
TMV035 Analysis and Linear Algebra B, 2005

LECTURE 4.1

In this lecture we present analytic solution of differential equations. This covers AMBS Ch 35,
38, 39.

Analytic solution of differential equations

0.1. Introduction. In AMBS Ch 40 we construct a unique solution of the general system of
ordinary differential equations:

u′(x) = f(x, u(x)), x ∈ [a, b],

u(a) = ua.

This means that all (reasonable) differential equations can be solved. We also have an algorithm
for the computation of the solutions. Some of these functions are so important that we give them
names. For example,

u′(x) = u(x), x ≥ 0,

u(0) = 1,

the solution is called u(x) = exp(x); and

u′′(x) + u(x) = 0, x ≥ 0,

u(0) = u0, u′(0) = u1,

the solution is u(x) = u0 cos(x) + u1 sin(x).
Sometimes we can express the solution of other initial-value problems as a combination of our

elementary functions: polynomials, log, exp, cos, sin. We can only do this in some simple cases,
in general we have to solve differential equations approximately on the computer.

We will obtain analytical solution formulas in the following four cases:

(1) linear equation of first order (with constant or variable coefficient);
(2) linear equation of second order with constant coefficients;
(3) systems of linear equations with constant coefficients (in ALA-C);
(4) separable nonlinear equation.

Note that cases 1, 2, 4 are scalar equations (only one equation) while 3 concerns systems of
equations. It is important to recognize these types of equations and to know how to solve them.

1. Linear equations

1.1. Linear equation of first order. A linear equation of first order is of the form:

u′ + a(t)u = f(t).

Here u = u(t) is an unknown function of an independent variable t (we write t instead of x
because the independent variable is often time). The equation is called homogeneous if f(t) ≡ 0
and nonhomogeneous otherwise. The differential operator Lu = u′+a(t)u has constant coefficient
if a(t) = a is constant and it has variable coefficient otherwise. The equation is said to be a linear
equation, because the operator L is a linear operator :

L(αu + βv) = αLu + βLv, (α, β ∈ R, u = u(t), v = v(t))

i.e., it preserves linear combinations of functions. Check this!
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1.2. Constant coefficient, homogeneous equation.

u′(t) + au = 0, t ≥ 0,

u(0) = u0.

We already know that the unique solution is u(t) = u0 exp(−at).

1.3. Variable coefficient, homogeneous equation.

u′(t) + a(t)u = 0, t ≥ 0,

u(0) = u0.

Guess: u(t) = u0 exp(b(t)) where b is unknown. The initial condition gives:

u0 = u(0) = u0 exp(b(0)) =⇒ b(0) = 0.

The differential equation gives:

−a(t)u(t) = u′(t) = u0 exp(b(t))b′(t) = u(t)b′(t)

so that b′ = −a. Therefore b is given by

b′(t) = −a(t), t ≥ 0,

b(0) = 0.

Fundamental theorem:

b(t) = b(0)−
∫ t

0

a(s) ds = −A(t), A(t) =
∫ t

0

a(s) ds.

Thus:

u(t) = u0 exp(−A(t)), A(t) =
∫ t

0

a(s) ds.

1.4. Constant coefficient, inhomogeneous equation.

u′(t) + au = f(t), t ≥ 0,

u(0) = u0.

Multiply by the integrating factor eat:

eatu′(t) + eatau(t) = eatf(t).

The left-hand side is an exact derivative:
d

dt
(eatu(t)) = eatu′(t) + eatau(t) = eatf(t),

so we can integrate: ∫ T

0

d

dt
(eatu(t)) dt =

∫ T

0

eatf(t) dt

eaT u(T )− ea0u(0) =
∫ T

0

eatf(t) dt

eaT u(T ) = u0 +
∫ T

0

eatf(t) dt

u(T ) = e−aT u0 +
∫ T

0

e−a(T−t)f(t) dt

Finally replace t→ s, T → t:

u(t) = e−atu0 +
∫ t

0

e−a(t−s)f(s) ds(1)
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1.5. Variable coefficient, inhomogeneous equation.

u′(t) + a(t)u = f(t), t ≥ 0,

u(0) = u0.

Multiply by the integrating factor eA(t) with the primitive function A(t) =
∫ t

0
a(s) ds:

eA(t)u′(t) + eA(t)a(t)u(t) = eA(t)f(t).

The left-hand side is an exact derivative because DeA(t) = eA(t)A′(t) = eA(t)a(t):

d

dt
(eA(t)u(t)) = eA(t)u′(t) + eA(t)a(t)u(t) = eA(t)f(t),

so we can integrate: ∫ T

0

d

dt
(eA(t)u(t)) dt =

∫ T

0

eA(t)f(t) dt

eA(T )u(T )− eA(0)u(0) =
∫ T

0

eA(t)f(t) dt

eA(T )u(T ) = u0 +
∫ T

0

eA(t)f(t) dt

u(T ) = e−A(T )u0 +
∫ T

0

e−A(T )+A(t)f(t) dt

Finally: replace t→ s, T → t

u(t) = e−A(t)u0 +
∫ t

0

e−A(t)+A(s)f(s) ds

Summary. The linear equation of first order is solved by the method of integrating factor:
multiply by the integrating factor eA(t) with A(t) =

∫ t

0
a(s) ds, and integrate.

1.6. Linear differential equation—second order—constant coefficients.

(2) u′′ + a1u
′ + a0u = f(t).

The equation is called homogeneous if f(t) ≡ 0 and nonhomogeneous otherwise. We assume that
the differential operator Lu = u′′ + a1u

′ + a0u has constant coefficients a1 and a0. Check that the
operator L is linear!

Variable coefficients: Linear differential equations of second order with variable coefficients
u′′+a1(t)u′+a0(t)u = f(t), cannot be solved analytically, except in some special cases. One such
case can be found in AMBS Ch 35.6. We do not discuss this here.

Homogeneous equation. See AMBS Ch 35.3–35.4. The homogeneous equation (2) may be
written

(3) D2u + a1Du + a0u = 0,

or
P (D)u = 0,

where
P (r) = r2 + a1r + a0

is the characteristic polynomial of the equation. The characteristic equation P (r) = 0 has two
roots r1 and r2. Hence P (r) = (r− r1)(r− r2). All solutions of equation (2) are obtained as linear
combinations

(4)
u(t) = c1e

r1t + c2e
r2t, if r1 6= r2,

u(t) = (c1 + c2t)er1t, if r1 = r2,
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where c2, c2 are arbitrary coefficients. The coefficients may be determined from an initial condition
of the form

u(0) = u0, u′(0) = u1.

The formula (4) is called the general solution of homogeneous linear equation (3).

Proof. We write the equation as

P (D)u = (D − r1)(D − r2)u = 0

and solve two first order equations (D − r1)v = 0 and (D − r2)u = v. First we get

(D − r1)v = 0 =⇒ v(t) = Aer1t, A = v(0).

Then the other equation

(D − r2)u(t) = v(t) = Aer1t

is solved by multiplying by integrating factor e−r2t, see (1),

u(t) = Ber2t + er2t

∫ t

0

e−r2sv(s) ds
{

B = u(0)
}

= Ber2t + Aer2t

∫ t

0

e(r1−r2)s) ds

= Ber2t +

A
er1t − er2t

r1 − r2
, r1 6= r2

Ater2t, r1 = r2

=

{
c1er1t + c1er1t, r1 6= r2,

(c1 + c2t)er1t, r1 = r2.

�

Example 1. We solve

u′′ + u′ − 12u = 0; u(0) = u0, u′(0) = u1.

The equation is written (D2 − D − 12)u = 0 and the characteristic equation is r2 + r − 12 = 0
with roots r1 = 3, r2 = −4. The general solution is

u(t) = c1e
3t + c2e

−4t

with the derivative

u′(t) = 3c1e
3t − 4c2e

−4t.

The initial condition gives

u0 = u(0) = c1 + c2

u1 = u′(0) = 3c1 − 4c2

which implies c1 = (4u0 + u1)/7, c2 = (3u0 − u1)/7. The solution is

u(t) =
4u0 + u1

7
e3t +

3u0 − u1

7
e−4t.
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Complex roots. If the characteristic polynomial P (r) has real coefficients, then its roots are
either real numbers or a pair of conjugate complex numbers, see AMBS Ch 22.11. In the latter
case we have r1 = α + iω and r2 = α − iω and the solution (4) becomes (see AMBS Ch 33.2 for
the definition of exp(z) with a complex variable z)

u(t) = c1e
(α+iω)t + c2e

(α−iω)t

= eαt
(
c1e

iωt + c2e
−iωt

)
= eαt

(
c1

(
cos(ωt) + i sin(ωt)

)
+ c2

(
cos(ωt)− i sin(ωt)

))
= eαt

(
d1 cos(ωt) + d2 sin(ωt)

)
,

with d1 = c1 + c2, d2 = i(c1 − c2).

Nonhomogeneous equation. See AMBS Ch 35.5. The solution of the nonhomogeneous equation
P (D)u = f(t) is given by

(5) u(t) = uh(t) + up(t),

where uh is the general solution (4) of the corresponding homogeneous equation, i.e., P (D)uh = 0,
and up is a particular solution of the nonhomogeneous equation, i.e., P (D)up = f(t).

Proof: If u is given by (5), then Lu = L(uh +up) = Luh +Lup = 0+f = f , so that u solves the
nonhomogeneous equation. On the other hand: if up is a particular solution and u is any other
solution of the nonhomogeneous equation, then L(u − up) = Lu − Lup = f − f = 0, i.e., u − up

solves the homogeneous equation. Thus u− up = uh, which is (5).
A particular solution can sometimes be found by guess-work: we make an Ansatz for up of the

same form as f .

Example 2. u′′ − u′ − 2u = t. Here f(t) = t is a polynomial of degree 1 and we make the
Ansatz up(t) = At + B, i.e., a polynomial of degree 1. Substitution into the equation gives
−A − 2(At + B) = t. Identification of coefficients gives A = − 1

2 , B = 1
4 , so that up(t) = 1

4 −
1
2 t.

The general solution of the homogeneous equation is uh(t) = c1e
−t + c2e

2t. Hence we get

u(t) = uh(t) + up(t) = c1e
−t + c2e

2t +
1
4
− 1

2
t.

Re-writing as a system of first order equations. By setting w1 = u, w2 = u′, w =
[
w1

w2

]
, we

can re-write (2) as a system of first order equations

w′(t) = Aw(t) + F (t); w(0) = w0,

where

w0 =
[
u0

u1

]
, A =

[
0 1
−a0 −a1

]
, F (t) =

[
0

f(t)

]
.

To see this we compute

w′ =
[
u′

u′′

]
=

[
u′

−a0u− a1u
′ + f(t)

]
=

[
w2

−a0w1 − a1w2 + f(t)

]
=

[
0 1
−a0 −a1

] [
w1

w2

]
+

[
0

f(t)

]
.

It is necessary to do this re-writing before we can use our Matlab programs to solve (2).

2.3 System of linear differential equations of first order.

Constant coefficients—homogeneous equations. We finally mention

(6)
u′ + Au = 0, t > 0,

u(0) = u0,

where u(t), u0 ∈ Rd, and A ∈ Rd×d is a constant matrix of coefficients. This kind of system will
studied by means of eigenvalues and eigenvectors in the following course ALA-C.
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2. Nonlinear equation

The only kind of nonlinear equation that we solve analytically is the so-called separable equation.

2.1. Separable equation. A nonlinear differential equation

u′(x) = f(x, u(x))

is called separable if f(x, u) = h(x)k(u). It is called autonomous if f(x, u) = k(u). Of course, an
autonomous equation is separable. Separable equations can sometimes be solved by integration.
Let us write it in the form:

u′(x) =
h(x)

g(u(x))
, x ∈ [a, b],

{
it is convenient to write k(u) =

1
g(u)

}
u(a) = ua.

We separate the variables:

g(u(x))u′(x) = h(x).

We now assume that we can find primitive functions G and H for g and h. Then the left-hand
side is an exact derivative:

d

dx
G(u(x)) = g(u(x))u′(x) = h(x) =

d

dx
H(x)

and we can integrate: [
G(u(x))

]y

x=a
=

[
H(x)

]y

x=a

G(u(y))−G(ua) = H(y)−H(a)

G(u(x)) = G(ua) + H(x)−H(a).

We then solve for u(x) if we can. This means that we must find an inverse function to G, i.e.,
u(x) = G−1(G(ua) + H(x)−H(a)).

This calculation is easier to remember if we write it as follows:

g(u)
du

dx
= h(x)

g(u) du = h(x) dx∫ u(y)

u=ua

g(u) du =
∫ y

x=a

h(x) dx[
G(u)

]u(y)

u=ua

=
[
H(x)

]y

x=a

G(u(y))−G(ua) = H(y)−H(a)

G(u(x)) = G(ua) + H(x)−H(a).

This only works in simple cases. What can go wrong? We cannot find primitive functions for g
and h, or we cannot solve for u(x) in the last step.

Example.

u′(x) = u(x)

u(0) = u0

The equation is separable: ∫ u(y)

u0

du

u
=

∫ y

0

dx

log
(∣∣∣u(y)

u0

∣∣∣) = y
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We can solve for u(y) by taking the exponential:∣∣∣u(y)
u0

∣∣∣ = exp(y)

|u(y)| = |u0| exp(y)

u(y) = ±u0 exp(y) = u0 exp(y)
{

must be + by taking y = 0
}

Example.

u′(t) = ku3(t), t > 0,

u(0) = u0

The equation is separable:

1
u3

du

dt
= k∫ u(T )

u0

du

u3
=

∫ T

0

k dt[u−2

−2

]u(T )

u0

= kT

1
u(T )2

=
1
u2

0

− 2kT

We can easily solve for u(T ):

u(T ) = ±

√
u2

0

1− 2kTu2
0

= ± u0√
1− 2kTu2

0

=
u0√

1− 2kTu2
0

, T <
1

2ku2
0

,

where we decided about the plus sign by taking T = 0. Therefore:

u(t) =
u0√

1− 2kTu2
0

, for 0 ≤ t <
1

2ku2
0

.

Example. The logistic equation. We know that u′ = ku (k > 0) leads to exponential growth:
u(t) = u0ekt. In real-world problems the exponential growth is usually broken when u becomes
large. One simple way of modelling this is to replace the rate ku by ku(1− u/M) for some large
number M . This means that the rate is ≈ ku when u is small but the rate is ≈ 0 when u approaches
M . We thus consider

u′ = ku(1− u/M), t > 0,

u(0) = u0

The equation is separable:

1
u(1− u/M)

du

dt
= k∫ u(T )

u0

du

u(1− u/M)
= k

∫ T

0

k dt

Partial fractions:

1
u(1− u/M)

=
M

u(M − u)
=

1
u
− 1

u−M
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Now we can integrate: ∫ u(T )

u0

( 1
u
− 1

u−M

)
du = kT[

log(|u|)− log(|u−M |)
]u(T )

u0

= kT

log
(∣∣∣ u(T )

M − u(T )
M − u0

u0

∣∣∣) = kT∣∣∣ u(T )
M − u(T )

M − u0

u0

∣∣∣ = ekT

∣∣∣ u(T )
M − u(T )

∣∣∣ =
∣∣∣ u0

M − u0

∣∣∣ekT

u(T )
M − u(T )

= ± u0

M − u0
ekT

u(T )
M − u(T )

=
u0

M − u0
ekT

where we decided about the plus sign by taking T = 0. We solve for u(t):

u(t) =
Mu0

u0 + (M − u0)e−kt

Notice that e−kt → 0 as t→∞ so that

u(t)→ Mu0

u0 + 0
= M as t→∞

/stig


