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1 Introduction

Let D ⊂ Rd be a convex polygonal domain, H := L2(D) with scalar product
〈·, ·〉 and (Ω,F ,P) be a probability space with a normal filtration {Ft}t≥0.
Let {W (t)}t≥0 be an H-valued Wiener process with covariance operator Q
with respect to the filtration {Ft}t≥0 (see section 2). Consider the parabolic
stochastic partial differential equation written in the abstract form

dX(t) + AX(t) dt = f(X(t)) dt + dW (t), t ∈ (0, T ); X(0) = X0, (1.1)

where A is a second order, symmetric, uniformly elliptic partial differential
operator considered as an unbounded operator A : D(A) ⊂ H → H with
D(A) = H2(D) ∩ H1

0 (D). It is known that −A is then the infinitesimal gen-
erator of an analytic semigroup {T (t)}t≥0 on H . We take X0 to be an F0-
measurable H-valued random variable and assume that f : H → H satisfies
the global Lipschitz condition

‖f(x) − f(y)‖ ≤ Lf‖x − y‖, x, y ∈ H. (1.2)

We say that a process {X(t)}t≥0 is a mild solution of (1.1) if it is mean-square
continuous, adapted to {Ft}t≥0 and for all t ≥ 0 satisfies the integral equation

X(t) = T (t)X0 +

∫ t

0

T (t− s)f(X(s)) ds+

∫ t

0

T (t− s) dW (s), P − a.s., (1.3)

where the last integral is an Itô integral (see, for example, [2, Chapters 4 and
7]).

Let {Sh}0<h<1 be a family of finite-dimensional subspaces of H1
0 (D) con-

sisting of continuous piecewise linear functions with respect to a regular family
of triangulations {Th}0<h<1 with maximum mesh size h. Let Ph denote the
orthogonal projection of H onto Sh, i.e.,

〈Phf, χ〉 = 〈f, χ〉, χ ∈ Sh, f ∈ H.

Let Ah : Sh → Sh denote the ”discrete version” of A, i.e.,

〈Ahη, χ〉 = a(η, χ), η, χ ∈ Sh,

where a : H1
0 (D) × H1

0 (D) → R is the bilinear form corresponding to A.
The finite element solution {Xh(t)}t≥0 ∈ Sh of (1.1) satisfies the stochastic
differential equation written in the abstract form

dXh + AhXh dt = Phf(Xh) dt + Ph dW, t ∈ (0, T ); Xh(0) = PhX0, (1.4)
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with its mild solution given by, analogously to (1.3),

Xh(t) = Th(t)Xh(0) +

∫ t

0

Th(t − s)Phf(Xh(s)) ds +

∫ t

0

Th(t − s)Ph dW (s),

(1.5)
where {Th(t)}t≥0 is the analytic semigroup on Sh generated by −Ah.

In practice one also applies a time stepping when solving (1.4). This re-
quires the computation of the increments of the Wiener process {W (t)}t≥0,
which is given by an orthogonal series

W (t) =

∞
∑

k=1

γ
1/2
k βk(t)ek,

where (γk, ek) are the eigenpairs of the covariance operator Q and βk are
mutually independent standard real-valued Brownian motions. The problem
that arises then is that the eigenvectors Q are usually not known and, even
when they are, one has to compute an infinite series. Yan [12] showed that
when the eigenvalues and eigenvectors are explicitly known, it is enough to
take Nh = dim(Sh) terms in the orthogonal expansion of W and use the
truncated series in (1.4) and still preserve the order of convergence of the
finite element method. However, the eigenfunctions and eigenvectors of Q are
rarely available explicitly. Therefore, instead, observe that (1.4) and (1.5) are
equivalent to

dXh + AhXhdt = Phf(Xh)dt + dWh, t ∈ (0, T ); Xh(0) = PhX0, (1.6)

and

Xh(t) = Th(t)Xh(0)+

∫ t

0

Th(t−s)Phf(Xh(s)) ds+

∫ t

0

Th(t−s) dWh(s), (1.7)

respectively, where {Wh(t)}t≥0 is a PhQPh-Wiener process on Sh. Then we
may write

Wh(t) =

Nh
∑

k=1

γ
1/2
h,k βk(t)eh,k, (1.8)

where the βk are mutually independent standard real-valued Brownian motions
and (γh,k, eh,k) are the eigenpairs of Qh := PhQPh. In other words, (γh,k, eh,k)
is the finite element solution of the eigenvalue problem Qu = γu. Usually Q is
given as an integral operator and therefore the finite element solution of the
eigenvalue problem can be very expensive. However, in [7] (in the context of
random fields) it is shown that, e.g., for stationary kernels analytic at 0, such
as the Gauss kernel, this in fact can be done very efficiently, i.e., in log-linear
complexity. Moreover, the number of terms used in (1.8) can be dramatically
reduced; by say taking M ≤ Nh terms, (M depends on the regularity of the
kernel and on h), and defining

WM
h (t) =

M
∑

k=1

γ
1/2
h,k βk(t)eh,k,
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the strong error estimate; that is, the error estimate in the ‖ · ‖L2(Ω,H) =
(

E(‖ · ‖2)
)1/2

-norm, for W (t) − Wh(t) carries over to W (t) − WM
h (t).

The main goal of the paper is to show that a similar statement holds in the
context of parabolic equations (1.1) for piecewise linear finite elements; i.e.,
denoting the solution of

dXM
h +AhXM

h dt = Phf(Xh) dt+dWM
h , t ∈ (0, T ); XM

h (0) = PhX0, (1.9)

by {XM
h (t)}t≥0, we show that the strong error estimate for X(t) − Xh(t)

remains valid for X(t) − XM
h (t), where M = M(Q, h) ≤ Nh.

The paper is organized as follows. In Section 2 we discuss some basic no-
tions of infinite dimensional stochastic analysis and review some standard
material form operator semigroups and finite element analysis. In Section 3
we first extend, in Proposition 3.3, the strong convergence error estimate for
linear problems, [11], to the case of the semilinear finite element problem (1.4).
More importantly, we also show, in Theorem 3.4 and Corollary 3.5, that for
covariance operators with fast decaying eigenvalues the order of the method is
preserved when the expansion of the semidiscrete Wiener process {Wh(t)}t≥0

is truncated. As in the context of random fields [7], for piecewise analytic ker-
nels we may keep only M = c(lnNh)d terms instead of Nh terms and retain
the order of convergence of the original approximation.

2 Preliminaries

First we discuss H-valued Wiener processes. We say that {W (t)}t≥0 is a H-
valued Wiener process with covariance operator Q with respect to {Ft}t≥0 if

(i) W (0) = 0,
(ii) W has continuous trajectories (almost surely),
(iii) W has independent increments,
(iv) W (t)−W (s), 0 ≤ s ≤ t, is a H-valued Gaussian random variable with zero

mean and covariance operator (t − s)Q,

and

(v) {W (t)}t≥0 is adapted to {Ft}t≥0; that is, W (t) is Ft measurable for all
t ≥ 0;

(vi) the random variable W (t)−W (s) is independent of Fs for all fixed s ∈ [0, t].

Condition (iv) implies that the trace of Q is finite as the covariance operator
of a Gaussian random variable is necessarily of trace class, see [2, Proposition
2.15]. Then Q has a decreasing sequence γk → 0 as k → ∞ of eigenvalues
with corresponding orthonormal eigenvectors ek. In this case {W (t)}t≥0 can
be written as an orthogonal series

W (t) =
∞
∑

k=1

γ
1/2
k βk(t)ek, (2.1)
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where (γk, ek) are the eigenpairs of Q and βk are mutually independent stan-
dard real-valued Brownian motions. Furthermore, the series converges in the
space L2

(

Ω,F , P ; C
(

[0, T ], H
))

(see, for example, [2, Chapter 4] and [6, Chap-
ter 2]). We remark that one is often interested in covariance operators which
are not of trace class, such as Q = I. In this case one starts with the expansion
(2.1), which only converges in L2

(

Ω,F , P ; C
(

[0, T ], H1

))

, where H1 is a suit-
ably chosen Hilbert space (usually larger than H), and obtains an H1-valued
process which we still call an H-valued (cylindrical) Wiener process even if
it is strictly speaking not H-valued. Nevertheless one can still define Itô-type
stochastic integrals of B(H)-valued processes, where B(H) denote the Banach
algebra of bounded linear operators on H with the usual norm, with respect
to these Wiener processes as well. Since the main results of the paper requires
smooth noise; that is, we look at covariance operators with fast decaying eigen-
values, we refer the interested reader to [2, Chapter 4.3] and [6, Chapter 2.5]
for furher reading on cylindrical process and integrals with respect to them.

Next we briefly recall some standard results from deterministic finite ele-
ment and operator semigroup theory. Note that in the rest of the paper the
letter C is used to denote various positive constants that need not be the same
at each time. It is well known that under our assumption on A we have

∫ t

0

‖T (s)v‖2 ds ≤ 1
2‖A

−1/2v‖2, for all v ∈ H , t ≥ 0,

∫ t

0

‖Th(s)Phv‖2 ds ≤ 1
2‖A

−1/2
h Phv‖2, for all v ∈ H , t ≥ 0.

(2.2)

We introduce spaces and norms of fractional order β ∈ R:

Ḣβ = D(Aβ/2), ‖v‖Ḣβ = ‖Aβ/2v‖ =
(

∞
∑

k=1

λβ
k 〈v, φk〉

2
)1/2

,

where (λk, φk) denote the eigenpairs of A. Under the assumptions made in
the introduction we have the following error estimate for the deterministic
parabolic finite element problem

‖Fh(t)v‖ ≤ Chβt−β/2‖v‖, 0 ≤ β ≤ 2; with Fh(t) = T (t) − Th(t)Ph,
(2.3)

see [8, Theorem 3.5], and the stability estimate for the elliptic problem

‖A−1
h Phv‖ ≤ C‖A−1v‖, v ∈ H, h > 0. (2.4)

In particular, it follows from (2.3) that

‖Th(t)Ph‖ ≤ C for all t ≥ 0 and h > 0. (2.5)

Finally, an operator T ∈ B(H) is Hilbert-Schmidt if

‖T ‖HS :=

∞
∑

k=1

‖Tek‖
2 < ∞,

where {ek}
∞
k=1 is an orthonormal basis of H (see, e.g., [10]). The sum is then

independent of the choice of the orthonormal basis.
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3 Convergence Results

Before the error analysis of the finite element method we need an a priori
bound on the solution of (1.1).

Lemma 3.1 If ‖A(β−1)/2Q1/2‖HS < ∞ for some β ≥ 0, X0 ∈ L2(Ω, H)
and (1.2) holds, then there is a unique mild solution {X(t)}t≥0. In particular,
‖X(t)‖L2(Ω,H) ≤ K for 0 ≤ t ≤ T , where K = K(T, Lf).

Proof By our assumption we have ‖A−1/2Q1/2‖HS < ∞, which by (2.2) implies

that
∫ t

0
‖T (s)Q1/2‖2

HS ds < ∞ (see also [11]) and therefore the statements
follow from [1, Theorem 3.2] and [1, Proposition 3.3].

In the linear case, f = 0, we have the following error estimate proved in
[11].

Proposition 3.2 If f = 0, ‖A
β−1

2 Q
1

2 ‖HS < ∞ for some β ∈ [0, 2], and X0 ∈
L2(Ω, Ḣβ), then

‖Xh(t) − X(t)‖L2(Ω,H) ≤ Chβ
(

‖X0‖L2(Ω,Ḣβ) + ‖A
β−1

2 Q
1

2 ‖HS

)

.

Before proceeding to the semilinear case, note that in [3] and [4] a very gen-
eral framework for spatial (and also some temporal) approximation of semi-
linear stochastic equations is presented. However, for more specific equations
and more specific methods, as in the present work, stronger results can be
obtained under sharp regularity assumptions involving A and Q. This is done
in [11] (c.f., Proposition 3.2 above) for linear equations with additive noise and
in [12] for equations with multiplicative noise. Using Proposition 3.2 together
with finite element techniques for deterministic semilinear parabolic problems
(see, for example, [5] and [8]) we obtain the following result for the semilinear
stochastic problem, which shows that the order of convergence from the linear
case is preserved under the same condition on A and Q.

Proposition 3.3 Let {X(t)}t≥0 and {Xh(t)}t≥0 be the mild solutions of (1.1)

and (1.4), respectively. If ‖A
β−1

2 Q
1

2 ‖HS < ∞ for some β ∈ [0, 2] and X0 ∈
L2(Ω, Ḣβ), then there is K = K(X0, T, β) such that, for 0 ≤ β < 2,

‖X(t) − Xh(t)‖L2(Ω,H) ≤ Khβ, 0 ≤ t ≤ T.

If β = 2, then

‖X(t) − Xh(t)‖L2(Ω,H) ≤ Kh2(1 + max(0, ln(t/h2)), 0 < t ≤ T.
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Proof By (1.3) and (1.5),

e(t) := ‖X(t) − Xh(t)‖L2(Ω,H)

≤
∥

∥

∥
T (t)X0 +

∫ t

0

T (t − s) dW (s)

− Th(t)PhX0 −

∫ t

0

Th(t − s)Ph dW (s)
∥

∥

∥

L2(Ω,H)

+
∥

∥

∥

∫ t

0

T (t − s)f(X(s)) ds −

∫ t

0

Th(t − s)Phf(Xh(s)) ds
∥

∥

∥

L2(Ω,H)

=: e1(t) + e2(t).

By Proposition 3.2,

e1(t) ≤ Chβ
(

‖X0‖L2(Ω,Ḣβ) + ‖A(β−1)/2Q1/2‖HS

)

. (3.1)

Next we bound e2. By the Lipschitz condition (1.2), the stability bound (2.5),
the error estimate (2.3) with 0 ≤ β < 2, and the a priori bound on X(t) from
Lemma 3.1, we have

e2(t) ≤

∫ t

0

‖Th(t − s)Ph(f(X(s)) − f(Xh(s)))‖L2(Ω,H) ds

+

∫ t

0

‖Fh(t − s)f(X(s))‖L2(Ω,H) ds

≤ C

∫ t

0

e(s) ds +

∫ t

0

‖Fh(t − s)f(X(s))‖L2(Ω,H) ds (3.2)

≤ C

∫ t

0

e(s) ds + Chβ

∫ t

0

(t − s)−β/2‖f(X(s))‖L2(Ω,H) ds

≤ C

∫ t

0

e(s) ds + Chβ

∫ t

0

(t − s)−β/2
(

1 + ‖X(s)‖L2(Ω,H)

)

ds

≤ C

∫ t

0

e(s) ds + Chβ . (3.3)

Together with (3.1) and Gronwall’s lemma this finishes the proof in this case.
If β = 2, then the bound on e2 has to be altered. If 0 ≤ t ≤ h2, then the
stability of X(t), by Lemma 3.1, (2.3) with β = 0 and (3.2) implies that (3.3)
holds with β = 2, which shows the claim in view of (3.1). If 0 ≤ h2 < t, then
starting from (3.2), using (2.3) with β = 2 and Lemma 3.1, we obtain

e2(t) ≤ C

∫ t

0

e(s) ds +
(

∫ t−h2

0

+

∫ t

t−h2

)

‖Fh(t − s)f(X(s))‖L2(Ω,H) ds

≤ C

∫ t

0

e(s) ds + Ch2

∫ t−h2

0

(t − s)−1 ds + Ch2

≤ Ch2(1 + ln(t/h2)) + C

∫ t

0

e(s) ds,
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which finishes the proof by (3.1) and Gronwall’s lemma.

The next theorem shows that the order of convergence obtained in Propo-
sition 3.3 may remain valid after truncation of the expansion of W (t), if the
eigenvalues of the covariance operator Q decay fast enough.

Theorem 3.4 Assume that Q is a compact operator on H with an orthonor-
mal basis of eigenvectors {ek}

∞
k=1 and with a corresponding decreasing se-

quence of eigenvalues {γk}
∞
k=1. Let {ek,h}

Nh

k=1 be orthonormal eigenvectors of

Qh = PhQPh with corresponding decreasing sequence of eigenvalues {γk,h}
Nh

k=1.
Let {X(t)}t≥0 and {XM

h (t)}t≥0 be the mild solutions of (1.1) and (1.9), re-

spectively, with M ≤ Nh. If ‖A
β−1

2 Q
1

2 ‖HS < ∞ for some β ∈ [0, 2] and
X0 ∈ L2(Ω, Ḣβ), then there is K = K(X0, T, β) such that, for 0 ≤ β < 2,

‖X(t) − XM
h (t)‖L2(Ω,H) ≤ K

(

hβ + ‖A− 1

2 ‖
(

Nh
∑

k=M

γk

)
1

2

)

, 0 ≤ t ≤ T.

If β = 2, then

‖X(t)−XM
h (t)‖L2(Ω,H) ≤ K

(

h2(1 + max(0, ln( t
h2 )) + ‖A− 1

2 ‖
(

Nh
∑

k=M

γk

)
1

2

)

,

0 < t ≤ T.

Proof We use the solution {Xh(t)}t≥0 of (1.4) to split the error as follows:

‖X(t) − XM
h (t)‖L2(Ω,H) ≤ ‖X(t) − Xh(t)‖L2(Ω,H)

+ ‖Xh(t) − XM
h (t)‖L2(Ω,H) =: e1(t) + e2(t).

(3.4)

The first term e1(t) is bounded by Chβ for 0 ≤ β < 2, and for β = 2 by
Ch2(1 + max(0, ln( t

h2 ) according to Proposition 3.3. To bound e2 we first use
the observation that {Xh(t)}t≥0 is the solution of (1.6) and therefore

e2(t) ≤
∥

∥

∥

∫ t

0

Th(t − s)Ph(f(Xh(s)) − f(XM
h (s))) ds

∥

∥

∥

L2(Ω,H)

+
(

E
∥

∥

∥

Nh
∑

k=M

γ
1/2
h,k

∫ t

0

Th(t − s)eh,k dβk(s)
∥

∥

∥

2)1/2

.

(3.5)

Using the global Lipschitz condition and (2.5), the first term can be estimated
as

∥

∥

∥

∫ t

0

Th(t − s)Ph(f(Xh(s)) − f(XM
h (s))) ds

∥

∥

∥

L2(Ω,H)
≤ C

∫ t

0

e2(t) dt. (3.6)
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Using the independence of the Brownian motions {βk}, Itô’s isometry, and
(2.2), we have for the second term in (3.5),

E
∥

∥

∥

Nh
∑

k=M

γ
1/2
h,k

∫ t

0

Th(t − s)eh,k dβk(s)
∥

∥

∥

2

=

Nh
∑

k=M

γh,k

∫ t

0

‖Th(s)eh,k‖
2 ds

≤

Nh
∑

k=M

γh,k‖A
− 1

2

h eh,k‖
2.

It is well known that γh,k ≤ γk for all k ∈ N (see, for example, [9, Proposition
1.2]) and thus, using (2.4) and the self-adjointness of A−1,

E
∥

∥

∥

Nh
∑

k=M

γ
1/2
h,k

∫ t

0

Th(t − s)eh,k dβk(s)
∥

∥

∥

2

≤ C‖A−1‖

Nh
∑

k=M

γk

= C‖A− 1

2 ‖2
Nh
∑

k=M

γk.

(3.7)

Finally, by using Proposition 3.3, (3.6), (3.7) in (3.4) together with Gronwall’s
lemma we complete the proof.

Assume now that Q is given as an integral operator

(Qf)(x) :=

∫

D

q(x, y)f(y) dy. (3.8)

The kernel q in (3.8) is called piecewise analytic, piecewise smooth, or piecewise
Hp,r (with p, r ∈ [0,∞)), if there is a partition D = {Dj}

J
j=1 of the polygonal

domain D into a finite set of simplices Dj and a finite set G = {Gj}
J
j=1 of

open subsets of Rd, such that D = ∪J
j=1Dj , Dj ⊂ Gj for all j = 1, ..., J ,

and such that q|Dj×Dj′
has an extension to Gj × Gj′ , which is analytic in

Gj ×Gj′ , is smooth in Gj ×Gj′ , or is in Hp(Gj)⊗Hr(Gj′ ) for all pairs (j, j′).
(Here Hp denotes the standard Sobolev space with H0 = L2). We denote
the corresponding regularity spaces by AD,G(D2), C∞

D,G(D2), and Hp,r
D,G(D2),

respectively.
It turns out that the eigenvalue decay rate for integral operators is deter-

mined by the regularity of their kernels as defined above (see, e.g., [7] and[9])
and therefore the regularity determines how much we may truncate the noise in
Theorem 3.4. Recall that the eigenvalues are ordered in a decreasing manner.

Corollary 3.5 Assume the conditions of Theorem 3.4 and let Q be given by
(3.8). Assume also that the mesh family is quasi-uniform. Then there are c =
c(β, d, q) and C = C(X0, T, β, d, q), or C = C(X0, T, β, q, s) in case (ii) below,
such that, for 0 ≤ β < 2,

‖X(t) − XM
h (t)‖L2(Ω,H) ≤ Chβ , 0 ≤ t ≤ T,
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and for β = 2,

‖X(t) − XM
h (t)‖L2(Ω,H) ≤ Ch2(1 + max(0, ln(t/h2)), 0 < t ≤ T,

provided that M is chosen as follows.

(i) If q ∈ AD,G(D2), then set M = c(ln Nh)d.

(ii) If q ∈ C∞
D,G(D2), then set M = N

2β
sd

h , where s > 1 is arbitrary with sd > 2β.

(iii) If q ∈ Hp,0
D,G(D2), then set M = N

2β
p

h if p > max(d, 2β) and M = Nh

otherwise.

Proof If the kernel q belongs to AD,G(D2), C∞
D,G(D2), or Hp,0

D,G(D2), then the

eigenvalues {γk}
∞
k=1 of Q are bounded by ae−bk1/d

, csk
−s for any s > 0, or

ck−p/d, respectively, see [7] and[9]. Since the h ∼ N
−1/d
h for quasi-uniform tri-

angulations, Theorem 3.4 yields the desired result. For example, in the analytic
case we have

(

Nh
∑

k=M

γk

)
1

2

∼
(

∞
∑

k=c(ln Nh)d

ae−bk
1

d

)
1

2

∼ e−
1

4
2

1

d c
1

d b lnNh

∼ N
− 1

4
b(2c)

1

d

h ∼ h
1

4
b(2c)

1

d d ∼ hβ

for some c = c(β, d, q).

Note that for piecewise analytic kernels it is enough to keep c(lnNh)d terms
in the noise expansion instead of Nh terms, which is a significant computational
advantage. For kernels with low finite regularity, truncation does not reduce
the computational cost severely.

4 A Numerical Example

In this section we present some numerical results to illustrate Corollary 3.5.
Let D be the unit square in R

2, A = −∆, f ≡ 0 and let Q be the integral
operator corresponding to the Gauss kernel q(x, y) := 1000

2πσ2 e−|x−y|2/2σ2

. In this

case the kernel is analytic, ‖A
1

2 Q
1

2 ‖HS < ∞ and therefore the order of strong
convergence from Corollary 3.5 is expected to be almost 2 even with taking
only M ∼ (ln Nh)2 (instead of Nh) terms in the noise expansion in (1.9).

The computations were performed using Matlab with σ taking the values
10, 1 and 0.1. Since an exact solution is not available to compare with, we
take instead a finite element approximation on a mesh as fine as possible
which, in our case, corresponds to h = 2.2 · 10−2. Time discretization is done
by the backward Euler method with time-step ∆t = 10−4, performing 103

steps. The increments of the semidiscrete Wiener process have been simulated

by multiplying γ
1/2
h,k eh,k by a N(0, ∆t)-distributed random variable ξn

k in its
expansion at time-step n. To be able to compare spatial discretizations on
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different levels the same random number ξn
k is used at all levels. The number of

simulations performed for each σ is 10000. The results are presented in Figure
1. In all three cases when h gets small the order of convergence shows good
agreement with the predicted order of almost 2. Furthermore, as expected, the
error increases when σ decreases.
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