1. Weighted norm error estimates

1.1. Notation. Define a mesh in the interval $I=(0,1)$:

$$
\begin{align*}
& 0=x_{0}<x_{1}<\cdots<x_{j-1}<x_{j}<\cdots<x_{n}=1, \\
& h_{j}=x_{j}-x_{j-1}, \quad I_{j}=\left(x_{j-1}, x_{j}\right), \quad j=1, \ldots, n . \tag{1.1}
\end{align*}
$$

We define a piecewise linear mesh size function h by

$$
\begin{equation*}
h\left(x_{j}\right)=h_{j}+h_{j+1}, j=0, \ldots, n, \quad \text { with } h_{0}=h_{1}, h_{n+1}=h_{n} \tag{1.2}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
h(x) \geq h_{j}, \quad x \in I_{j} . \tag{1.3}
\end{equation*}
$$

It is important to know that h is not too large. Then we must put some restriction on the variation of the mesh. We define the piecewise constant mesh size function \bar{h} by

$$
\begin{equation*}
\bar{h}(x)=h_{j}, \quad x \in I_{j}, \tag{1.4}
\end{equation*}
$$

and the mesh ratios

$$
\begin{equation*}
r_{j}=\frac{h_{j+1}}{h_{j}}, \quad j=0, \ldots, n \tag{1.5}
\end{equation*}
$$

We assume that there is $a \geq 1$ such that

$$
\begin{equation*}
r_{j} \in\left[a^{-1}, a\right], \quad j=0, \ldots, n . \tag{1.6}
\end{equation*}
$$

This is a rather weak restriction. Then

$$
\begin{align*}
h(x) & =\left(h_{j}+h_{j+1}\right) \frac{x-x_{j-1}}{h_{j}}+\left(h_{j-1}+h_{j}\right) \frac{x_{j}-x}{h_{j}} \tag{1.7}\\
& =h_{j}\left(\left(1+r_{j}\right) \frac{x-x_{j-1}}{h_{j}}+\left(r_{j-1}^{-1}+1\right) \frac{x_{j}-x}{h_{j}}\right), \quad x \in I_{j},
\end{align*}
$$

and it follows that

$$
\begin{equation*}
\bar{h}(x) \leq h(x) \leq(1+a) \bar{h}(x) \tag{1.8}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
h^{\prime}(x)=r_{j}-r_{j-1}^{-1}, \quad x \in I_{j} \tag{1.9}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\|h^{\prime}\right\|_{L_{\infty}} \leq a-a^{-1} \tag{1.10}
\end{equation*}
$$

1.2. An interpolation error estimate. We introduce the L_{2}-norm and the piecewise L_{2}-norm:

$$
\begin{align*}
& \|v\|=\|v\|_{L_{2}(I)}=\left(\int_{0}^{1} v^{2} d x\right)^{1 / 2} \\
& \|v\|_{P W}=\left(\sum_{j=1}^{n}\|v\|_{L_{2}\left(I_{j}\right)}^{2}\right)^{1 / 2} \tag{1.11}
\end{align*}
$$

We recall the local interpolation error estimate

$$
\begin{equation*}
\left\|\left(v-v_{I}\right)^{\prime}\right\|_{L_{2}\left(I_{j}\right)}^{2} \leq \frac{1}{2} h_{j}^{2}\left\|v^{\prime \prime}\right\|_{L_{2}\left(I_{j}\right)}^{2} \tag{1.12}
\end{equation*}
$$

Toghether with (1.3) this immediately implies the following two estimates in global weighted norms

$$
\begin{align*}
\left\|\left(v-v_{I}\right)^{\prime}\right\| & \leq \frac{1}{\sqrt{2}}\left\|h v^{\prime \prime}\right\|_{P W} \tag{1.13}\\
\left\|h^{-1}\left(v-v_{I}\right)^{\prime}\right\| & \leq \frac{1}{\sqrt{2}}\left\|v^{\prime \prime}\right\|_{P W} \tag{1.14}
\end{align*}
$$

Of course these hold equally well with h replaced by \bar{h}.

1.3. Energy norm error estimate. Let

$$
\begin{equation*}
u \in V ; \quad\left(u^{\prime}, v^{\prime}\right)=(f, v) \quad \forall v \in V \tag{1.15}
\end{equation*}
$$

and with $S \subset V$

$$
\begin{equation*}
u_{S} \in S ; \quad\left(u_{S}^{\prime}, v^{\prime}\right)=(f, v) \quad \forall v \in S \tag{1.16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(u_{S}^{\prime}-u^{\prime}, v^{\prime}\right)=0 \quad \forall v \in S \tag{1.17}
\end{equation*}
$$

and, by (1.13),

$$
\begin{equation*}
\left\|\left(u_{S}-u\right)^{\prime}\right\|=\inf _{v \in S}\left\|(v-u)^{\prime}\right\| \leq\left\|\left(u_{I}-u\right)^{\prime}\right\| \leq \frac{1}{\sqrt{2}}\left\|h u^{\prime \prime}\right\| . \tag{1.18}
\end{equation*}
$$

This also holds with h replaced by \bar{h}.
1.4. L_{2}-norm errror estimate. We argue by duality. Let $e=u_{S}-u$. We use the dual problem

$$
\begin{equation*}
w \in V ; \quad\left(v^{\prime}, w^{\prime}\right)=(v, e) \quad \forall v \in V \tag{1.19}
\end{equation*}
$$

Then, by taking $v=e$ and using (1.17), (1.14) and $w^{\prime \prime}=e$,
(1.20) $\|e\|^{2}=\left(e^{\prime}, w^{\prime}\right)=\left(e^{\prime}, w^{\prime}-w_{I}^{\prime}\right) \leq\left\|h e^{\prime}\right\|\left\|h^{-1}\left(w-w_{I}\right)^{\prime}\right\| \leq\left\|h e^{\prime}\right\| \frac{1}{\sqrt{2}}\left\|w^{\prime \prime}\right\|=\left\|h e^{\prime}\right\| \frac{1}{\sqrt{2}}\|e\|$.

Hence

$$
\begin{equation*}
\|e\| \leq \frac{1}{\sqrt{2}}\left\|h e^{\prime}\right\| . \tag{1.21}
\end{equation*}
$$

If this calculation is done with h replaced by \bar{h} then with (1.18) we obtain the standard (nonweighted) estimate

$$
\begin{equation*}
\left\|u_{S}-u\right\| \leq \frac{1}{2} h_{\max }^{2}\left\|u^{\prime \prime}\right\| \tag{1.22}
\end{equation*}
$$

Note: no restriction on the mesh so far.
We shall prove that

$$
\begin{equation*}
\left\|h e^{\prime}\right\| \leq C\left\|h^{2} u^{\prime \prime}\right\|+\frac{1}{2}\|e\| \tag{1.23}
\end{equation*}
$$

if $\left\|h^{\prime}\right\|_{L_{\infty}}$ is sufficiently small (see (1.10)), and obtain from (1.21) the weighted estimate

$$
\begin{equation*}
\left\|u_{S}-u\right\| \leq C\left\|h^{2} u^{\prime \prime}\right\| \tag{1.24}
\end{equation*}
$$

In view of (1.8) this also holds with h replaced by \bar{h}.
To prove (1.23) we first note that

$$
\begin{equation*}
\left\|h e^{\prime}\right\|^{2}=\left(h e^{\prime}, h e^{\prime}\right)=\left(e^{\prime},\left(h^{2} e\right)^{\prime}\right)-\left(2 h h^{\prime} e^{\prime}, e\right) \tag{1.25}
\end{equation*}
$$

Note: $h \in H^{1}$ but $\bar{h} \notin H^{1}$ so we cannot use \bar{h} here. Assuming

$$
\begin{equation*}
\left\|h^{\prime}\right\|_{L_{\infty}} \leq M \tag{1.26}
\end{equation*}
$$

we get for the last term

$$
\begin{equation*}
\left|\left(2 h h^{\prime} e^{\prime}, e\right)\right| \leq 2 M\left\|h e^{\prime}\right\|\|e\| . \tag{1.27}
\end{equation*}
$$

For the first term on the right side of (1.25) we get with $v=h^{2} e$, by (1.17), (1.14),

$$
\begin{align*}
\left(e^{\prime},\left(h^{2} e\right)^{\prime}\right) & =\left(e^{\prime}, v^{\prime}\right)=\left(e^{\prime}, v^{\prime}-v_{I}^{\prime}\right) \leq\left\|h e^{\prime}\right\|\left\|h^{-1}\left(v-v_{I}\right)^{\prime}\right\| \\
& \leq\left\|h e^{\prime}\right\| \frac{1}{\sqrt{2}}\left\|v^{\prime \prime}\right\|_{P W}=\left\|h e^{\prime}\right\| \frac{1}{\sqrt{2}}\left\|\left(h^{2} e\right)^{\prime \prime}\right\|_{P W} . \tag{1.28}
\end{align*}
$$

On I_{j} we have

$$
\begin{equation*}
\left(h^{2} e\right)^{\prime \prime}=h^{2} e^{\prime \prime}+4 h h^{\prime} e^{\prime}+\left(2\left(h^{\prime}\right)^{2}+2 h h^{\prime \prime}\right) e=h^{2} u^{\prime \prime}+4 h h^{\prime} e^{\prime}+2\left(h^{\prime}\right)^{2} e \tag{1.29}
\end{equation*}
$$

because $e^{\prime \prime}=u^{\prime \prime}$ and $h^{\prime \prime}=0$. Hence

$$
\begin{equation*}
\left\|\left(h^{2} e\right)^{\prime \prime}\right\|_{P W} \leq\left\|h^{2} u^{\prime \prime}\right\|+4 M\left\|h e^{\prime}\right\|+2 M^{2}\|e\| \tag{1.30}
\end{equation*}
$$

Inserting this and (1.27) into (1.25) and dividing by $\left\|h e^{\prime}\right\|$ we get

$$
\begin{equation*}
\left\|h e^{\prime}\right\| \leq \frac{1}{\sqrt{2}}\left\|h^{2} u^{\prime \prime}\right\|+\frac{4}{\sqrt{2}} M\left\|h e^{\prime}\right\|+2\left(\frac{1}{\sqrt{2}} M^{2}+M\right)\|e\| \tag{1.31}
\end{equation*}
$$

which implies (1.23) if M is sufficiently small.

