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Numerical Methods for Stochastic ODEs

Stig Larsson
http://www.math.chalmers.se/~stig

1. Lecture 13

The main textbook is Klebaner [3]. For the computer exercises we refer to Higham [2]. It
is very important to be able to do computer simulations with stochastic ODEs, so I do
recommend that you do some of these computer exercises. In these lectures I will present
the theoretical background. Course homepage: link

1.1. Preparations. Let X be a strong solution of the scalar Itô SDE:

(1)
dX(t) = µ(X(t), t) dt+ σ(X(t), t) dB(t), 0 ≤ t ≤ T,

X(0) = X0.

This means, see Klebaner Definition 5.1, that X solves the integral equation

(2) X(t) = X0 +

∫ t

0
µ(X(s), s) ds+

∫ t

0
σ(X(s), s) dB(s), t ∈ [0, T ].

Here B is Brownian motion and the last term is the Itô integral.
We assume thatX0 is a random variable and the coefficients are deterministic functions,

(3)
µ : R× [0, T ] → R,

σ : R × [0, T ] → R,

that are continuous and satisfy a global Lipschitz condition with respect to x,

(4)
|µ(x, t) − µ(y, t)| ≤ L|x− y|,
|σ(x, t) − σ(y, t)| ≤ L|x− y|, ∀x, y ∈ R, t ∈ [0, T ],

and a linear growth bound,

(5)
|µ(x, t)| ≤ L

(
1 + |x|

)
,

|σ(x, t)| ≤ L
(
1 + |x|

)
,

∀x ∈ R, t ∈ [0, T ].

Remark 1. The Lipschitz condition (4) is called global because it holds for all x, y ∈ R

with the same constant L. Klebaner Theorem 5.7 assumes only a local Lipschitz condition,
where the Lipschitz constant may depend on the size of x, y. We use a global condition in
order to make the presentation simpler. Later on we will also assume a Lipschitz condition
with respect to t, see (22). (There is a mistake in Theorem 5.7: the constants in (5.36)
and (5.37) cannot be the same because the first one depends on N , K = KN , while the
second one is a global constant, independent of N .)

Remark 2. Note that (5) follows from (4) because

(6) |µ(x, t)| ≤ |µ(0, t)| + |µ(x, t) − µ(0, t)| ≤ max
t∈[0,T ]

|µ(0, t)| + L|x− 0| ≤ L̃
(
1 + |x|

)

with a new constant L̃. This is because (4) is global.
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Remark 3. Systems of SDE of the form

(7) dXi = µi(X, t) dt+

m∑

j=1

σij(X, t) dBj(t), i = 1, . . . , n,

can be written in the form (1), and analyzed in the same way, with

µ : Rn × [0, T ] → Rn, σ : Rn × [0, T ] → Rn×m,

and B an m-dimensional Brownian motion.

We quote Theorem 5.7 from Klebaner.

Theorem 1 (Existence and uniqueness). If X0 is independent of (B(t), 0 ≤ t ≤ T ) and
E

(
|X0|2

)
<∞, then (1) has a unique strong solution X and

(8) E
(

sup
0≤t≤T

|X(t)|2
)

≤ C
(
1 + E

(
|X0|2

))
,

where C = C(L, T ).

As a warm-up for the error analysis of numerical metods, we begin by proving a stability
result. We will use this proof technique several times later. The bound (8) is proved in a
similar way.

We need Gronwall’s lemma.

Lemma 1 (Gronwall). Let A,B be constants with B ≥ 0. If

φ(t) ≤ A+B

∫ t

0
φ(s) ds, t ∈ [0, T ],

then
φ(t) ≤ AeBt, t ∈ [0, T ].

Proof. u(t) := A+
∫ t
0 φ(s) ds, φ(t) ≤ u(t), u′ = Bφ ≤ Bu, u(t) ≤ u(0)eBt = AeBt. �

We also need Doob’s Lp martingale inequality, see Klebaner (7.37) p. 201.

Theorem 2 (Doob’s inequality). If Y is a martingale, then

(9) E
(

max
0≤t≤T

|Y (t)|p
)

≤
( p

p− 1

)p
E

(
|Y (T )|p

)
, 1 < p <∞.

With the Lp-norm ‖X‖Lp
=

(
E

(
|X|p

))1/p
=

( ∫

Ω |X(ω)|p dP(ω)
)1/p

this can also be writ-
ten ∥

∥
∥ max

0≤t≤T
|Y (t)|

∥
∥
∥

Lp

≤ p

p− 1
‖Y (T )‖Lp

.

This gives a bound for the norm of the whole history in terms of the norm of the final
value.

Finally we recall the isometry of the Itô integral, Klebaner (4.12),

(10) E
(∣
∣
∣

∫ t

0
f(s) dB(s)

∣
∣
∣

2)

=

∫ t

0
E

(
|f(s)|2

)
ds.

We are now ready to prove stability with respect to perturbation of the initial value.

Theorem 3 (Stability). Let X̂ be another solution of (2) with the same µ, σ,B but a

different initial value X̂0. Then

(11) E
(

max
0≤t≤T

|X̂(t) −X(t)|2
)

≤ CE
(
|X̂0 −X0|2

)
,

where C = C(L, T ).
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Note that this implies uniqueness: two solutions with the same data µ, σ,B,X0 must
be equal.

Proof. We will use Gronwall’s lemma with φ(t) = E
(

max
0≤s≤t

|X̂(s)−X(s)|2
)
. By (2), writing

µ̂ = µ(X̂(z), z), µ = µ(X(z), z), etc, and using the inequality (a+b+c)2 ≤ 3(a2 +b2+c2),
we get

φ(t) = E
(

max
0≤s≤t

|X̂(s) −X(s)|2
)

= E
(

max
0≤s≤t

∣
∣
∣X̂0 −X0 +

∫ s

0

(
µ(X̂(z), z) − µ(X(z), z)

)
dz

+

∫ s

0

(
σ(X̂(z), z) − σ(X(z), z)

)
dB(z)

∣
∣
∣

2)

≤ 3
{

E
(

|X̂0 −X0|2
)

+ E
(

max
0≤s≤t

∣
∣
∣

∫ s

0
(µ̂− µ) dz

∣
∣
∣

2)

+ E
(

max
0≤s≤t

∣
∣
∣

∫ s

0
(σ̂ − σ) dB

∣
∣
∣

2)}

.

Here, by the Cauchy-Schwartz inequality and (4),

E
(

max
0≤s≤t

∣
∣
∣

∫ s

0
(µ̂− µ) dz

∣
∣
∣

2)

≤ E
(

max
0≤s≤t

{ ∫ s

0
12 dz

∫ s

0
|µ̂− µ|2 dz

})

= E
(

t

∫ t

0
|µ̂− µ|2 dz

)

= t

∫ t

0
E

(
|µ̂− µ|2

)
ds

≤ L2T

∫ t

0
E

(
|X̂(s) −X(s)|2

)
ds

≤ L2T

∫ t

0
E

(
max
0≤z≤s

|X̂(z) −X(z)|2
)
ds.

For the other term we use Doob’s inequality (9) with p = 2 and

Y (t) =

∫ t

0

(
σ(X̂(z), z) − σ(X(z), z)

)
dB(z),

which is a martingale by Theorem 4.7 in Klebaner. Using also (10) and (4) we get

E
(

max
0≤s≤t

∣
∣
∣

∫ s

0
(σ̂ − σ) dB

∣
∣
∣

2)

≤ 4E
(∣
∣
∣

∫ t

0
(σ̂ − σ) dB

∣
∣
∣

2)

= 4

∫ t

0
E

(
|σ̂ − σ|2

)
ds

≤ 4L2

∫ t

0
E

(
|X̂(s) −X(s)|2

)
ds

≤ 4L2

∫ t

0
E

(
max
0≤z≤s

|X̂(z) −X(z)|2
)
ds.

We now have

E
(

max
0≤s≤t

|X̂(s) −X(s)|2
)
≤ 3E

(
|X̂0 −X0|2

)
+ C

∫ t

0
E

(
max
0≤z≤s

|X̂(z) −X(z)|2
)
ds

with C = 3L2(T + 4), or

φ(t) ≤ 3E
(
|X̂0 −X0|2

)
+ C

∫ t

0
φ(s) ds, t ∈ [0, T ],



4

where φ(t) = E
(
max0≤s≤t |X̂(s)−X(s)|2

)
and Gronwall’s lemma completes the proof. �

Exercise 1. Without using Doob’s inequality and with φ(t) = E
(
|X̂(t) −X(t)|2

)
we get

the weaker result

E
(
|X̂(t) −X(t)|2

)
≤ CE

(
|X̂0 −X0|2

)
, t ∈ [0, T ],

and hence (Prove this!)

(12) max
0≤t≤T

E
(
|X̂(t) −X(t)|2

)
≤ CE

(
|X̂0 −X0|2

)
.

Note that the maximum is now outside the expected value and that (11) implies (12).

Exercise 2. Prove the estimate (8).

We also need a kind of Hölder condition.

Theorem 4. Under the assumptions of Theorem 1 we have

(13) E
(
|X(t) −X(s)|2

)
≤ C

(
1 + E

(
|X0|2

))
|t− s|, ∀t, s ∈ [0, T ],

where C = C(L, T ).

Proof. We may assume that s ≤ t. Working as in the previous proof, but without using
Doob’s inequality, we then get

E
(
|X(t) −X(s)|2

)
= E

(∣
∣
∣

∫ t

s
µ(X(z), z) dz +

∫ t

s
σ(X(z), z) dB(z)

∣
∣
∣

2)

≤ 2 (t− s)
︸ ︷︷ ︸

≤T

∫ t

s
E

(
|µ|2

)
dz + 2

∫ t

s
E

(
|σ|2

)
dz

{

by (5)
}

≤ 2L2(T + 1)

∫ t

s
E

(
(1 + |X(z)|)2

)
dz

≤ 4L2(T + 1)

∫ t

s

{
1 + E

(
|X(z)|2

)}
dz

{

by (8)
}

≤ C(L, T )

∫ t

s

{
1 + C(L, T )

(
1 + E

(
|X0|2

))}
dz

≤ C(L, T )(t− s)
(
1 + E

(
|X0|2

))
.

�

Remark 4. Note that this means, with ‖X0‖L2 = E
(
|X0|2

)1/2 ≤M and C = C(M,L, T ),

(14) ‖X(t) −X(s)‖L2 =
(

E
(
|X(t) −X(s)|2

))1/2
≤ C|t− s|1/2.

This is a Hölder condition with exponent 1
2 . By inspection of the previous proof we see

that in the deterministic case, σ = 0, we have a stronger result, a Lipschitz condition,

(15) |X(t) −X(s)| ≤ C|t− s|.
1.2. Strong convergence of Euler’s method. We introduce a mesh

(16) 0 = t0 < t1 < · · · < tn < tn+1 < · · · < tN = T, hn = tn+1 − tn, h = maxhn ≤ 1,

and note that X satisfies

(17) X(tn+1) = X(tn) +

∫ tn+1

tn

µ(X(s), s) ds+

∫ tn+1

tn

σ(X(s), s) dB(s).
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This motivates the Euler (or Euler-Maruyama) method, which defines {Yn}N
n=0 by

(18)

Y0 ≈ X0,

Yn+1 = Yn + µ(Yn, tn)

∫ tn+1

tn

ds+ σ(Yn, tn)

∫ tn+1

tn

dB(s).

Since
∫ tn+1

tn
ds = hn,

∫ tn+1

tn
dB(s) = B(tn+1) −B(tn) = ∆Bn, this can also be written

(19)
Y0 ≈ X0,

Yn+1 = Yn + µ(Yn, tn)hn + σ(Yn, tn)∆Bn.

For the practical aspects concerning the computation in a Matlab environment we refer
to [2]. Here we only note that ∆Bn =

√
hnξn, where the ξn ∈ N(0, 1) are independent

Gaussian random variables with mean zero and variance 1 which can be simulated on the
computer by a random number generator.

Although we only compute the node values Yn it is convenient for our proofs to define
Y (t) for t ∈ [tn, tn+1) by

(20) Y (t) = Yn + µ(Yn, tn)

∫ t

tn

ds+ σ(Yn, tn)

∫ t

tn

dB(s), t ∈ [tn, tn+1).

Then Y is continuous on [0, T ], Y (tn) = Yn for all n, and

(21)
Y (t) = Y0 +

∫ t

0
µ̄(s) ds+

∫ t

0
σ̄(s) dB(s), 0 ≤ t ≤ T,

µ̄(s) = µ(Yn, tn), σ̄(s) = σ(Yn, tn), s ∈ (tn, tn+1).

We need a Lipschitz condition with respect to t:

(22)
|µ(x, t) − µ(x, s)| ≤ L|t− s|,
|σ(x, t) − σ(x, s)| ≤ L|t− s|, ∀x ∈ R, t, s ∈ [0, T ].

Theorem 5 (Strong convergence). If

(23) E
(
|Y0 −X0|2

)
≤ Kh,

and

(24) E
(
|X0|2

)
≤M,

then

(25) E
(

max
0≤t≤T

|Y (t) −X(t)|2
)

≤ Ch

with C = C(L,K,M,T ). In particular,

(26) E
(
|Yn −X(tn)|

)
≤ Ch1/2, n = 0, . . . , N.

Proof. We first prove that (25) implies (26). We use the Cauchy-Schwartz inequality,

|E
(
fg

)
| ≤

√

E
(
f2

)
√

E
(
g2

)
,

with f = 1 and g = |Y (tn) −X(tn)|:

E
(
|Yn −X(tn)|

)
≤

√

E
(
|Y (tn) −X(tn)|2

)
≤

√

E
(

max
0≤t≤T

|Y (t) −X(t)|2
)

≤ Ch1/2.
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We now prove (25). Let 0 ≤ s ≤ t ≤ T . As in the proof of Theorem 3, using (2), (21):

E
(

max
0≤s≤t

|Y (s) −X(s)|2
)

=
{

with µ(z) = µ(X(z), z), σ(z) = σ(X(z), z)
}

= E
(

max
0≤s≤t

{∣
∣
∣Y0 −X0 +

∫ s

0
(µ̄(z) − µ(z)) dz +

∫ s

0
(σ̄(z) − σ(z)) dB(z)

∣
∣
∣

2})

≤ 3
{

E
(
|Y0 −X0|2

)
+ T

∫ t

0
E

(
|µ̄− µ|2

)
ds+ 4

∫ t

0
E

(
|σ̄ − σ|2

)
ds

}

.

We split µ̄− µ into two parts and use the Lipschitz conditions (4) and (22),

|µ̄(s) − µ(s)| = |µ(Y (tn), tn) − µ(X(s), s)|
≤ |µ(Y (tn), tn) − µ(X(s), tn)| + |µ(X(s), tn) − µ(X(s), s)|
≤ L

(
|Y (tn) −X(s)| + s− tn

)

≤ L
(
|Y (tn) −X(tn)| + |X(tn) −X(s)| + hn

)

≤ L
(

max
0≤z≤s

|Y (z) −X(z)| + |X(tn) −X(s)| + hn

)
, for s ∈ (tn, tn+1).

Using also (14) and hn ≤ 1 we get

E
(
|µ̄(s) − µ(s)|2

)
≤ 3L2

(
E

(
max
0≤z≤s

|Y (z) −X(z)|2
)

+ E
(
|X(tn) −X(s)|2

)
+ h2

n

)

≤ 3L2
(
E

(
max
0≤z≤s

|Y (z) −X(z)|2
)

+ C(s− tn) + h2
n

)

≤ C
(
E

(
max
0≤z≤s

|Y (z) −X(z)|2
)

+ hn

)
, for s ∈ (tn, tn+1),

with C = C(M,L, T ). The difference σ̄ − σ is estimated in the same way.
Suppose that t belongs to the m-th mesh interval, t ∈ (tm, tm+1], and denote t̃n+1 =

tn+1 ∧ t (the minimum of t and tn+1). Then, since hn ≤ h,
∫ t

0
E

(
|µ̄(s) − µ(s)|2

)
ds =

m∑

n=0

∫ t̃n+1

tn

E
(
|µ̄(s) − µ(s)|2

)
ds

≤ C

m∑

n=0

∫ t̃n+1

tn

(

E
(

max
0≤z≤s

|Y (z) −X(z)|2
)

+ hn

)

ds

≤ C

∫ t

0
E

(
max
0≤z≤s

|Y (z) −X(z)|2
)
ds+ Ch.

We get the same bound for the σ-term. Therefore

φ(t) ≤ Ch+ C

∫ t

0
φ(s) ds, t ∈ [0, T ],

with C = C(L,K,M,T ), φ(t) = E
(
max0≤s≤t |Y (s) − X(s)|2

)
. Gronwall’s lemma com-

pletes the proof. �

We have now proved strong convergence, or pathwise convergence, of order h1/2:

(27)
∥
∥
∥ max

0≤t≤T
|Y (t) −X(t)|

∥
∥
∥

L2

=

√

E
(

max
0≤t≤T

|Y (t) −X(t)|2
)

≤ Ch1/2.

Note that, due to the use of Gronwall’s inequality, the constant in (27) grows exponentially
with T , C = exp(C(L,K,M,T )T ). By inspection of the previous proof we see that in the
deterministic case, σ = 0, we have convergence of order h:

max
0≤t≤T

|Y (t) −X(t)| ≤ Ch.
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This is the classical result for Euler’s method for deterministic ODEs.
In the next lecture we shall study weak convergence and prove that

∣
∣
∣E

(
g(Yn) − g(X(tn)

)
∣
∣
∣ ≤ Ch

for all smooth functions g. Thus the weak convergence order is h.
We shall also derive a higher order method: Milstein’s method.
The presentation of some of the material in Lecture 13 was inspired by [1]. For more

details see [4].
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2. Lecture 14

Recall the strong solution

(28) X(t) = X0 +

∫ t

0
µ(X(s), s) ds+

∫ t

0
σ(X(s), s) dB(s), t ∈ [0, T ],

and Euler’s method

(29) Y (t) = Y0 +

∫ t

0
µ̄(s) ds+

∫ t

0
σ̄(s) dB(s), t ∈ [0, T ],

where

(30) µ̄(s) = µ(Y (tn), tn), σ̄(s) = σ(Y (tn), tn), s ∈ (tn, tn+1),

are piecewise constant, “frozen”, functions.
We have proved strong convergence, or pathwise convergence:

(31)
∥
∥
∥ max

0≤t≤T
|Y (t) −X(t)|

∥
∥
∥

L2

=

√

E
(

max
0≤t≤T

|Y (t) −X(t)|2
)

≤ Ch1/2.

We are often not interested in individual paths but we would like to compute the expected
value of some quantity that the depends on X(t), i.e., we want to compute E

(
g(X(t))

)

for some function g.
We shall prove that

∣
∣
∣E

(
g(Y (t)) − g(X(t)

)
∣
∣
∣ ≤ Ch

for all smooth functions g. This is called weak convergence. Thus the weak convergence
order is h. We will use Kolmogorov’s backward equation in the proof.

We shall also derive the Itô-Taylor expansion and use it to obtain a numerical method
of higher order: Milstein’s method.

All of this rests on Itô’s formula.

2.1. Kolmogorov’s backward equation. We recall Itô’s formula for functions of x, t
(see Klebaner, Theorem 4.8 or Theorem 6.1). If X satisfies

dX(t) = µ(X(t), t) dt+ σ(X(t), t) dB(t)

and u = u(x, t) is twice differentiable in x and once in t, then (denoting the partial

derivatives ux = ∂u
∂x , uxx = ∂2u

∂x2 , ut = ∂u
∂t )

du(X(t), t) =
(

ut(X(t), t) + µ(X(t), t)ux(X(t), t) + 1
2σ

2(X(t), t)uxx(X(t), t)
)

dt

+ σ(X(t), t)ux(X(t), t) dB(t).
(32)

This really means

(33) u(X(t), t) − u(X(s), s) =

∫ t

s

(
ut + µux + 1

2σ
2uxx

)
dz +

∫ t

s
σux dB(z), 0 ≤ s ≤ t,

where the integrands are evaluated at (X(z), z).

Theorem 6 (Kolmogorov’s backward equation, Klebaner Theorem 6.6). Let

(34) dX(t) = µ(X(t), t) dt+ σ(X(t), t) dB(t), t ∈ [0, T ],

and let u(x, t) be a solution of

(35)
ut(x, t) + µ(x, t)ux(x, t) + 1

2σ
2(x, t)uxx(x, t) = 0, x ∈ R, t < T,

u(x, T ) = g(x).
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Then

(36) u(x, t) = E
(
g(X(T )) | X(t) = x

)
.

Note: Under appropriate assumptions we can prove that (35) has a unique solution.
Then (36) is the only solution.

The notation in (36) is somewhat confusing but it is the traditional one. To explain
what it means, we let Z(s) = Z(s;x, t) denote the unique strong solution of

dZ(s) = µ(Z(s), s) ds+ σ(Z(s), s) dB(s), t ≤ s ≤ T,

Z(t) = x.

In particular, the solution of (1) is X(t) = Z(t;X0, 0). Now (36) can be written

(37) u(x, t) = E
(
g(Z(T ;x, t))

)
.

Note that the variable x in (36), (37) is deterministic, while X0 in (1) may be a random
variable.

Proof. Itô’s formula applied to u(Z(s;x, t), s) and (35) give

u(Z(T ;x, t), T ) − u(Z(t;x, t), t) =

∫ T

t

(
ut + µux + 1

2σ
2uxx

)
ds+

∫ T

t
σux dB

=

∫ T

t
σux dB.

The expected value of the Itô integral is zero, so that

E
(
u(Z(T ;x, t), T )

)
− E

(
u(Z(t;x, t), t)

)

= E
(∫ T

t
σ(Z(s;x, t), s)ux(Z(s;x, t), s) dB(s)

)

= 0.

Since u(Z(T ;x, t), T ) = g(Z(T ;x, t)) by (35) and E
(
u(Z(t;x, t), t)

)
= E

(
u(x, t)

)
= u(x, t),

we get

E
(
g(Z(T ;x, t), T )

)
= u(x, t),

which is (37). �

According to Definition 5.14 and Theorem 5.15 in Klebaner, there is a unique function
p(y, s, x, t), t < s ≤ T , x, y ∈ R, (a fundamental solution) such that the unique solution
of (35) is given by

(38) u(x, t) =

∫ ∞

−∞
p(y, T, x, t)g(y) dy, x ∈ R, t < T.

The function (y, s) 7→ p(y, s, x, t) (with x, t fixed) satisfies the forward equation, see
Klebaner (5.5a),

(39)
∂p

∂s
+

∂

∂y

(

µ(y, s)p
)

− 1

2

∂2

∂y2

(

σ2(y, s)p
)

= 0, y ∈ R, t < s ≤ T.

The initial value at s = t is the Dirac measure at x:

(40) p(y, t, x, t) = δx(y), y ∈ R.

In the simplified case when µ = 0, σ2 = 1, (39), (40) become

(41)
ps − 1

2pyy = 0, y ∈ R, s > t,

p(y, t, x, t) = δx(y), y ∈ R,
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which is the forward heat equation with solution

p(y, s, x, t) =
1

√

2π(s− t)
e
− (x−y)2

2(s−t) , s > t, x, y ∈ R,

the Gauss kernel. This is proved by taking the Fourier transform of (41) with respect to
y. Then (38) becomes

u(x, t) =

∫ ∞

−∞

1
√

2π(T − t)
e
− (x−y)2

2(T−t) g(y) dy.

Exercise 3. Note that the partial differential equations in (39) and (35) may be written

as Lp = 0 and L∗u = 0, respectively, where L = ∂
∂t + ∂

∂x(µ(x, t)·) − 1
2

∂2

∂x2 (σ2(x, t)·) and

L∗ = − ∂
∂t − µ(x, t) ∂

∂x − 1
2σ

2(x, t) ∂2

∂x2 . Show that the operators L and L∗ are formally
adjoint in the sense that

(42)

∫ T

0

∫

R

(Lφ)ψ dxdt =

∫ T

0

∫

R

φ(L∗ψ) dxdt ∀φ,ψ ∈ C∞
0 (R × (0, T )).

Exercise 4. Show that (38) follows from (35) and (39), (40). Hint: multiply (35) in the

form 0 = us + µuy + 1
2σ

2uyy by p(y, s, x, t), integrate
∫ T
t

∫

R
· · · dy ds, integrate by parts

and use (39), (40).

2.2. Weak convergence of Euler’s method. In the following theorem we make rather
strong assumptions on the coefficients and the initial value in order to make the proof
simpler. These can be relaxed.

Theorem 7 (Weak convergence). Assume that µ, σ, g are sufficiently smooth and decay
sufficiently fast as |x| → ∞. Let X and Y be solutions of (28) and (29) with Y0 = X0 a
deterministic variable. Then

(43)
∣
∣E

(
g(Y (T ))

)
− E

(
g(X(T ))

)∣
∣ ≤ Ch.

Proof. Let u = u(x, t) be the solution of the Kolmogorov backward equation (35). Then
by (36), (37) we have

(44) u(x, t) = E
(
g(Z(T ;x, t))

)
,

and, in particular, since X0 is deterministic,

(45) u(X0, 0) = E
(
g(Z(T ;X0, 0))

)
= E

(
g(X(T ))

)
,

Since Y satisfies (28), Itô’s formula (33) gives

u(Y (T ), T ) − u(Y (0), 0)

=

∫ T

0

(

ut(Y (t), t) + µ̄(t)ux(Y (t), t) + 1
2 σ̄

2(t)uxx(Y (t), t)
)

dt

+

∫ T

0
σ̄(t)ux(Y (t), t) dB(t).

From (35) we get

ut(Y (t), t) = −µ(Y (t), t)ux(Y (t), t) − 1
2σ

2(Y (t), t)uxx(Y (t), t),

so that

u(Y (T ), T ) − u(Y (0), 0) =

∫ T

0

(

(µ̄− µ)ux + 1
2(σ̄2 − σ2)uxx

)

dt+

∫ T

0
σ̄ux dB(t),
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where the integrands are evaluated at (Y (t), t). Take expectation here, use u(Y (T ), T ) =
g(Y (T )) from (35), use Y0 = X0 and (45) to get

E
(
u(Y (0), 0)

)
= E

(
u(Y0, 0)

)
= E

(
u(X0, 0)

)
= E

(
g(X(T ))

)
,

and use E
( ∫ T

0 σ̄ux dB
)

= 0. We get

E
(
g(Y (T ))

)
− E

(
g(X(T ))

)
=

∫ T

0

{

E
(
(µ̄− µ)ux

)
+ 1

2E
(
(σ̄2 − σ2)uxx

)}

dt

=

N−1∑

n=0

∫ tn+1

tn

{

E
(
(µ̄− µ)ux

)
+ 1

2E
(
(σ̄2 − σ2)uxx

)}

dt.

We shall show

sup
t∈(tn,tn+1)

∣
∣
∣E

(
(µ̄(t) − µ(Y (t), t))ux(Y (t), t)

)
∣
∣
∣ ≤ Chn,(46)

sup
t∈(tn,tn+1)

1
2

∣
∣
∣E

(
(σ̄2(t) − σ2(Y (t), t))uxx(Y (t), t)

)
∣
∣
∣ ≤ Chn,(47)

which implies the desired result.
To prove (46) we define

v(x, t) =
(
µ(Yn, tn) − µ(x, t)

)
ux(x, t),

and note that (46) means (recall that µ̄(t) = µ(Y (tn), tn) for t ∈ (tn, tn+1))
∣
∣
∣E

(
v(Y (t), t)

)
∣
∣
∣ ≤ Chn, t ∈ (tn, tn+1).

Since Y satisfies (28), Itô’s formula (33) gives

v(Y (t), t) − v(Y (tn), tn)

=

∫ t

tn

(

vt(Y (t), t) + µ̄(t)vx(Y (t), t) + 1
2 σ̄

2(t)vxx(Y (t), t)
)

dt

+

∫ t

tn

σ̄(t)vx(Y (t), t) dB(t).

Here v(Y (tn), tn) = 0 and after taking expectation we get

∣
∣E

(
v(Y (t), t)

)∣
∣ =

∣
∣
∣

∫ t

tn

E
(

vt(Y (t), t) + µ̄(t)vx(Y (t), t) + 1
2 σ̄

2(t)vxx(Y (t), t)
)

dt
∣
∣
∣

≤ hn sup
t∈(tn,tn+1)

(

|vt(Y (t), t)| + |µ̄(t)| |vx(Y (t), t)| + 1
2 |σ̄

2(t)| |vxx(Y (t), t)|
)

,

which proves (46) provided that

max
R×[0,T ]

|µ(x, t)| ≤ C,

max
R×[0,T ]

|σ(x, t)| ≤ C,

max
R×[0,T ]

(
|vt(x, t)| + |vx(x, t)| + |vxx(x, t)|

)
≤ C,

where the last one in its turn follows from the bounds

max
R×[0,T ]

(|µt(x, t)| + |µx(x, t)| + |µxx(x, t)|) ≤ C,

max
R×[0,T ]

(|uxt(x, t)| + |ux(x, t)| + |uxx(x, t)| + |uxxx(x, t)|) ≤ C.
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Such bounds can be proved provided that µ, σ, g are sufficiently smooth and decay suffi-
ciently fast as |x| → ∞. This proves (46), and (47) is proved in the same way. �

This proof was inspired by [5].
If X0 is a random variable, then we must first show

u(X0, 0) = E
(
g(X(T )) | X0

)
,

so that (by the law of double expectation)

E
(
u(X0, 0)

)
= E

(
E

(
g(X(T )) | X0

))
= E

(
g(X(T ))

)

instead of (45). The proof can then be continued in the same way. We do not the present
the details.

2.3. Sampling error. In practice we compute several sample paths {Y (t, ωj)}M
j=1, ωj ∈

Ω, and approximate the expected value E
(
g(X(T ))

)
by the average 1

M

∑M
j=1 g(Y (T, ωj)).

The total error is then the sum of the discretization error and the statistical error (sam-
pling error):

∣
∣
∣

1

M

M∑

j=1

g(Y (T, ωj)) − E
(
g(X(T ))

)
∣
∣
∣

≤
∣
∣
∣E

(
g(Y (T ))

)
− E

(
g(X(T ))

)∣∣
∣ +

∣
∣
∣

1

M

M∑

j=1

(

g(Y (T, ωj)) −E
(
g(Y (T ))

))∣
∣
∣.

We have shown that the first part is ≤ Ch, and by using the central limit theorem it can
be shown that the sampling error is ≤ C√

M
. See [5].

2.4. A numerical method of higher order: Milstein’s method. We derive the first
steps of the Itô-Taylor expansion. We consider for simplicity the autonomous equation

dX(t) = µ(X(t)) dt+ σ(X(t)) dB(t),

where µ = µ(x), σ = σ(x) do not depend on t. Then

(48) X(t) = X(t0) +

∫ t

t0

µ(X(s)) ds+

∫ t

t0

σ(X(s)) dB(s).

Itô’s formula is, see Klebaner (4.53),

f(X(t)) = f(X(t0)) +

∫ t

t0

(

µ(X(s))f ′(X(s)) +
1

2
σ2(X(s))f ′′(X(s))

)

ds

+

∫ t

t0

σ(X(s))f ′(X(s)) dB(s)

= f(X(t0)) +

∫ t

t0

L0f(X(s)) ds+

∫ t

t0

L1f(X(s)) dB(s),

(49)

where the differential operators L0 and L1 are defined by

L0f = µf ′ +
1

2
σ2f ′′,

L1f = σf ′.
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In particular, with f(x) = x we get L0f = µ, L1f = σ and we retrieve (48). Next we
take f = µ and f = σ in (49) and insert the result into (48). We get

X(t) = X(t0) +

∫ t

t0

(

µ(X(t0)) +

∫ s

t0

L0µ(X(z)) dz +

∫ s

t0

L1µ(X(z)) dB(z)
)

ds

+

∫ t

t0

(

σ(X(t0)) +

∫ s

t0

L0σ(X(z)) dz +

∫ s

t0

L1σ(X(z)) dB(z)
)

dB(s)

= X(t0) + µ(X(t0))

∫ t

t0

ds+ σ(X(t0))

∫ t

t0

dB(s) +R1(t, t0),

where the remainder is

R1(t, t0) =

∫ t

t0

∫ s

t0

L0µ(X(z)) dz ds

+

∫ t

t0

∫ s

t0

L1µ(X(z)) dB(z) ds

+

∫ t

t0

∫ s

t0

L0σ(X(z)) dz dB(s)

+

∫ t

t0

∫ s

t0

L1σ(X(z)) dB(z) dB(s).

This is the motivation for Euler’s method.
Next use Itô’s formula with f = L1σ = σσ′ and insert into the last term in the

remainder to get

X(t) = X(t0) + µ(X(t0))

∫ t

t0

ds+ σ(X(t0))

∫ t

t0

dB(s)

+ σ(X(t0))σ
′(X(t0))

∫ t

t0

∫ s

t0

dB(z) dB(s) +R2(t, t0),

where the new remainder R2(t, t0) consists of five complicated terms.
This is the motivation for Milstein’s method. We have here

∫ t

t0

ds = t− t0,

∫ t

t0

dB(s) = B(t) −B(t0),

and the iterated Itô integral, see Klebaner Example 4.12 on p. 107,
∫ t

t0

∫ s

t0

dB(z) dB(s) =

∫ t

t0

(

B(s) −B(t0)
)

dB(s) =
1

2

((
B(t) −B(t0)

)2 − (t− t0)
)

.

The Milstein method defines {Yn}N
n=0 by Y0 = X0 and

Yn+1 = Yn + µ(Yn)hn + σ(Yn)∆Bn + 1
2σ(Yn)σ′(Yn)

(
(∆Bn)2 − hn

)
,

where

hn = tn+1 − tn, ∆Bn = B(tn+1) −B(tn).

It can be shown that it converges with strong order h:

E
(
|Yn −X(tn)|

)
≤ Ch.

This idea can be extended to derive methods of higher order but these are not very
useful in practice because the coefficients are many times iterated integrals, for example,
∫ t
t0
· · ·

∫ z2

t0
dB(z1) · · · dB(zn) ds1 · · · dsk, which are difficult to evaluate.

More material on iterated Itô formulas and Itô-Taylor expansions can be found in [4].
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