing to Theorem 5.5.

More generally, using the isometry (3.2) and (6.3) we compute, for

β≥ 0,

E
(
‖WA(t)‖2

Ḣβ

)
= E

(
‖Aβ/2WA(t)‖2)= E

(∥∥∥Z t

0
Aβ/2e−(t−s)A dW (s)

∥∥∥2)
=

Z t

0
‖Aβ/2e−(t−s)AQ1/2‖2

L2(H) ds

=
Z t

0
∑
k
‖Aβ/2e−(t−s)AQ1/2 fk‖2

H ds

= ∑
k

Z t

0
‖A1/2e−sAA(β−1)/2Q1/2 fk‖2 ds

≤ 1
2 ∑

k
‖A(β−1)/2Q1/2 fk‖2 =

1
2
‖A(β−1)/2Q1/2‖2

L2(H).

So

‖WA(t)‖L2(Ω,F ,P;Ḣβ) ≤ ‖A
(β−1)/2Q1/2‖L2(H),(6.8)
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provided that

‖A(β−1)/2Q1/2‖L2(H) < ∞.(6.9)

In particular, if Tr(Q) < ∞, then we may take β = 1, while if Q = I, then

we have, by (6.2),

‖A(β−1)/2‖2
L2(H) = ∑

k
µβ−1

k ≈∑
k

k2(β−1)/d < ∞,(6.10)

if 2(β−1)/d <−1, that is, we need 0≤ β < 1−d/2, which only holds

if d = 1 and β < 1/2. Thus, for a cylindrical Wiener process (Q = I) the

solution exists only if d = 1. In higher dimensions we need a covariance

operator with stronger smoothing effect, for example, if Q = A−γ then

(6.9) implies γ > β−1+d/2.

6.2 The wave equation

We consider the stochastic wave equation

du̇−∆udt = dW in D×R+,

u = 0 on ∂D×R+,

u(·,0) = u0, u̇(·,0) = u1 in D.

(6.11)

We let A = −∆ with D(A) = H2∩H1
0 = Ḣ2, U = Ḣ0 = L2(D) and W

be a Q-Wiener process on U as in the previous section. We put

X =

[
u

u̇

]
, ξ =

[
u0

u1

]
, H = Ḣ0× Ḣ−1.
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Now we can write

dX =

[
du

du̇

]
=

[
u̇dt

∆udt +dW

]

=

[
X2

−AX1

]
dt +

[
0

I

]
dW

=

[
0 I

−A 0

]
X dt +

[
0

I

]
dW

= ÃX dt +BdW,

where

Ã =

[
0 I

−A 0

]
, B =

[
0

I

]
.

So we have

dX = ÃX dt +BdW, t > 0,

X(0) = ξ,
(6.12)

where

D(Ã) =
{

x ∈ H : Ãx =

[
x2

−Ax1

]
∈ H = Ḣ0× Ḣ−1

}
= Ḣ1× Ḣ0.

The operator Ã is the generator of a strongly continuous semigroup

S(t) = etÃ on H and B ∈ L(U,H). Hence, in this case, U 6= H and B 6= I.

In order to see what S is, we note that y(t) = S(t)x is the solution of

ẏ = Ãy; y(0) = x,

that is,

ÿ1 +Ay1 = 0; y1(0) = x1, ẏ1(0) = x2.
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We solve it using an eigenfunction expansion:

y1(t) =
∞

∑
j=1

cos(
√

µ jt)〈x1,φ j〉φ j +
1
√µ j

sin(
√

µ jt)〈x2,φ j〉φ j

= cos(tA1/2)x1 +A−1/2 sin(tA1/2)x2,

and

y2 = ẏ1(t) =−A1/2 sin(tA1/2)x1 + cos(tA1/2)x2.

These are called cosine and sine operator functions. Now we can write

the semigroup as

S(t) = etÃ =

[
cos(tA1/2) A−1/2 sin(tA1/2)

−A1/2 sin(tA1/2) cos(tA1/2)

]
.

With ξ = 0 the evolution problem (6.12) has the unique weak solution

X(t) = WÃ(t) =
Z t

0
S(t− s)BdW (s)

=


Z t

0
A−1/2 sin((t− s)A1/2)dW (s)Z t

0
cos((t− s)A1/2)dW (s)

 .

Theorem 5.5 says that X ∈C([0,T ];L2(Ω,F ,P;H)) ifZ T

0
‖S(t)BQ1/2‖2

L2(U,H) dt < ∞.

This condition isZ T

0
‖S(t)BQ

1
2‖2

L2(U,H) dt =
Z T

0
∑
k
‖S(t)BQ

1
2 fk‖2

H dt

=
Z T

0
∑
k

(
‖A−

1
2 sin(tA

1
2 )Q

1
2 fk‖2

Ḣ0 +‖cos(tA
1
2 )Q

1
2 fk‖2

Ḣ−1

)
dt

=
Z T

0

(
‖A−

1
2 sin(tA

1
2 )Q

1
2‖2

L2(Ḣ0) +‖A
− 1

2 cos(tA
1
2 )Q

1
2‖2

L2(Ḣ0)

)
dt.
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This must be finite. For example, if Tr(Q) < ∞:

‖A−
1
2 sin(tA

1
2 )Q

1
2‖2

L2(Ḣ0) ≤ ‖A
− 1

2‖2
L(Ḣ0)‖sin(tA

1
2 )‖2

L(Ḣ0) Tr(Q) < ∞,

and similarly for cosine, so the condition holds. Here we used

‖ST‖L2(Ḣ0) ≤ ‖S‖L(Ḣ0)‖T‖L2(Ḣ0),

see Remark 1.4. For Q = I we have

‖A−
1
2 sin(tA

1
2 )Q

1
2‖2

L2(Ḣ0) = ‖A−
1
2 sin(tA

1
2 )‖2

L2(Ḣ0)

≤ ‖A−
1
2‖2

L2(Ḣ0)‖sin(tA
1
2 )‖2

L(Ḣ0) ≤ ‖A
− 1

2‖2
L2(Ḣ0).

Here ‖A− 1
2‖L2(Ḣ0) < ∞ if and only if d = 1, see (6.10) with β = 0.

More generally, we compute the norm of order β ≥ 0. For the first

component X1 = u we have:

E
(
‖X1(t)‖Ḣβ

)
= E

(∥∥∥Z t

0
Aβ/2A−

1
2 sin((t− s)A

1
2 )dW

∥∥∥2)
=

Z t

0
‖A(β−1)/2 sin(sA

1
2 )Q

1
2‖2

L2(Ḣ0) ds

=
Z t

0
‖sin(sA

1
2 )A(β−1)/2Q

1
2‖2

L2(Ḣ0) ds

≤
Z t

0
‖sin(sA

1
2 )‖2

L(Ḣ0)︸ ︷︷ ︸
≤1

ds‖A(β−1)/2Q
1
2‖2

L2(Ḣ0) ds

≤ t‖A(β−1)/2Q
1
2‖2

L2(Ḣ0).

So we get the same condition for regularity of order β as for the heat

equation, see (6.9). For the second component X2 = u̇ we obtain simi-

larly

E
(
‖X2(t)‖2

Ḣβ−1

)
≤ t‖A(β−1)/2Q

1
2‖2

L2(Ḣ0).

86



References

[1] W. Arendt, C. Batty, M. Hieber, and F. Neubrander, Vector-

Valued Laplace Transforms and Cauchy Problems, Birkhäuser-
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