
TMA325 Introduction to Engineering Mathematics

THE CATALYST PELLET

Theory:
R. Aris, “The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. Vol. 1.
The Theory of the Steady State”, Oxford University Press, 1975, Chapter 3.

1. Introduction

A substance in gas form is diffusing into a porous catalyst pellet, where it reacts in a first order
reaction under isothermal and stationary conditions. This leads to the reaction-diffusion equation,
see (K 2.3),

(1)
−∇ · (D∇c

)
= −kc, in V ,

c = cf , on S,

where c [mol/m3] is the concentration of the interesting substance in the catalyst pellet, cf is
the (constant) ambient concentration, D [m2/s] is the diffusion coefficient, k [s−1] is the rate
coefficient of the reaction, L [m] is the diameter of the pellet, and ∇c = ( ∂c

∂x , ∂c
∂y , ∂c

∂z ).
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Figure 1. The catalyst pellet.

Note that we make the simplifying assumptions that the system has reached a stationary state
and that the temperature is constant. The latter assumption is the same as saying that we ignore
the temperature dependence in the rate coefficient k = k0 exp(−E/(RT )) given by Arrhenius’ law.
However, we want to allow the difffusion and catalyzation properties to be different in different
parts of the pellet. This means that D, k0, and E may vary with position, so that D = D(x, y, z),
k = k(x, y, z).
Exercise 1. Introduce dimensionless variables. Let cref = cf , Dref, kref, Lref = L be reference
constants and set

(x∗, y∗, z∗) = (x/L, y/L, z/L), u = c/cf , k∗ = k/kref, D∗ = D/Dref.

Show that (1) becomes

(2)
−∇∗ · (D∗∇∗u

)
= −φ2k∗u, in V ∗,

u = 1, on S∗,

where ∇∗ = ( ∂
∂x∗ , ∂

∂y∗ , ∂
∂z∗ ) and the dimensionless number φ = L

√
kref/Dref is the Thiele modulus.

Hint: the chain rule gives ∂
∂x = 1

L
∂

∂x∗ .
If the diffusion and rate coefficients are constant, then, of course, we take Dref = D, kref = k,

so that D∗(x∗, y∗, z∗) ≡ 1, k∗(x∗, y∗, z∗) ≡ 1, and (2) becomes

(3)
−∆∗u = −φ2u, in V ∗,

u = 1, on S∗,
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where ∆∗ = ∂2

∂x∗2 + ∂2

∂y∗2 + ∂2

∂z∗2 is the Laplace operator1.

u1
V ∗

S∗

1

Figure 2. The pellet in dimensionless variables.

The concentration, and hence the reaction rate, will be lower in the middle of the pellet. This
means that the catalyzing power of the pellet is not fully used. The efficiency of the catalyst
pellet is measured by the quotient of the actual total reaction rate and the ideal reaction rate
that would be achieved if the concentration and the rate coefficient were everywhere equal to the
their reference values, i.e., if c = cf , k = kref. This quotient is called the effectiveness factor and
is given by

(4) η =

∫
V

kc dV

krefcfV
=

1
V ∗

∫
V ∗

k∗u dV ∗.

Show this equality!
Homework 1. Show that η can also be expressed in terms of the flux through the boundary of
the pellet: (n∗ is the exterior unit normal vector)

(5) η =
1
φ2

1
V ∗

∫
S∗

n∗ · (D∗∇∗u) dS∗.

Hint: use (2) and Gauss’ divergence theorem.
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Figure 3. Slab and cylinder.

2. An exact solution

If the coefficients are constant and the geometry of the pellet is simple, namely, a slab, a circular
cylinder, or a sphere, then we can solve (3) analytically. We study one of these examples here.
Exercise 2. If the pellet is a slab (or a cylinder with sealed mantle surface), Figure 3, then u
depends only on the axial coordinate r = x∗ = x/L and (3) becomes

(6)
− d2u

dr2
= −φ2u, − 1

2 < r < 1
2 ,

u(− 1
2 ) = u(1

2 ) = 1.

1In “Tank reactor 2” we mentioned several reasons for writing the mathematical model in dimensionless form.
Now we can add one more reason: the teacher does not have to bother to find realistic values for the physical
parameters D, k0, E. Since they are conveniently grouped into the dimensionless number φ, we can just say that
we want to solve the equation for small, medium and large values of φ.



THE CATALYST PELLET 3

Solve this boundary value problem and compute η (analytically by hand). Plot η as a function of
φ (with Matlab).

Hint: recall the hyperbolic sine and cosine from “Tank reactor 2”. Answer: u(r) = cosh(φr)/ cosh(φ/2),

c(x) = cf cosh(
√

k
D x)/ cosh(

√
k
D

L
2 ), η =

∫ 1/2

−1/2 u(r) dr = tanh(φ/2)/(φ/2), u(0) = 1/ cosh(φ/2).
Note that u(r) ≡ 1 and hence η = 1, if φ = 0.

3. Numerical solution

In general we cannot solve (2) analytically. If we assume that the pellet is a long straight
cylinder with an arbitrary cross-section, so that u depends only on two variables x∗, y∗, then we
can use Matlab’s PDE Toolbox to compute approximate solutions .
Exercise 3. Solve (2) with D∗(x∗, y∗, z∗) ≡ 1, k∗(x∗, y∗, z∗) ≡ 1, and φ = 1 for several cross-
sections: circle, rectangle, triangle, or whatever. Compute η for each geometry. Make sure that
the diameter is the same = 1 in each case. Which one has the highest efficiency?

Hint: Start the GUI (Graphical User Interface) ’pdetool’ by typing
>> pdetool

on the Matlab command line2. When you start ’pdetool’ you will enter the draw mode. In draw
mode, you define Ω, i.e., the geometry of the problem. (In our case Ω is the cross-section of V ∗.)
To simplify the drawing, select Grid (to turn on the grid) and Snap (to enable the “snap-to-grid”
feature) from the Options menu. The “snap-to-grid” feature helps aligning the objects you draw.
In this example3, we take Ω to be the square: Ω = {(x, y) : 0 < x, y < 1/

√
2}. From the same,

i.e., the Options, menu, select Grid Spacing..., to open the Grid Spacing dialog box. Turn off
both the Auto checkboxes. Change the default linear grid spacing to −0.2 : 0.2 : 1, and add an
extra tick at 1/

√
2, for both the x-axis and the y-axis. Press the Apply push button, and end the

Grid Spacing dialog by pressing the Done button. Also, change the axes limits by selecting Axes
Limits..., from the Options menu. Set both the x-axis range and the y-axis range to [−0.2 1],
press the Apply button and finally the Close button. To draw Ω, just click on the “rectangle
icon” (below the File menu), put the cursor at the origin and click-and-drag using the left mouse
button to create the square.

Next, enter boundary mode, by selecting it from the top of the Boundary menu. In this mode,
we define the boundary conditions of the problem. Different boundary conditions may be specified
for different boundary segments. You select a boundary segment by clicking on it. You can select
more than one segment by, repeatedly, shift-clicking on them. In this example, we want to apply
the same boundary condition, u = 1, to all (four) boundary segments, so, select them all. Then,
double-click on any one of them, to open the Boundary Condition dialog box. To set the desired
boundary condition, change the (default) value of r from 0 to 1, and press the OK button.

To complete the definition of the problem, enter pde mode, by selecting it from the top of the
PDE menu. In this mode, we specify the coefficients of the equation. Select the square, Ω, by
clicking on it, and then double-click on it, to open the PDE Specification dialog box. To specify
the equation, change the value of a from 0.0 to 1 (note that a corresponds to φ2k∗) and the value
of f from 10.0 to 0. Finally press the OK button. We have now defined the problem.

To compute an approximate solution to the problem, the PDE Toolbox utilizes the Finite
Element Method (FEM). The idea is to divide Ω into a finite number of elements (triangles, in this
case), and look for an approximate solution that is a (linear) polynomial on each triangle.

To divide Ω into triangles, enter mesh mode, by selecting it from the top of the Mesh menu
(alternatively, just click on the “triangle icon” (below the Mesh menu)). If you want, you can
refine the triangulation (mesh), by clicking on the icon with four triangles. This will give a more
accurate solution, but, it will also require more computation and, accordingly, take a longer time.

2It is also possible to call toolbox functions from the command line (or M-files), but we will only use the GUI.
3To learn more, see e.g. the “Getting Started” and “Using the Graphical User Interface” sections in Chapter 1:

“Tutorial”, of the “Partial Differential Equations (PDE) Toolbox User’s Guide”. You find this guide by first typing
>> helpdesk on the Matlab command line, then click on Online Manuals (in PDF), and finally click on the link
Partial Differential Equations (PDE) Toolbox User’s Guide.
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To solve the problem, select Solve PDE, from the Solve menu (or, click on the “= icon”).
When the computation has finished, the solution is automatically plotted. This can also be

done by selecting Plot Solution, from the Plot menu. Try different visualization options. You
can specify these by selecting Parameters..., also from the Plot menu, which opens the Plot
Selection dialog box. Experiment!

Finally, to compute the effectiveness factor, η, you may use the function effectiveness.m,
which you can obtain at the address,
http://www.math.chalmers.se/~stig/underv/K/effectiveness.m

This function utilizes numerical integration, quadrature, to compute η. The integration is
performed over one triangle at a time, and the contributions from all triangles are added together.
Since Ω is the union of all triangles, this gives the integral over Ω. As input data, it needs (recall
the definition of η) the solution u, and the coefficient a. To do the element-wise integration, it
also needs some information about the triangulation, which is contained in two matrices called p
and t. Before calling effectiveness.m, you must therefore export these data from ’pdetool’ to
the “usual” Matlab workspace. To export u, select Export Solution..., from the Solve menu,
and press the OK button. Analogously, export a from the PDE menu, and p, t from the Mesh
menu. (Some additional data, that we don’t need, will also be exported.) To compute η, now
type:
>> phi = 1; % The Thiele modulus
>> eta = effectiveness(u, a, p, t, phi)

Exercise 4. Try some other variants:
(a) Dead core: a region in the middle of the pellet has very small diffusion coefficient.
Hint: Consider the domain Ω = {(x, y) :

√
x2 + y2 < 1

2}, with core Ωcore = {(x, y) :√
x2 + y2 < 1

5}. In draw mode, first draw a circle with centre at the origin and radius 1
2 , then draw

another circle, also with centre at the origin, and radius 1
5 . In boundary mode, as before, apply

the Dirichlet boundary condition, u = 1, on the boundary of Ω: {(x, y) :
√

x2 + y2 = 1
2}. In PDE

mode, select Show Subdomain Labels, from the PDE menu. Note that Ωcore has one number,
say 1, and Ω − Ωcore has another number, say 2. We call Ωcore and Ω − Ωcore subdomains of Ω.
The union of the subdomains is Ω itself. Now, different expressions for the PDE coefficients may
be specified on the different subdomains. Analogously to defining boundary conditions, you select
a subdomain by clicking on it. Then, double-click on it to open the PDE Specification dialog box.
Apply, e.g., c = 0.1 on Ωcore, and c = 1 on Ω − Ωcore (note that c corresponds to D∗). Now, you
can continue as above. It might be a good idea to make one extra refinement of the triangulation
in this case.

(b) Poisoning: a region near the boundary of the pellet has very small rate coefficient, k∗ << 1
or k∗ = 0.

(c) Hole: there is a hole in the middle of the pellet, where the diffusion coefficient is very large,
D∗ >> 1, and the reaction rate is zero, k∗ = 0.

(d) Robin’s boundary condition: replace the boundary condition in (1) by Robin’s boundary
condition (K (36), (38)). Show that in dimensionless variables this becomes

n∗ · (D∗∇∗u) + ν(u − 1) = 0, on S∗.

Express the dimensionless number ν (the Biot number for mass transfer) in the original variables.
Answer: ν = Ld

Dref
.

Compute solutions with the PDE Toolbox.
Hint: In the Boundary Condition dialog box, choose Neumann as condition type (“Neumann”,

here, means a “generalized Neumann” boundary condition, which we call a Robin boundary con-
dition). Now, just note that, in our setting, both g and q correspond to ν.


