
TMA325 Introduction to Engineering Mathematics, 2001

STUDIO 5. THE TANK REACTOR: DESIGN FOR STABILITY

1. Introduction

Begin by quickly repeating the exercises in Studio 4.

Recall that we determined the control variables Ū =
[
Ū1

Ū2

]
in such a way that the reactor

would operate at (cf − c̄)/cf = 0.5 and at reactor temperature T̄ = 99◦C, i.e., at X̄ =
[
X̄1

X̄2

]
=[

0.5
(99 + 273.15)/Tf

]
.

We also found that (with the present choice of parameters) the desired operating point, X̄, is
unstable with respect to perturbations of the initial value. This means that a small deviation from
X = X̄ causes the tank reactor to depart from the desired operating point. Since these kinds of
perturbations are inevitable in practice, the reactor does not remain in the desired state, which
is therefore not stable. Rather, it (depending on the initial perturbation) approaches one of two
other equilibrium points, which seem to be stable ones. These two are also stationary points,
corresponding to the same control variables Ū .

We also performed a linear stability analysis based on the linearized equation

(1)
x′(s) = Ax(s) + Bu(s), s > 0,

x(0) = x0,

for the approximate perturbation x(s) ≈ ∆X(s) caused by the perturbations in input data x0 =
∆X0 and u(s) = ∆U(s). In (1),

(2) A =




∂F1

∂X1
(X̄, Ū)

∂F1

∂X2
(X̄, Ū)

∂F2

∂X1
(X̄, Ū)

∂F2

∂X2
(X̄, Ū)


 =


−Ū1 − f(X̄2) −X̄1f

′(X̄2)

αf(X̄2) −Ū1 + αX̄1f
′(X̄2) − β


 ,

and

(3) B =




∂F1

∂U1
(X̄, Ū)

∂F1

∂U2
(X̄, Ū)

∂F2

∂U1
(X̄, Ū)

∂F2

∂U2
(X̄, Ū)


 =


1 − X̄1 0

1 − X̄2 β


 ,

are called Jacobi matrices of F (X, U) =
[
F1(X, U)
F2(X, U)

]
at X̄, Ū .

We wrote a Matlab function for computing A and its eigenvalues. We found that it has two
real eigenvalues, one positive and one negative. Because of the positive eigenvalue, one eigenmode
in x(s) grows exponentially with time, and this explains the instability of X̄.

Our goal is now to re-design the tank reactor so that the desired operating point, X̄, becomes
stable. We will do this by increasing the area AK of the cooler or, equivalently, the parameter

β =
κAK

ρcpqref
,

until both eigenvalues of the Jacobi matrix A have negative real parts.
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2. A parameter study

In the following exercise we make a parameter study of the eigenvalues of A as functions of the
parameter β.
Exercise 1. The following script file generates an “interval” of a thousand beta values and
computes the eigenvalues of A for each β in the interval.
betamin = 0.1; % left endpoint of "beta interval"
betamax = 10; % right endpoint of "beta interval"
betavalues = betamin:(betamax - betamin)/1000:betamax;
N = length(betavalues); % number of beta values in "beta interval"
lambda1 = zeros(1,N); % initialize vectors containing eigenvalues,
lambda2 = zeros(1,N); % each column corresponds to one beta value
for index = 1:N
beta = betavalues(index); % current beta value
A = jacobianA(Xbar); % compute A; note that we do not need to

% recompute Ubar since A only depends on
% Ubar(1), which does not depend on beta

eigenvalues = eig(A); % compute eigenvalues of A
lambda1(index) = eigenvalues(1); % "first" eigenvalue of A
lambda2(index) = eigenvalues(2); % "second" eigenvalue of A

end

Add the following plot commands to the file and you will see two diagrams showing the real and
imaginary parts of the eigenvalues.
clf % clear current figure
subplot(2,1,1) % breaks the figure into a 2-by-1 matrix;

% selects top half
hold on
grid % adds grid lines
plot(betavalues, real(lambda1), ’:’) % dotted line
plot(betavalues, real(lambda2), ’--’) % dashed line
xlabel(’beta’)
ylabel(’Real parts’)
title(’Dotted: \lambda_{1} Dashed: \lambda_{2}’)
hold off
subplot(2,1,2) % selects bottom half
hold on
grid
plot(betavalues, imag(lambda1), ’:’) % dotted line
plot(betavalues, imag(lambda2), ’--’) % dashed line
xlabel(’beta’)
ylabel(’Imaginary parts’)
hold off

Run the program first with a rather long β interval, e.g., betamin=0.1, betamax=10. Then
zoom in on the interesting parts of the graphs by using shorter intervals. Make sure you can
identify the following cases for increasing values of β:

• two real eigenvalues: one positive and one negative;
• two real negative eigenvalues;
• a conjugated pair of complex eigenvalues with negative real parts;
• two real negative eigenvalues.

Select a value of β and repeat Exercise 4 of Studio 4. Do this with one β value from each case.
Since Ū2 depends on β, you must copy the line Ubar(2)= ... from the file data.m to the top of
the file solve2.m. Then you can run the following:
>> data
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>> S = 20;
>> X0 = Xbar + [0; 0.05];
>> beta=??
>> solve2
>> beta=??
>> solve2 % and so on

For which values of β is the operating point X̄ stable? Determine a stability threshold β0 such
that X̄ is stable for β > β0.

3. Stability with respect to perturbation of the control variables

So far we have only studied stability with respect to perturbations x0 of initial data X0. Now
we discuss stability with respect to perturbations u(s) of the control variables U(s).
Exercise 2. Set X0=Xbar. Introduce small fluctuations in the control variables by making the
following changes in the file tank2.m:
U(1) = Ubar(1)+0.01*sin(3*s);
U(2) = Ubar(2)+0.01*cos(s);

Select a value of β < β0 and repeat Exercise 4 of Studio 4. Is X̄ stable?
Select a value of β > β0 and repeat Exercise 4 of Studio 4. Is X̄ stable?

Homework 1. Solve the linearized equation (1) analytically. Assume that the matrix A is
diagonalizable with eigenvalues λ1, λ2 and a basis of normalized eigenvectors g1, g2. We assume
that both eigenvalues have negative real part and that the eigenvectors are not nearly parallel.

Write x(s), x0 and Bu(s) in the eigenvector basis:

(4) x(s) = y1(s)g1 + y2(s)g2, x0 = c1g1 + c2g2, Bu(s) = f1(s)g1 + f2(s)g2.

Insert this into (1) to get

(5) y′
k(s) = λkyk(s) + fk(s), s > 0; yk(0) = ck; k = 1, 2.

This equation is of the form (5) in Studio 1. The solution is

(6) yk(s) = ckeλks +
∫ s

0

eλk(s−t)fk(t) dt,

see Studio 1: (6) and Homework 2. To study stability with respect perturbations of the control
variables we set x0 = 0, so that ck = 0, and assume that u(s) is small, which implies that fk(s) is
small too:

(7) max
s≥0

|fk(s)| ≤ C max
s≥0

‖u(s)‖,
where the constant C depends on the Jacobi matrix B and the angle between the eigenvectors,
see Remark 1. Since both the eigenvalues have negative real part, we have |eλks| = |e(αk+jωk)s| =
eαks ≤ 1. For the absolute value of yk(s) we then get

|yk(s)| =
∣∣∣
∫ s

0

eλk(s−t)fk(t) dt
∣∣∣ ≤

∫ s

0

|eλk(s−t)| |fk(t)| dt

=
∫ s

0

eαk(s−t)|fk(t)| dt ≤
∫ s

0

eαk(s−t) dt max
t≥0

|fk(t)|

=
−1
αk

(1 − eαks) max
t≥0

|fk(t)| (because αk < 0)

≤ −1
αk

C max
t≥0

‖u(t)‖.
This leads to

(8) ‖x(s)‖ ≤ |y1(s)| + |y2(s)| ≤ 2
1

min |αk| C max
t≥0

‖u(t)‖.

Hence, x(s) stays small if u(s) is small. We conclude that X̄ is stable with respect to perturbation
of U .
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Remark 1. The previous stability analysis was made under the assumption that both eigenvalues
have negative real part, αk < 0. However, the inequality (8) is rather useless if min |αk| ≈ 0, i.e.,
if one of the real parts is close to 0. Therefore, in order to secure stable behavior we must not
only make sure that both of the αk are negative, but also that they are not too close to zero.

This is similar to what happens if the eigenvectors are nearly parallel, which we also need to
avoid. In order to understand this we look at the inequality (7) in more detail. Let θ be the
angle between the normalized eigenvectors g1 and g2 and assume that θ ≈ 0. Then (assuming for
simplicity that the eigenvectors and the fk are real; this is the case when the eigenvalues are real)

‖Bu(s)‖2 = f1(s)2 + f2(s)2 + 2f1(s)f2(s)(g1, g2)

= f1(s)2 + f2(s)2 + 2f1(s)f2(s) cos(θ)

≥ (1 − cos(θ))(f1(s)2 + f2(s)2) (because −2f1f2 ≤ f2
1 + f2

2 and cos(θ) > 0)

≈ 1
2
θ2(f1(s)2 + f2(s)2) ≥ 1

2
θ2fk(s)2

so that (approximately, when θ is small)

|fk(s)| ≤
√

2
θ

‖Bu(s)‖ ≤ C1

θ
‖u(s)‖.

We see that the constant in the inequality (7) becomes very large when the eigenvectors are nearly
parallel.

4. Conclusion

We finally complete the design of a stable tank reactor.
Exercise 3. Choose a value of β which is safely bigger than the stability threshold β0 (see
Remark 1). Then compute the corresponding value of the cooler area AK , the cooler temperature
TK , and the cooling power (how much heat that passes through the cooler per second).


