
TMV035 Analysis and Linear Algebra B, 2005

LECTURE 5.1

In this lecture we present the vector space Rn, Gauss elimination method. This covers AMBS
Ch 42.3–6, 42.13.

1. The vector space Rn

Linear combination. Rn is the set of all column vectors of n elements, where each element is a
real number:

x =


x1

x2

...
xn

 , x1, x2, . . . , xn ∈ R.

The algebraic operations addition and multiplication by a scalar are defined elementwise:

x + y =

x1

...
xn

 +

y1

...
yn

 =

x1 + y1

...
xn + yn

 , αx = α

x1

...
xn

 =

αx1

...
αxn

 , α ∈ R.

By combining these operations we can form linear combinations of column vectors:

αx + βy =

αx1 + βy1

...
αxn + βyn

 , α, β ∈ R.

This is an important way of creating new column vectors. Of course, we can form linear combi-
nations of more than two column vectors:

α1x1 + α2x2 + · · ·+ αmxm.

The numbers αj are called coefficients.
The zero column vector is

0 =

0
...
0

 .

It satisfies

x + 0 = x.

It is easy to check that all the familiar rules of algebra apply: the commutative and associative
laws of addition, and the distributive law.

Notice that if x, y belong to Rn then any linear combination of them, αx + βy, also belongs to
Rn. A set with this property, that it preserves linear combinations, or linear combinations remain
inside the set, is called a vector space or linear space (“vektorrum, linjärt rum”). Elements of such
a set are called vectors. So Rn is a linear space and column vectors are a special kind of vectors.

The set of all row vectors of n real numbers:

x =
[
x1, . . . , xn

]
is also denoted Rn, and it is also a linear space with addition and multiplication by a scalar defined
elementwise. We usually work with column vectors.

We will meet other examples of vector spaces and vectors later, i.e., vectors which are not
column or row vectors.
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2 LECTURE 5.1

Let a1, . . . , aj ∈ Rn be j vectors. The set of all linear combinations of the given vectors:

S(a1, . . . , aj) = {x = α1a1 + · · ·+ αjaj : α1, . . . , αj ∈ R}

is called the space spanned by, or the space generated by, or simply the span of the given vectors.
(“Rummet som genereras av de givna vektorerna.”) This is also a vector space.

Theorem. The set S(a1, . . . , aj) is a linear space.

Proof. We must show that all linear combinations of elements of S(a1, . . . , aj) remain inside
S(a1, . . . , aj). Let

x = α1a1 + · · ·+ αjaj , y = β1a1 + · · ·+ βjaj

be two elements of S(a1, . . . , aj). Form a linear combination of them:

αx + βy = α(α1a1 + · · ·+ αjaj) + β(β1a1 + · · ·+ βjaj)

= (αα1a1 + · · ·+ ααjaj) + (β1βa1 + · · ·+ βjβaj)

= (αα1 + ββ1)a1 + · · ·+ (ααj + ββj)aj .

We see that αx + βy is also a linear combination of a1, . . . , aj , in other words αx + βy belongs to
S(a1, . . . , aj). �

Note in particular that the zero vector belongs to S(a1, . . . , aj). Proof: Take all coefficients
α1 = · · · = αj = 0. Then 0 = 0a1 + · · · + 0aj ∈ S(a1, . . . , aj). Important: here the zero on the
left-hand side is the zero vector, while the zeros on the right-hand side are the number zero:0

...
0

 = 0

a11

...
an1

 + · · ·+ 0

a1j

...
anj

 .

Since the vector space S(a1, . . . , aj) is a subset of the vector space Rn, S(a1, . . . , aj) ⊂ Rn, we
say that S(a1, . . . , aj) is a subspace of Rn (“underrum”). We will often work with this kind of
supspace.

Note: in mathematics the word “space” means “a set with some extra structure”. So linear
space (vector space) is a set where you can form linear combinations.

1.1. Scalar product. We define the scalar product or innner product of two column vectors
(“skalärprodukt”):

(x, y) =
n∑

j=1

xjyj

The scalar product is also denoted by x · y. Note that it can also be computed as:

(x, y) = yT x =
[
y1, . . . , yn

] x1

...
xn


In Matlab:
>> y’*x

We also define the length or norm of a vector:

‖x‖ =
√

(x, x) =

√√√√ n∑
j=1

x2
j

In Matlab: norm(x). Note that this is not the same as abs(x), which is max |xj |.
The scalar product has the following properties.
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Theorem. If x, y, z ∈ Rn and α ∈ R then

(x, x)

{
= 0, if x = 0,
> 0, if x 6= 0,

{
positive definite

}
(1)

(x, y) = (y, x)
{
symmetric

}
(2)

(x + y, z) = (x, z) + (y, z)
{
linear

}
(3)

(αx, y) = α(x, y)
{
linear

}
(4)

Prove them by direct calculation! The next theorem gives a bound for the absolute value of
the scalar product.

Theorem. (Cauchy’s inequality) If x, y ∈ Rn then

|(x, y)| ≤ ‖x‖‖y‖

Proof. If one of the x, y is the zero vector then both sides of the inequality are equal to zero (the
number zero), so the inequality is true that case. We then assume that one of them is not the zero
vector, for example, y 6= 0. Then, for any α ∈ R, we calculate using the properties (2), (3), (4),

0 ≤ ‖x + αy‖2 = (x + αy, x + αy) = (x, x) + 2α(x, y) + α2(y, y) = ‖x‖2 + 2α(x, y) + α2‖y‖2.

Since y 6= 0 implies ‖y‖2 = (y, y) 6= 0, see (1), we may choose

α = − (x, y)
‖y‖2

to get

0 ≤ ‖x‖2 − 2
(x, y)2

‖y‖2
+

(x, y)2

‖y‖4
‖y‖2 = ‖x‖2 − (x, y)2

‖y‖2

or

(x, y)2 ≤ ‖x‖2‖y‖2

This implies |(x, y)| ≤ ‖x‖‖y‖. �

The norm has the following properties.

Theorem.

‖x‖

{
= 0, if x = 0,

> 0, if x 6= 0,
(5)

‖αx‖ = |α|‖x‖(6)

‖x + y‖ ≤ ‖x‖ + ‖y‖
{
triangle inequality

}
(7)

Proof. The first statement (5) is the same as (1). To prove the other two we compute with the
square of the norm:

‖αx‖2 = (αx, αx) = α2(x, x) = α2‖x‖2

‖x + y‖2 = (x + y, x + y) = ‖x‖2 + 2(x, y) + ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2 =
(
‖x‖ + ‖y‖

)2

In the last one we used Cauchy’s inequality. �

From Cauchy’s inequality it follows that

−1 ≤ (x, y)
‖x‖‖y‖

≤ 1

so we can define the angle θ between x and y by the equation:

cos(θ) =
(x, y)
‖x‖‖y‖
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The most important case is when θ = π/2. We say that the vectors x, y are orthogonal (“ortogo-
nala, vinkelräta”) if

(x, y) = 0

2. The Gauss elimination method

We shall solve a linear system of m equations in n unknowns:
a11x1 + · · ·+ a1nxn = b1

...
am1x1 + · · ·+ amnxn = bm

We will use the Gauss elimination method, which is a systematic way of eliminating one variable
after the other. We explain it by example.

Example. 
x1 +2x2 +3x3 +4x4 =1

4x1 +3x2 +2x3 +x4 =1
−10x1 −5x2 +5x4 =− 1

We begin by eliminating x1 from equations 2 and 3. This is achieved by multiplying equation 1
by −4 and adding it to equation 2. Similarly, we multiply equation 1 by 10 and add it to equation
3. 

x1 +2x2 +3x3 +4x4 =1

4x1 +3x2 +2x3 +x4 =1
−10x1 −5x2 +5x4 =− 1

−4 10
↙

↙
This results in 

x1 +2x2 +3x3 +4x4 =1

−5x2 −10x3 −15x4 =− 3

15x2 +30x3 +45x4 =9

− 1
5

1
15

Next we clean up by multiplying equation 2 by − 1
5 and equation 3 by 1

15 . This results in
x1 +2x2 +3x3 +4x4 =1

x2 +2x3 +3x4 = 3
5

x2 +2x3 +3x4 = 3
5

−1
↙

Finally, we eliminate x2 from equation 3 by multiplying equation 2 by −1 and adding it to equation
3: 

x1 +2x2 +3x3 +4x4 =1

x2 +2x3 +3x4 = 3
5

0 =0

We now have {
x1 +2x2 +3x3 +4x4 =1

x2 +2x3 +3x4 = 3
5

The boxed terms in the equations are called pivots. This system has the same solutions as the
original one. We can easily solve it as follows. The variable associated with pivots, here x1 and
x2 are called bound variables (“bundna variabler”). The other variables, here x3, x4 are called free
variables. They can be chosen arbitrarily:

x3 = s, x4 = t
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where s, t are arbitrary numbers. We then solve for x2 from equation 2:

x2 = 3
5 − 2x3 − 3x4 = 3

5 − 2s− 3t

and then x1 is given by equation 1:

x1 = 1− 2x2 − 3x3 − 4x4 = − 1
5 + s + 2t

We conclude

x1 = s + 2t− 1
5

x2 = −2s− 3t + 3
5

x3 = s

x4 = t

where s, t are arbitrary numbers.

Example. The previous calculations are easier to do if we use matrix notation. The system of
equations can be written:  1 2 3 4

4 3 2 1
−10 −5 0 1




x1

x2

x3

x4

 =

 1
1
−1


It is of the form

Ax = b, with A =

 1 2 3 4
4 3 2 1

−10 −5 0 1

 , x =


x1

x2

x3

x4

 , b =

 1
1
−1


The idea is that it is not necessary to keep writing the x’s when we perform the calculations. We
form the extended matrix:

[A|b] =

 1 2 3 4 | 1
4 3 2 1 | 1

−10 −5 0 1 | −1

 −4 10
↙

↙
and perform the eliminations in the form of row operations on this matrix. The first step is to
multiply row 1 by −4 and add it to row 2. Then we multiply row 1 by 10 and add it to row 3.
The result is:  1 2 3 4 | 1

0 −5 −10 −15 | −3
0 15 30 45 | 9

 − 1
5

1
15

We then multiply rows 2 and 3 by − 1
5 and 1

15 . The result is 1 2 3 4 | 1
0 1 2 3 | −3

5
0 1 2 3 | −3

5


Next we multiply row 2 by −1 and add it to row 3: 1 2 3 4 | 1

0 1 2 3 | −3
5

0 1 2 3 | −3
5

 −1
↙

The result is

[Â|b̂] =

 1 2 3 4 | 1
0 1 2 3 | −3

5
0 0 0 0 | 0


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We have now finished the elimination process. The matrix is an echelon matrix (“trappstegsma-
tris”). The boxed matrix elements are called pivot elements (“piv̊a-element”). The system Â = b̂
has the same solutions as the original system Ax = b. It is easily solved if we write it out:{

x1 +2x2 +3x3 +4x4 =1

x2 +2x3 +3x4 = 3
5

and calculate as before. The result is

x =


s + 2t− 1

5
−2s− 3t + 3

5
s
t

 = s


1
−2
1
0

 + t


2
−3
0
1

 +


− 1

5
3
5
0
0


There are infinitely many solutions: for each s, t we get a solution. The solutions linear combina-
tions of the three vectors:

v1 =


1
−2
1
0

 , v2 =


2
−3
0
1

 , v3 =


− 1

5
3
5
0
0


Note the structure of the echelon matrix: there are zeros below the pivot elements. In each

step of the algorithm we use a pivot element in order to obtain zeros below it. Therefore the pivot
elements must not be zero. It is always possible to make the pivots =1 as in the example, but this
is not necessary. It is possible to make the elements above the pivots =0. We show this now: 1 2 3 4 | 1

0 1 2 3 | − 3
5

0 0 0 0 | 0

 ↖
−2

The result is:  1 0 −1 −2 | −1
5

0 1 2 3 | −3
5

0 0 0 0 | 0


An echelon matrix with zeros also above the pivots and with the pivots =1 is said to have row
reduced echelon form (“radreducerad trappstegsform”).

In Matlab we have the function rref(). So the previous calculation can done as follows.

>> A=[1 2 3 4; 4 3 2 1; -10 -5 0 1]
>> b=[1; 1; -1]
>> AA = rref([A b])

Note the the extended matrix [A b].

Example. We solve Ax = c with the same matrix A and

c =

1
1
1


If we apply Gaussian elimination (in Matlab: rref([A c])) we get the row reduced echelon
matrix:

[Â|ĉ] =

 1 0 −1 −2 | 0
0 1 2 3 | 0
0 0 0 0 | 1


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and the system Âx = ĉ: 
x1 −x3 −2x4 =0

x2 +2x3 +3x4 =0

0 =1

Clearly, this has no solution, and hence the original system has no solution either.

Example. We can solve the previous systems Ax = b and Ax = c at the same time if we form the
extended matrix [A|b c] and use Gauss elimation (in Matlab: rref([A b c])) to get

[Â|b̂ ĉ] =

 1 0 −1 −2 | − 1
5 0

0 1 2 3 | 3
5 0

0 0 0 0 | 0 1


Example.

A =

 2 2 4 4
6 6 4 4
1 2 0 1

 −3 −2
↙

↙
Here we use the first pivot element 2 to get zeros below it: 2 2 4 4

0 0 −8 −8
0 1 −2 −1


Now we must interchange the two last rows in order to get a non-zero pivot in the right place: 2 2 4 4

0 1 −2 −1
0 0 −8 −8


This matrix is in echelon form with the pivots marked with boxes. If we want the row reduced
echelon form we have to continue with a few more row operations. The result is 1 0 0 −1

0 1 0 1
0 0 1 1


Summary of Gauss elimination. In Gauss elimination we perform three kinds of row opera-
tions:

• interchange two rows;
• multiply a row by a number;
• add a multiple of one row to another row.

By these operations we can obtain an echelon matrix. The corresponding system has the same
solutions as the original system. The echelon system can be solved easily.

Problems

Problem 1. Let

x =


1
1
1
1

 , y =


1
2
1
2


(a) Compute ‖x‖, ‖y‖, (x, y). (b) Determine a number t so that z = x + ty is orthogonal to x.

Problem 2. Compute the angle between


−2
5
4
6

 and


1
2
−4
2


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Problem 3. Prove Pythagoras’ theorem: if x, y are orthogonal then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

Problem 4. Solve the following systems of equations.

(a)


x1 − 8x2 = 3
2x1 + x2 = 1
4x1 + 7x2 = −4

(b)


3x1 − 4x2 + 5x3 = 0
7x1 − 2x2 − x3 = 0
2x1 + x2 − 3x3 = 0

(c)


2x1 + 3x2 − x3 − x4 = 0
x1 − x2 − 2x3 − 4x4 = 0
3x1 + x2 + 3x3 − 2x4 = 0

(d)


x1 − 2x2 + 4x3 + x4 = 1
2x1 + x2 + 3x3 − 2x4 = 2
x1 + 8x2 − 6x3 − 7x4 = 1

Answers

1.
(a) ‖x‖ = 2, ‖y‖ =

√
10, (x, y) = 6.

(b) t = −3
2. arccos(4/45)
4.
(a) no solution.

(b) x = t


5
−3
−2
3

 (c) x = t

 7
19
11

 (d) x = s


−2
1
1
0

 + t


3
4
0
5

 +


1
0
0
0


/stig


