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1 Maxwell’s equations

∇× E = −jωµH (1)

∇× H = jωεE + J (2)

∇ · (εE) = ρ (3)

∇ · (µH) = 0 (4)

∇ · J = −jωρ (5)

Only three of the equations are needed, (1), (2) and (3) or (1), (2) and (5). Combining (1) and
(2) gives the wave equation

∇× (µ−1∇× E) − ω2εE = −jωJ (6)

for E and similarly for H.
E,J ∈ H(curl; Ω) corresponds to finite energy solutions, where

H(curl; Ω) = {u ∈ [L2(Ω)]3 : ∇× u ∈ [L2(Ω)]3} (7)

in three dimensions. The norm associated with H(curl; Ω) is defined as

||v||H(curl;Ω) = (||v||[L2(Ω)]3 + ||∇ × v||[L2(Ω)]3)
1/2 (8)

Some other vector spaces used:

H1(Ω) = {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]3} (9)

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω} (10)

H0(curl; Ω) = {v ∈ H(curl; Ω) : ν × v = 0} (11)

H(div; Ω, ε) = {v ∈ [L2(Ω)]3 : ∇ · (εv) ∈ L2(Ω)} (12)

H0(div; Ω, ε) = {v ∈ [L2(Ω)]3 : ∇ · (εv) = 0} (13)

V = H0(curl; Ω) ∩ H(div; Ω, ε) (14)

where ν is the outward normal to Ω.

2 Problems when using nodal elements

When using nodal elements spurious solutions can occur and we can also get convergence to
solutions of a problem different from our original problem. As an example we look at a simple
cavity eigenvalue problem with perfectly conducting walls

∇× (µ−1∇× E) = ω2εE in Ω (15)

∇ · (εE) = 0 in Ω (16)

ν × E = 0 on ∂Ω (17)
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The weak form of this eigenvalue problem is to find ω ∈ R, E ∈ H0(curl; Ω) ∩ H0(div; Ω, ε),
E 6= 0 such that

(µ−1∇× E,∇× v) = ω2(εE,v) ∀v ∈ H0(curl; Ω) ∩ H0(div; Ω, ε). (18)

We see that ω2 = 0 is not an eigenvalue to (18) since that would imply E = 0. This means that
we cannot have a physical mode with non-zero energy and ω = 0, the only physical modes are the
ones with ω > 0. For this case, (15) implies (16) and we can write the problem on weak form as
Find ω ∈ R, E ∈ H0(curl; Ω), E 6= 0 s.t.

(µ−1∇× E,∇× v) = ω2(εE,v) ∀v ∈ H0(curl; Ω). (19)

This adds an infinite-dimensional space of non-physical eigensolutions that coincides with
∇H1

0 (Ω) with zero eigenvalues. It is important to recognize these non-physical solutions so that
they can be discarded.

When using FE we seek solutions in a finite-dimensional subspace Vh of H0(curl; Ω):
Find ωh ∈ R, Eh ∈ Vh, Eh 6= 0 s.t.

(µ−1∇× Eh,∇× v) = ωh(εEh,v) ∀v ∈ Vh. (20)

For nodal elements the approximation space is Vh = [Pk]3 ∩ H0(curl; Ω). When using nodal
based FE on an unstructured grid, we obtain many spurious eigenvalues approaching zero and it
can be hard to recognize these so that they can be discarded. For certain structured grids, the zero
eigenvalues can be well approximated but other spurious solutions appear in the spectrum. Since
these spurious eigenvalues can be distributed all over the spectrum, they are hard to distinguish
from the physical eigenvalues. For non-convex domains, it has been proved that the discrete
eigenvalues computed using nodal elements converge to the eigenvalues of a problem different
than the original problem.

One possible explanation for the failure of nodal based FE in the case of non-convex domains
in two dimensions is that the nodal elements are constrained in [H1(Ω)]2, which is a proper and
closed subset of V . This means that there are eigenfunctions in V that cannot be approximated
by nodal elements in [H1(Ω)]2.

Another important drawback of nodal-based FE when solving Maxwell’s equations is the in-
ability to model field singularities at conducting corners and tips. The boundary condition for the
electric field at a conducting surface is ν × E = 0, but enforcing this boundary condition at each
node also enforces normal continuity, which is not desired.

3 Nedelec’s edge elements

We start by introducing a subspace Sk of homogeneous vector polynomials of degree k in d di-
mensions by

Sk = {p ∈ [P̃k]d : x · p = 0}, (21)

where P̃k is the space of homogeneous polynomials of order k. We can now introduce the space
Rk which is needed for Nedelec’s vector elements,

Rk = [Pk−1]
d ⊕ Sk. (22)

The dimension of the space Rk in three dimensions is dim(Rk) = 1
2 (k + 3)(k + 2)k, so for k = 1

we have dim(R1) = 6.
In two dimensions, a polynomial p ∈ R1 has dimension 3 and can be represented as

p = (c1 + c2y, c3 − c2x). (23)

For k = 1, the local degrees of freedom in two dimensions are given by

Ni(p) =

∫

ei

p · τ ids, (24)
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where τ i is the tangential unit vector of edge ei.
The local shape functions can be expressed in terms of barycentric coordinates. In two dimen-

sions we can define the local shape function θ1 associated with edge 1 oriented from node 1 to
node 2 as

θ1 = λ1∇λ2 − λ2∇λ1, (25)

where the barycentric coordinates for node 1 and 2 can be written as λ1 = a1 + b1x + c1y and
λ2 = a2 + b2x + c2y respectively, where ai and bi depend on the nodal coordinates of the triangle.
Now

θ1 = λ1∇λ2 − λ2∇λ1 = (a1 + b1x + c1y)(b2, c2) − (a2 + b2x + c2y)(b1, c1)

= (d1 + d2y, d3 − d2x) ∈ R1.
(26)

The local shape functions for triangular elements in two dimensions are shown in Fig. 1.

Figure 1: The local shape functions for k = 1 in two dimensions on a triangle.

3.1 Affine maps

When transforming to and from the reference element we need to transform in a special way since
we are working in H(curl; K̂) with vectors in Rk. For the affine map FK x̂ = BK x̂ + bK and
û ∈ Rk, the transformation is given by

u ◦ FK = (BT
K)−1û (27)

and the curl transforms as

∇× u =
1

det(BK)
BK∇̂ × û. (28)

Lemma 1. The space Rk is invariant under the transformation (27)

Proof. Since for û ∈ Rk we can write û = p̂1 + p̂2, where p̂1 ∈ [Pk−1]
3 and p̂2 ∈ Sk. Now,

u(x) = [(BT
K)−1p̂1 + (BT

K)−1p̂2](F
−1
K (x))

= [(BT
K)−1p̂1](F

−1
K (x)) + (BT

K)−1p̂2(B
−1
K x − B−1

K bK).
(29)
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Since p̂2 ∈ [P̃k]3, we have that p̂2(B
−1
K x − B−1

K bK) = p̂2(B
−1
K x) + p̂3(x), where p̂3 ∈ [Pk−1]

3.
This means

u(x) = [(BT
K)−1p̂1(F

−1
K (x)) + p̂3(x)] + (BT

K)−1p̂2(B
−1
K x). (30)

We have that (BT
K)−1p̂1 ◦ F−1

K + p̂3 ∈ [Pk−1]
3 and also that (BT

K)−1p̂2(B
−1
K x) · x = p̂2(B

−1
K x) ·

(B−1
K x) = 0, since p̂2 ∈ Sk. Thus, u ∈ Rk.

Lemma 2. If τh is a regular mesh and s ≥ 0, then we have for v transformed by (27) to give v̂

|v̂|[Hs(K̂)]3 ≤ Ch
s− 1

2

K |v|[Hs(K)]3 (31)

and
|∇̂ × v̂|[Hs(K̂)]3 ≤ Ch

s+ 1
2

K |∇ × v|[Hs(K)]3 . (32)

3.2 Degrees of freedom

For the reference element K̂, which is a tetrahedron defined by the vertices â1, . . . , â4 given by
â1 = (0, 0, 0)T , â2 = (1, 0, 0)T , â3 = (0, 1, 0)T and â4 = (0, 0, 1)T , we define the curl-conforming
finite element (K̂,PK̂ ,NK̂) by

• K̂ is the reference element

• PK̂ = Rk

• Three types of degrees of freedom associated with edges ê of K̂, faces f̂ of K̂ and K̂ itself.
The unit vector along edge ê is denoted τ̂ .

Mê(û) =

{
∫

ê

û · τ̂ q̂dŝ, ∀q̂ ∈ Pk−1(ê)

}

, (33)

Mf̂ (û) =

{

1

area(f̂)

∫

f̂

û · q̂dÂ, ∀q̂ ∈ [Pk−2(f̂)]3 and q̂ · ν̂ = 0

}

, (34)

MK̂(û) =

{
∫

K̂

û · q̂dV̂ , ∀q̂ ∈ [Pk−3(K̂)]3
}

. (35)

The total set of degrees of freedom is then NK̂ = Mê(û) ∪ Mf̂ (û) ∪ MK̂(û).

By using the transformation (27) we can define the finite element (K,PK ,NK) for a general
tetrahedron K as

• K is a tetrahedron

• PK = Rk

• Three types of degrees of freedom associated with edges e of K, faces f of K and K itself.
The unit vector along edge e is denoted τ .

Me(u) =

{
∫

e

u · τ qds, ∀q ∈ Pk−1(e)

}

, (36)

Mf (u) =

{

1

area(f)

∫

f

u · qdA, ∀q = BK q̂, q̂ ∈ [Pk−2(f̂)]3 and q̂ · ν̂ = 0

}

, (37)

MK(u) =

{
∫

K

u · qdV, ∀q mapped by q ◦ FK =
1

det(BK)
BK q̂, q̂ ∈ [Pk−3(K)]3

}

.

(38)

The total set of degrees of freedom for a general tetrahedron is then NK = Me(u)∪Mf (u)∪
MK(u).

Lemma 3. If det(BK) ≥ 0, τ = BK τ̂

|BK τ̂ | and the transformation (27) is used, the degrees of

freedom (36)–(38) on K are identical to those on K̂.
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3.3 Unisolvence

Theorem 1. If u ∈ Rk is such that all degrees of freedom (36)–(38)vanish, then u = 0.

To prove Theorem 1 we need two Lemmas.

Lemma 4. If u ∈ Rk is such that the degrees of freedom (37) vanish on f and the degrees of
freedom (36) vanish on all edges of f , then u × ν = 0 on f .

Lemma 5. If u ∈ Rk is such that ∇× u = 0, then u = ∇p for p ∈ Pk.

Proof of Theorem 1. Since the degrees of freedom on the general tetrahedron and the reference
tetrahedron are identical, we prove the theorem on the reference element. Because of Lemma 4 we
know that û × ν̂ = 0 on ∂K̂. By integration by parts and using that the degrees of freedom (38)
are zero, we have

∫

K̂

∇̂ × û · q̂dV̂ =

∫

K̂

û · ∇̂ × q̂dV̂ = 0, ∀q̂ ∈ [Pk−2]
3. (39)

Using Stokes theorem on each face f̂ of K̂ and that the degrees of freedom (37) are zero, we have
∫

f̂

∇̂f̂ × ûT q̂dÂ =

∫

f̂

ûT ·
~̂
∇f̂ × q̂dÂ = 0, ∀q̂ ∈ Pk−1(f̂), (40)

where ûT = (ν̂ × û) × ν̂ on ∂K̂. The surface vector curl operator
~̂
∇∂f̂× is defined as

~̂
∇f̂ × q =

−ν̂ × ∇̂f̂q. This means that ∇̂f̂ × ûT = (∇̂ × û) · ν̂ = 0 on f̂ and hence on ∂K̂. Because of this

and the fact that ∇̂ × û ∈ [Pk−1]
3, we can write

∇̂ × û = (x̂1Ψ1, x̂2,Ψ2, x̂3Ψ3)
T , (41)

where Ψ = (Ψ1,Ψ2,Ψ3)
T ∈ [Pk−2]

3. Picking q̂ = Ψ in (39) shows that ∇̂ × û = 0 in K̂.
Using Lemma 5 this means that we can write û = ∇̂p̂ for some p̂ ∈ Pk. The fact that û× ν̂ = 0

on ∂K̂ implies that we can take p̂ = 0 on ∂K̂ and write p̂ as

p̂ = x̂1x̂2x̂3r̂, for some r̂ ∈ Pk−3. (42)

The vanishing of the degrees of freedom (38) implies that p̂ = 0 and thus û = 0.

3.4 The interpolant

We can define the global finite element space on a mesh τh as

Vh = {u ∈ H(curl; Ω) : u|K ∈ Rk ∀K ∈ τh}. (43)

The local interpolant rKu ∈ Rk for K ∈ τh is characterized by the vanishing of the degrees of
freedom on u − rKu,

Me(u − rKu) = Mf (u − rKu) = MK(u − rKu) = 0. (44)

The global interpolant is then defined by

rhu|K = rKu, ∀K ∈ τh. (45)

Lemma 6. If ∇ × u ∈ [Lp(K)]3, u ∈ [Lp(K)]3 and u × ν ∈ [Lp(∂K)]3 for p > 2, then rhu is
well-defined and bounded.

Theorem 2. Let τh be a regular mesh on Ω. If u ∈ [Hs(Ω)]3 and ∇ × u ∈ [Hs(Ω)]3 for s ≤ k,
then

||u − rhu||[L2(Ω)]3 + ||∇ × (u − rhu)||[L2(Ω)]3 ≤ Chs(||u||[Hs(Ω)]3 + ||∇ × u||[Hs(Ω)]3). (46)
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The error estimates for the interpolant holds for (u − rhu) and (∇× (u − rhu) separately:

||u − rhu||[L2(Ω)]3 ≤ Chs(||u||[Hs(Ω)]3 + ||∇ × u||[Hs(Ω)]3) (47)

||u − rhu||[L2(Ω)]3 ≤ Chs||u||[Hs(Ω)]3 (for s > 1) (48)

||∇ × (u − rhu)||[L2(Ω)]3 ≤ Chs||∇ × u||[Hs(Ω)]3 . (49)

Theorem 3. Let τh be a regular mesh on Ω. If u ∈ [H
1
2
+δ(K)]3, 0 < δ ≤ 1

2 and ∇×u|K ∈ Dk =

[Pk−1]
3 ⊕ P̃k−1x, then

||u − rhu||[L2(K)]3 ≤ C(h
1
2
+δ

K ||u||[H1/2+δ(K)]3 + hK ||∇ × u||[L2(K)]3). (50)

The error estimates show that the convergence is ||u − rhu||[L2(Ω)]3 = O(hk), according to
the Bramble-Hilbert lemma since [Pk−1]

3 ⊂ Rk, but [Pk]3 6⊂ Rk. For triangular elements in two
dimensions it has been shown that superconvergence is obtained, so that the order of convergence
is similar to nodal based elements, which have O(hk+1) convergence for degree k.

To obtain higher order convergence, a second family of vector elements was introduced by
Nedelec:

• K is a tetrahedron

• PK = [Pk]3

• Three types of degrees of freedom associated with edges e of K, faces f of K and K itself.
The unit vector along edge e is denoted τ .

Me(u) =

{
∫

e

u · τ qds, ∀q ∈ Pk−1(e)

}

, (51)

Mf (u) =

{

1

area(f)

∫

f

uT · qdA, ∀q ∈ Dk−1(f)

}

, (52)

MK(u) =

{
∫

K

u · qdV, ∀q ∈ Dk−1(K)

}

. (53)

The total set of degrees of freedom is then NK = Me(u) ∪ Mf (u) ∪ MK(u).

The dimension of the second family of elements is 1
2 (k + 1)(k + 2)(k + 3).
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