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CHAPTER I

Introduction

A Mobius mapping of the unit disk onto itself is a conformal mapping of the form

v(z) = az —I_f, where a,c € C and |a]? — |¢|* = 1.
cz+ a

Let I' be a Fuchsian group. That is, a group of Mobius mappings in the unit
disk sparse enough such that if we consider the orbit of the origin, {7(0) : v €
I'}, the points in the set do not cluster inside the disk. We can even put non-
intersecting small disks on the orbit points. The union of these disks will look like
an Archipelago in the “unit disk lake”.

Suppose that we have a Brownian particle in the lake. What is the probability
that the particle will avoid all the islands before it reaches the “unit circle shore”?
What will the probability be if the particle is conditioned to exit at a certain
point?

These probabilities are closely related to the size or the density of the Archipelago
seen with potential theoretic eyes from the shore.

By studying these and related questions we will try to capture one connection
between the theory of Kleinian groups' and potential theory. To get a such a
connection is the main goal of this work.

1. Notation

The following list contains a sample of some notations that we will use.

R9: The Euclidean d-dimensional space.

U: The unit disk.

T: The unit circle.

B: The unit ball, for d > 2.

0dB: The unit sphere.

B(x,r): The ball centered at x and with radius r.

E: The Kleinian (or Fuchsian) Archipelago.

rr: The hyperbolic radius of the islands in £.

I': A Kleinian (or Fuchsian) group, see Remark A.4 on page 89.
~v: An element in I', see Appendix A.

v(2): The image point of  under the mapping ~.

~vz: A slimmer notation of the above.

o(+): The normalized Lebesgue measure on the unit sphere, i.e. o(0B) = 1.

!Kleinian groups are the generalization of Fuchsian groups to higher dimensions, see Re-
mark A.4 on page 89.
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A: The limit set.

A.: The non-tangential limit set. Also known as the conical limit set.

Ay: The non-osculating limit set.

H: The horospherical limit set.

hs: The Poincaré series, see Appendix A.

{Qr}: A Whitney decomposition.

gr: The distance to the boundary from the Whitney cube Q.

pr(7): The distance to the boundary point 7 from the Whitney cube Q.

H(-): The Hausdorff-measure.

w(+,+,+): The harmonic measure.

K¢: The Martin kernel at €.

W: A Wiener type series for minimal thinness, see Appendix B.

Wo: A variant of the above, see Definition 111.3 on page 23.

W7: A Wiener type series for rarefiedness, see page 25.

L(a): The a-limit set, see Definition IV.4.

Ls(a): The strong a-limit set, see Definition IV.11.

MN: The set on the boundary where the Kleinian Archipelago is not mini-
mally thin.

X, A Markov process.

Zn: A conditioned Markov process.

2. Plan of the thesis

In order to make this thesis more self contained, we have two appendices, where
we give some background and basic facts of the theory of Kleinian groups and
potential theory that we use in other parts of this thesis.

Chapter II, which is a revised version of the first part of [31], deals with limit
sets of Kleinian groups. We are especially interested in two subsets of the limit
set, the classical non-tangential limit set and the “non-osculating limit set” which
we define in an analogue way to the non-tangential.

In Chapter III (a revised version of the second part of [31]), we study the
connection between the theory of Kleinian groups and potential theory in the
sense of the question: “Is the Kleinian Archipelago £ thin at the boundary?” and
we give both local and global answers to that question.

In Chapter IV, we generalize some results in Chapter II and also indicate an
alternative way to prove Proposition 11.14 by techniques and results in [33]. Fur-
thermore, some alternative geometric descriptions are given in Section 2. We will
also show that the set where the Kleinian Archipelago is not minimally thin is close
to the non-tangential limit set. That is, the sets have the same Hausdorff dimen-
sion, and they coincide when I' is of geometrical finite type, see Corollaries V.13
and IV.14.

Another way to measure the size of the Archipelago of I' is to consider the
concept boundary layer which was introduced by Alexander Volberg in [42]. We
can give an intuitive picture of that procedure in the following way. Let us consider
the planar case, i.e. the Fuchsian case, and let us remove the center island of E.
We say that the complement, U \ E, is a boundary layer if the probability for a
Brownian particle started at the origin to hit the arc [ at the boundary 9U (i.e.
the unit circle), without hitting the set F, is comparable to the length of 1.

In Chapter V, which is a joint work with Hiroaki Aikawa in [6], we study the
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concept of boundary layers. The goal is twofold. First, we generalize the definition
of boundary layers to NTA-domains and to higher dimensions. Secondly, we com-
pare the concept with minimal thinness?. The comparison is done in two ways.
One is to give a necessary condition and a sufficient condition for for a boundary
layer with the help of the Wiener type series used in [20] (see Appendix B) to de-
cide minimal thinness. The other way is to give a weakened definition of boundary
layers that exactly correspond to minimal thinness, or more explicit, U \ F is a
weak boundary layer if and only if £ is minimally thin everywhere on the boundary
ou.

In Chapter VI, we use results from the previous chapter to discuss the following
question: when is the complement of the Archipelago of I' a boundary layer?
Theorem VI.7 on page 66 will give a complete answer to that question.

Chapter VIl is devoted to the discrete world. In that chapter we do not consider
the Archipelago but rather the orbit itself. Since we are now dealing with a
discrete set of points we are forced into the discrete potential theory. That is,
instead of putting “flesh” on the discrete orbit set to go from the discrete world
of Kleinian groups to the continuous world of classical potential theory, we keep
on to the discreteness. We give a definition for discrete minimal thinness, see
Definition VIL.6, and study the concept in different ways. We also define discrete
boundary layers. As a feed-back to the continuous classical situation, we obtain
in Corollary VII.12, a Brownian motion description of ordinary minimal thinness.

In order to study the orbit of a Kleinian group, we view the orbit as a subset of
vertex points in an underlying infinite net, where the underlying net is generated
by a super-group of the group we study. This is done in Section 5 in Chapter VII.
Finally, we study the Schottky group case.

2The fact that those two concepts are related are pointed out in [42], [20] and [21].
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CHAPTER 11

The non-osculating limit set of a Kleinian group

We transform the study of non-tangential limit sets to “non-osculating limit sets”
of discontinuously acting subgroups of the Mobius mappings that preserve the unit
ball in R9, We state a sufficient condition for the non-osculating limit set to have
Lebesgue measure zero, using the Poincare sertes of the subgroup.

1. Introduction

In Appendix A on page 89 we introduce the limit set A and its most famous
subset, the conical limit set A.. Another term for conical limit points is non-
tangential limit points which is what Garnett uses in his study [25] of the Lebesgue
measure of these limit sets (see also [1]). He constructs the non-tangential limit set
using the non-tangential cone, i.e. the set {x € B;|z| > 1/2;|e —z] < M(1—|z])},
for the tip of the cone at z € dB.

While studying minimal thinness the author needed a horocyclic condition and
got curious about the possibility to use horocycles instead of cones to describe
another, but similar limit set in the same fashion as Garnett does. Another mo-
tivation for doing this is the fact that the Poisson kernel in the upper half-plane
with a pole on the boundary has horocycles as level-contours.

The aim of this first part is to state something analogous to the following fun-
damental result. The definitions are given in Appendix A and in Remark I1.5 on
page 14.

THEOREM A. If I' is of convergence type then o(A:) = 0 (where A, is the
non-tangential limit set on the sphere and o the normalized Lebesque measure on
the surface'.)

The proof can be found in [25, Theorem 4, p. 29], or in [1, Lemma 3, p. 93].
We will now follow Garnett’s presentation in [25] but we will study horocycles
instead of cones and give an analogue to Theorem A in Proposition 11.14 below.

2. Non-Osculating Limit Sets

Let B be the d-dimensional unit sphere, the horocycles are defined as:

DEFINITION II.1. A horocycle is the truncated sphere in B which is tangent to
JB at z € 0B with radius =

M ~ .
MyTs O in other words:

H(z,M)={z € B;lz| > 1/2; |z — z)* < M(1 — |z|*)}.

DEFINITION I1.2. A horocap is the part of 0B reached by paths totally inside
horocycles from a point x in B, where every path lies in a horocycle containing x.

If M >0, the horocap Cy(x, M) is given by
Ch(z, M) = {2z € OB;|z — z|> < M(1 — |z|*)}.
REMARK I1.3. The horocycle and the horocap are related by:
¢ € H(z,M) & z € Cylx, M).
e o(0B) =1

13



14 II. THE NON-OSCULATING LIMIT SET OF A KLEINIAN GROUP

Fi1GURrE II.1. Horocycle, E(Z,M), with M =1 and z = 1.

11 OI-OCap

F1GURE I1.2. Horocap, Cy(x, M), with M = 1.

By taking the union of the horocaps as |y,xo| tends to 1 (which is equivalent

to n — oo) we get a pre—version of the desired general limit set in the following
definition.

DEFINITION I1.4. Let us by Ap(xo , M) denote the non-osculating limit set of
xo and M defined as

ﬂ U Ch(7n$07M)7 Tn € F
k=1 n=k
We will later on see that the special choices of xg and M are of little importance.
REMARK I1.5. The non-tangential limit set A.(zg, M) used* by Garnett is de-
fined in the following way. Let
Colz,M):={2€dB:|x—z| < M(1 —|z|)}.
Then

Ac(zg, M) := ﬁ Ej Ce(ynao, M).

k=1n=k
For details, we refer to [25, p. 26].

We will now study the analogue to Theorem A by using Garnett’s technique on
our horocaps. The analogue is stated below in Proposition I1.14.

In [25] the notation A is used for the non-tangentially limit set, which we have reserved to
denote the whole limit set.
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2.1. The size of the horocap. Before we give an estimate of the size of the
horocaps, we state the following two lemmas (c.f. [25, Lemma 5.1]).

LEMMA I1.6. There exists a constant C1(R), only depending on R, such that if
d(z,y) < R then |z —y| < C1(R)(1 — |z|).

ProoF. Without loss of generality, it is enough to study the case where y = 0.
We then have
1+ |z|
1—z|’

R > d(z,0) = log
see for example [9, p. 38]. Hence,

(1= |z|) > 1+ |z| > |z].
We can thus choose C;(R) to be ef. [

LEMMA IL7. There exists a constant Cy(R) such that if d(z,y) < R then |z —
y|* < Co(R)(1 — [a]).

PrOOF. The proof follows immediately from Lemma I1.6 and the fact that
|z —y| < 2.

|z —y|* <20z —y| <201(R)(1 = |2]) < 2C1(R)(1 — [2])(1 +[]) = Co(R)(1 — |z[*).
That is, we can choose Cy(R) to be 2ef. O

The following lemma compares the Lebesgue measure of the horocap with the
distance from the boundary.

LEMMA IL.8. There exist constants C5(M) and Cy(M) such that
Co(M)(1 = [2)F" < o(Chlz, M)) < Ca(M)(1 = [2*) ="

PROOF. The area of the horocap at x is proportional to the distance of x to the
endpoint of the horocap z raised to the dimension of the surface of 9B, i.e.

o(Cr(z,M)) ~ |z — ;1:|d_1,

where z is such that:

|z — 2> = M(1 — |z,
(!
o(Cul(z, M) = (1 — [«|) T
]

The radius of the horocycles is of no importance if we consider the Lebesgue
measure of the resulting limit set, as we will see in the next lemma. This is of
great importance when we later will define the general non-osculating limit set.

LEMMA 11.9. If M’ > M then
O'(Ah(l'o, M/) \ Ah(l?o,fw)) = 0.
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PrOOF. Let z, = v,2¢ and

1

Thus,
8B \ Ah(.ﬂo,M) = U Ek
k=1

Fix k and suppose zg € 0B is a point of density in Ey, i.e.,

o(ErN{|z — 20| < 6})

o1z — 2ol < 8
Our aim is to show that zo & Ap(xg, M'). Assume the contrary to hold, i.e. ,
if zo € Ap(xo, M') = Vi > 0, then Jz,, such that:

{@) 1= |z, 2 < L.

— 1 when 6 — 0.

(1) 6= (M'+ M +2/MM")(1 — |z,>) <> (6>0).
(178) |zn — 20| < M'(1 — |z, [?).
From (z) we have,
ErNCh(z,, M) =10,
which leads to

Cr(@n, M) = {2 € OB; |z, — z|> < M(1 — |z,|*)} \ Ek.
Let us pick a z such that |z, — z|* < M(1 — |z,|*), then by (:77)
|z — ,20|2 <l|lz—z,+x, — Z|2 <z, — Z|2 + 2|z, — z||2n — 20| + |20 — Zo|2 <
< M(1 = Ja?) + 2/ M (1 = |2, )/ M/(1 = |2, *)+
+M'(1 = [zn|*) = (M + M+ 2V MM')(1 — |2, [*),

which is, by (ii), equal to 2.
Now, since 6 > 0,

|z, — 2| < M(1 — |2,)?) = |z — 20| < 6,
hence,
Ch(xp, M) = {2 € 0B; |z, — z|* < M(1 — |z,,|")} \ Ex &
(1) C {z € 0B; |z — =] < 6)}\ B
From Lemma I1.8, we obtain the following estimate,

o (Ch(2n, M)) > Co(M)(1 — |2,*) T = (id) =
5 =
=Cs5(M
o(M) (M’ L M1 2\/MM’)
_ CS(M) — (52)‘12;1 — [X’/(M, M/)é(d_l) Z
(M'+ M +2vVMM') =

(2) > K(M,M"o({|z — 20| < 6}).

Equation (1) gives us ,

o(Ch(zn, M)) <o({z € 0B;|z — 20| <6} \ Ex) =
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=o0({z € 0B;|z — 20| < 6}) —o(ExN{z € OB; |z — z| < 6}).
This, together with equation (2), implies:
K(M,M"o({z € 0B;|z — 20| < é}) <
<o({z€0B;|z—z0| < é}) —o(ExN{z € OB; |z — z| < 6}),

ie.
o(ExN{z € 0B;|z — z| < 6})
o({z € 0B;|z — 20| < 6})
Letting n tend to 0 will force ¢ to approach 0, in other words,
I o(ExN{z € 0B;|z — z| < 6})
im su
0" o({z € 0B; |z — 20| < 6})

But this means that zg is not a point of density in Fj, which is a contradiction.

<1-K(M,M)

< 1.

We finally conclude,
20 € Ah($07 Ml)?
which ends the proof of Lemma I1.9. [

2.2. Covering horocaps by horocaps. We are aiming at a definition of the
non-osculating limit set that is independent of the choice of “starting point” zq.
Lemma II.11 below will provide us with that possibility; but first we need an
elementary observation.

LEMMA IL1.10. Let z, y and & be points in RY. We can then adjust the triangle
inequality.
o —y[* < 2(|lx = € + 1€ —yl).
PrOOF.
o=yl =le—E+E—yP < (e = ¢+ —y)* =
=le =P+ 16—yl + 2l = ¢l -yl <
Sle =P 18—yl + e =P+ [ -yl =20z —F + 206 -yl
O
LEMMA II.11. If d(zg,2() < R and z € Ch(v,x0, M),
then there exists an M' = M'(R, M) such that z € Cy(ynzg, M').

PRrROOF. If d(zo,z() < R, then d(v,zo,7m25) < R, so we can make use of
Lemma I1.6:

o] = [ynol| < [ynzg — ynwol < CL(R)(L = [yng)),
which leads to,
= Pl < (1= yupl) + C1(1 = Fahl) = (14 Co)(1 = b))

and to,
(1 + [mzo|)(1 = [ynzo|) < (14 1)(1 4 C1)(1 = [yazg|) <
<2(1+ Co)(1 = Jyag) (L + [nag)).

Thus, we obtain,

(3) - |’7n$0|2 < 2(1 + Cl)(l - |7nx6|2)'
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Let z € Ch(vynx0, M), we then first obtain the following estimate using Lemma 11.10:
2 — b < 217 — uol? + Fynito — 3ut?).
Lemma I1.7 and the fact that z is in Cy(y,20, M) give us now
|2 = yzh|* < 2AM(1 = [yazol”) + Ca(1 = |yzh[*))-
By using equation (3) we finally end up with
2 — bl < 2ME( 4 R~ Fnatl®) + CoRY(1 — b)) =

= 2(2M (1 + C1(R)) + Co(R))(1 — |ynzh ),

MI

1.e.
|z = gl < M'(1 — |yzol),
which means that z is in Cy(y,2p, M') concluding the proof of Lemma II.11. O

2.3. Definition of the non-osculating limit set. Lemma II.11 implies that
Cr(ynzo, M) C Ch(ynzg, M') and hence Ap(zo, M) C Ap(xy, M'). Therefore we

can now define the following.

DEFINITION 11.12. The non-osculating limit set A;, is defined as

U Ah(l’o, M)

M>0

Note that Aj is independent of xg.
REMARK II.13. Lemma I1.9 gives us that
(4) o(Ar) = o(An(zo, M)), for any zg € B and any M > 0.

We are now finally in a position to state what we are aiming at, an analogue of

Theorem A.
2.4. The case of zero measure.

PrOPOSITION I1.14. Let 6 be the critical exponent for the discontinuously acting
subgroup I' of M. Then we have the following.

6< d;—l :>O'(Ah) :0,
or even something stronger,

ha <OO:>O'(Ah)=0,

2

(see page 90 for the definition of ha ).

REMARK II.15. On page 36 below, we give alternative ways to obtain the above
proposition.
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PROOF. Let 6 be the critical exponent (see definition A.7 on page 90) and
p=9%4
6 < p = hy(x,y) convergent < h,(0,x¢) convergent, see for example [33, p. 20] .

This will lead us to

20, z0) E ¢~ PO mzo) Z e—Plog(imi‘él) —
Yn €l Y€l
1+ |w¢0|)_ 1 1
= _— - |7nIO| s 1 - |"}/n770|
wnZE:F(l_h”xd 2 Ze: 4 Ze:
Hence,
d-1
(5) o< dQ;l = ha < 0 = Z (1 - |7nx0|2)7 converges.
2
Yn€l

We can now, due to Remark I1.13 | estimate the Lebesgue measure of our non-
osculating set.

o(00) = o(() U Chln 20, M)) < lim 3" 0(Ch(3 20, M),
k=1 n=k n=k

By Lemma II.8 this can be estimated from above by

d—1

lim 3° (M) (1= [l T =
n=k

> d-1
Jim D (1 = zol®) 2
=k

the tail of the series in eq. (5)

= Cy(M) = 0.

That is,
§ <%t = ha <00 = o(Ay) =0,
which is the end of the proof of Proposition 11.14. [

2.5. The geometrically finite case. In this section we will give a necessary
and sufficient condition for the non-osculating limit set to be of full (or empty)
measure by restricting ourselves to a special, but natural, class of subgroups of

M.

DEFINITION I1.16. A group I' is geometrically finite if some conver funda-
mental polyhedron has finitely many faces. (c.f. [8, p. 6].)

In the planar case, I' is geometrically finite if and only if I" is finitely generated.
We will, in this finitely generated situation, give a precise answer to the questions
above and obtain a better result than Proposition I1.14.

ProOPOSITION 11.17. IfT' is a geometrically finite discontinuously acting group
of convergence type then o(Ay) = 0.

PRrOOF. The following two facts hold.

(a): The non-osculating limit set Ay, is the set of non-tangential limit points
and parabolic fixed points.
(b): The parabolic fixed points in a discontinuous group are countable.
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(a) follows from the construction of the horocaps and from the fact that the
whole limit set A contains only non-tangential limit points and parabolic fixed
points when T' is geometrically finite, see for example Theorem 9.29 in [34, p.
281].

(b) follows simply from the fact that the elements in I' are denumerable (see
for example [25, p. 27]), and the fact that a parabolic element has only one fixed
point.

(a) and (b) give us now that the set difference Aj,\ A. is only a set of countably
many points. This tells us immediately that o(Ay \ A.) = 0 and by the use of
Theorem A noting that I' is of convergence type we end up with 0 = o(A.) = o(Ap)
ending the proof. [

REMARK I1.18. We can actually say more than this. Since the set difference
only consists of countably many points, we have

d(Ay) = d(A,),

where the set function d(-) is the usual Hausdorff dimension.

Furthermore, since we study the case where I" is a geometrically finite discontin-
uous group we will have that the total limit set A = Aj and the critical exponent
will be equal to the Hausdorff dimension of all three limit sets,

6 =d(A) =d(An) = d(A,).
(c.f. [34, p. 285].)



CHAPTER III

Thinness of the Archipelago

1. The Archipelago of '

In order to investigate connections between Kleinian groups and thin sets we
have to “put on some flesh” on the set of orbit points to make the point set visible
for our potential theoretic eyes. We do that by the following construction.

Let I' be a Kleinian group, see Remark A.4 on page 89. By the fact that I' is
discontinuous it is possible to find an rp > 0 such that the balls B; do not intersect
each other, where B; := {z € B;d(z,v(0)) < rr,v: € I'\ {I}}. Let E :=J; B;.
That is, E is the “fattened” orbit of I' and we call it the Archipelago of I'.

REMARK IIL.1. In the planar case, i.e. the Fuchsian case, we can be very precise
about the constant rp. A. Yamada showed in [45] that it is necessary and sufficient
to take the hyperbolic radius to be less than

rr < arcsinh 2cos(27/7) — 1 = .1314...
8cos(n/T)+ 7

In [26] and in a recent preprint [27] F. Gehring and G. Martin give similar estimates

for d = 3.

To make the pictures clearer and the proofs less technical, we start the analysis
with the planar case. In Section 5, we will study the higher dimensional case.
By construction, E covers the orbit of the origin by Euclidean balls with radii
comparable to the distance from the boundary dB. Using the similarity between
these balls (or disks) and the Whitney cubes (or squares) in some Whitney de-
composition, we can obtain relations between discontinuous groups and thin sets,
which was our main goal.

In Section 4 on page 27, we will study three basic Fuchsian Archipelagoes and
give the pictures of their orbits, see Figures I11.4, II1.5 and ITI.7.

2. Global properties

ProrosITION I11.2. Let E be the Fuchsian Archipelago of T' as above. The
following are equivalent:

o I' is of convergence type.
o F is thin with respect to capacity.
o F is thin with respect to measure.

21
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PROOF. Let us denote t; = 1 — |7,(0)|. By definition I' is of convergence type
if and only if 3, ¢; < co. On the other hand, by Definition B.5 on page 95, F is
thin with respect to capacity if and only if

4qx -
1 -
;qk(og Cap(QmE)) =

where {@1} is a Whitney decomposition and gy is the distance from the square @y
to the boundary. By Lemma III.5 below we obtain for the logarithmic capacity
the following comparisons,

o 4qy,
cap(Qr N E)

Hence we conclude that E is thin with respect to capacity if and only if

lo ~ c¢ and

Z qr < oo which is equivalent to Zti < 00, since

01153 Z l; < Z qr < c4by E Li

sy €D ENQr#0 iy €D
with the constants taken from the proof of Lemma II1.5. We have obtained the
first equivalence:

I is of convergence type < FE is thin with respect to capacity.

By Definition B.6 on page 95, E is thin with respect to measure if H(END;) — 0
when ¢ — 0. Suppose now that I' is of convergence type and consider the upper
half-plane case.

H(END,) < > 21,
the tail
where we by the notation Y~ ;.. .y mean that we sum over all indices k£ such that
the Whitney cube @)y intersects the set £ N D;. The sum on the right tends to
zero with .

Thus,
I is of convergence type = FE is thin with respect to measure.

On the contrary, let us now assume that E is thin with respect to measure. The
essential projection E* of E is defined as

E*={X eR:Vt>0dysuchthat 0 <y <tand (X,y) € E}.

We now choose an M, 1 < M < M,., where M, is a constant only depending
on our hyperbolic radius constant rr which forces us to choose an M close enough
to 1. Let us then construct a non-tangential limit set A.(0, M) with respect to
I' and the parameter M (cf. Remark 1.5 at page 14). The construction in the
unit ball is carried out in [25] but can immediately be applied to the upper half-
plane as well. Since for every B; in E N D; the cap C(v;(0), M) :={X € 9B :
| X —7(0)] < M(1 — |7(0)])} lies in the projection of the disk B;, by the choice
of M. We have that

A(0,M) C E7,

see Figure 111.3.
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FiGURe IIL.3. By taking the opening—angle small enough (i.e. M
small enough), the vertex of the cone will be contained in the essen-
tial projection of K.

The non-tangential limit set is defined as

A= A(G) = | A0, M).

M>1
But the limit set is just “slightly dependent” of the parameter M. In fact, the
following holds, where o(-) denotes the normalized Lebesgue measure on 0B,
o(A:) = o(A(0, M) for all M > 1,
see [25, p. 29]. We have then
o(E*) > o(A(0,M)) = o(A.).

Since we assumed that £ was thin with respect to measure, we can use Lemma
6.5 in [4] and deduce that o(E*) = 0. Hence o(A.) = 0 and we can apply [25,
Theorem 5, p. 29] which states the following: If I' is of divergence type then
o(A.) = 1. We therefore conclude that I' can not be of divergence type giving us
that the series >, t; must converge. That is

G 1s of convergence type < E is thin with respect to measure.
We have proved the proposition. [

Let us use a variant of the Wiener type condition in Definition B.2 on page 94.

DEFINITION IIL.3. Suppose that {Qr} is a Whilney decomposition of B, then
we define the following.

Wo(r) == 3" (au/pi(7))?,

where g = dist(0B, Qx) and pr(7) = dist(Qk, 7). The notation Y. means that we
sum over all indices k such that Q. N E # 0. (c.f [20, p. 88].)

REMARK III.4. We say that two positive functions u and v are comparable, i.e.
u = v if there is a constant C' > 1 such that C~'u < v < Cu holds.

LEMMA IIL5. Let F be a Kleinian Archipelago, and let t; = 1—|v;(0)|, Ri(7) =
dist(B;, 7). and qx, pr(7) be as above. Then

Ri(7) = pr(7) i QN B: # 0.
cap(E N Qk) ~ ¢
W(r) ~ Wy(7).
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PROOF. Suppose that {Q)x} is a Whitney decomposition such that
(6) c1qr < diameter(Qy) < caqr where ¢ > 0, ¢y < 1

The balls B; are controlled too, by the choice of the hyperbolic radius!, in a
similar way,

(7) bit; < radius(B;) < byt; where by > 0 and by < 1.

We can now get the first two estimates in the following way. Let ();, be the
Whitney cubes (or squares) that intersects the ball (or disk) B;. Then

¢i, > ti —radius(B;) — diam(Q;, ) > t; — bat; — c2q;, .

Thus we have by putting b3 := };gz the estimate ¢;, > bst;. In a similar way we

have by by := 1 + by that ¢;, < bst;. Thus ¢; =~ ¢;,. The argument holds without
any change when we compare p; and R;. Hence

bsRi(7) < pi (1) < baRi(7).

The first two statements in the lemma are shown.
Let us now turn to the last two estimates. We have also a size relation between
intersecting balls and cubes. Let Qx N B; # () hold. Then we have the following

estimate. ‘
diam(Qy) U c1bst;
diam(B;) — 2byt; — 2bot;

So, by letting ¢35 := 6216623 we have that
(8) mkin(diam(Qk) 1 Qr N B; £ ) > cgdiam(B;).

The number of Whitney—cubes that intersect a hyperbolic ball is then estimated

above by ¢4 := (61—3 +1)%. Analogously, we can get an upper estimate of the number
of balls By, that intersects a Whitney cube @y by ¢, := (CL, +1)%, where ¢ := %
3

The logarithmic capacity of a square of side-length @ is bounded above by 0.6a,
see [30, p. 172]. Therefore we have

I . 0.6
cap(Fr) = cap(E N Q) < cap(Qr) < 0.67§d1am(Qk) < 7562% < G,

where we use the notation Ej := F N Q. Hence

) (1og<ca§(qgk)>)_l < (1og<4>)_1 <1

It follows that
(10) W(r) < Wy(r).

We will now obtain an opposite inequality.

W= 3 <qk/pk<r>>2(1og< o >)_1

ENQr#0

v

>N (Qki/Pik(T)f(log(wjig)))_ 7

sy €l

1Qur choice is 7.
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where the E;, is chosen as the largest? Ej, that intersects the ball B; (i.e. cap(F;,) =
maxy cap(Ey N B;)). Let us estimate the logarithmic capacity of E;, .

1

1
cap(F;,) > acap(B) > —b1t > _blb Gix s

C4

where we used that the logarithmic capacity of a ball of radius a is a, see [30, p.

172]. Hence
4q < 4egby

cap(Er,) = by

Let ¢5 := (log degby ) then

BTG Dees > ~es 3 (an/pulr))

€ BrQs#0
We conclude
W(r) < Wo(r) < ewW (7).
O

We are now ready to state a result concerning the relation between the non-
osculating limit set and rarefiedness. Let CA, denote the set OB \ Ay

ProrosiTION 1I1.6. If h% < oo and 7 € CAy, then E is rarefied at .

PRrROOF. To simplify the notation let us denote as above ¢; := 1 — |v;(0)| and
R; = Ri(7) := |1 — ~(0)7| = |7(0) — 7|. Let us also recall the notion of the
non-osculating limit set, A,. For the definition see 11.4 and 1I.12.

Let 7 € 0Ay, then 7 & Upr50A%(0, M) or in other words 7 € CA,(0, M), for all
M > 0. Let us now fix M > 0 then

r € CAW(0, M) = C () L) Ca((0) ['j

J=li=j

C} % M)

||Dg

This is a “lim inf”—construction telling us that there exists a natural number I =
I(M) such that if ¢ > I then 7 & Cy(7:(0), M) .

Aikawa gives in [4, Theorem 3.2] (see Theorem L on page 94) a necessary and
sufficient condition for a set to be rarefied at 7 (this is also implicitly given in

[19]). E is rarefied at 7 if

(11) W) = 3 g (log(4gx/ cap(Ee)) ™

k pr(T)

where we have the same notation as in Lemma II1.5 above. Let us now define an
auxiliary series in the same spirit as Wy in Definition 1I1.3 above.

r !
(12) Wo () := >, (ax/pi(7)).
(Recall that we only sum over those k for which Qx N E # @) Since we have in
Lemma I11.5 showed that ¢; &~ q; and R;(7) &~ pr(7) if Qx N E # (), and that the

number of intersections are controlled (by ¢4, ¢}). Thus we have that

S (a/ pe(7)) & Dk Ri()).

k3

Zin a capacity sense
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Let us divide the series into two parts.
D (6 Ri(7)) = Y _(ti/ Ri) + D _(t:/ Ri).
i <1 i>T
Denote the finite summation co = 37, <;(t:/R;). We see that ¢y < I. For the other
series we have ¢ > [ which implies 7 € Cy(7;(0), M), which in turn implies

[36(0) =7 > /M(1 — [5(0)) and R; > /Mt
by the construction of the horocap, see Definition I1.2. Therefore,

Z(t/R <CO+Z\/— o+—zl/2

7 i>1 Z>I

Since h% < oo the series )4 t}/2 converges. Hence we have that WJ(7) < oo and

it follows that W7 (7) < oo by Equation (9) in the proof of Lemma II1.5. Hence £
is rarefied at 7. O

REMARK IIL.7. Let us argue as in the proof above, where we used arguments
from the proof of Lemma III.5 to obtain the following chain of comparisons.

(13) W(r) ~ Wi (7) = 3, (ak/pi(T)) ~ > (i Ri(7)).

It h% < oo we can use Proposition 11.14 which tell us that the non-osculating limit

set has empty measure, i.e. o(A;) = 0. Hence we have the following corollary.
CoOROLLARY IIL.8. If h% < oo then E s rarefied a.e..
REMARK II1.9. For the case I is finitely generated, see Corollary II1.18 below.

3. Local properties

Except Proposition II1.6, all the above propositions are global. Let us now
turn to questions of local behavior. What can we say about a given point on the
boundary? To answer this question, we will again consider the limit sets A. and
A}, of the discontinuous group T'.

PROPOSITION 1I1.10. Let I' be of convergence type. If 7 € CAy, then E is
minimally thin at 7.

REMARK III.11. This result will be considerably sharpened in Theorem 1V.12
on page 39.

PROOF. Since 7 is in [Aj,, we can argue as in the proof of Proposition I11.6 and
obtain the following estimate,

Wo(T)%Z(ti/RZ‘V:Zt/R —}—Zt/R

Denote the finite summation c = Eig[(ti/Ri)Q- For the other series we have ¢ > [

which implies R; > \/Mt;. Therefore,

2ot/ Ri)* <

7 i>1

Mt _CI+MZt

>

Since I' is of convergence type, > ;5;t; < oo and we have that Wy(7) < oc.
Lemma II1.5 gives us then the result. O

ProposiTION 1I1.12. If 7 € A, then E is not minimally thin at 7.
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REMARK III.13. This holds independently of the value of 6.

PROOF. Since 7 is in A, = UpsoA:(0, M), there exists M > 0 such that
T € A(0, M) = N2, UE,; C(7:(0), M). This is a “lim sup”—construction and we
conclude 7 € C(7;(0), M) for infinitely many ¢, say, for all ¢ in the index set [(M).

We will now estimate the series.

i) > 5, (1)

ieI(M) |1 —:(0)7

Since 7 € C(7;(0), M), we have

[1=7(0)7] = [7:(0) = 7[ < M(1 = [7:(0)]).

Hence,
1 1
Wor)Z 2 sp=7m 2 =
1€I(M) M? M2 1€I(M)
This implies that also W(7) = oo by Lemma II1.5 and we conclude that E is not
minimally thin at 7. We also note that we only use the fact that the cardinality

of the index set I(M) is infinite. We do not use any convergence properties. That
is, the result is independent of 6. [

REMARK III.14. Since we from Lemma II1.5 know that ¢; and g are comparable
and the number of intersections are bounded (by the estimates ¢4 and ¢}), we will
from now on not make any difference in notation of ¢x and ¢; (or in py and R;)>.

In the following section, we take a look at some concrete examples of orbits of
a discontinuous group to get a picture of the situation.

4. Three basic examples of orbits

Let us plot three basic but fundamental cases. First an orbit of a group gener-
ated by a single parabolic element in Figure II1.4. In Figure II1.5 we do the same
thing for a hyperbolic mapping. We then combine them in Figure IT1.7.

For simplicity, we will give the generators in the upper-half-plane-model and
then use the map z — % to transform the picture to the disk-model.

A parabolic orbit

FIGURE III.4. Here is an example of the orbit of a discontinuous
group. The group is generated by the parabolic mapping z — 2+ 1
in the upper half-plane which is then conformally mapped onto the
unit disc. The critical exponent 6 is % and the Fuchsian Archipelago

is minimally thin but not rarefied at 1.

3If we want to be more careful, we can always argue as in the above proofs.
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4.1. Parabolic. In the parabolic example in Figure I11.4, we have that 6 =

D ol

and the Fuchsian Archipelago is not rarefied at 1. Let us give a proof of thes
statements by stating and proving the following standard lemma.

LEmwMA TI1.15. For a Fuchsian group with a single parabolic generator we have

that
e_d(oﬂ/no) ~ i
n2

PRrROOF. We expand the left hand side.
e=000) _ L2 P00 oy )
1+ 70|

If we now use the fact that the orbit points approach the fixed point parabolically,
i.e. “y = z?-like”, and then use the so called normalization map depicted in in
Figure VI.10, we will by the similarity of triangles get that

1— |00 1
V1= 1m0l "
Hence,
1
_d(07 "0) ~ ___
e 1 5
O

We use the lemma above to compute the Poincaré series.

b= 3 e t0m0) 5 3 L :{=°O T
i1 s >

2s
'YneF WnEF n < o0

?

From this and Lemma A.9 we see that 6 = % To see that the Fuchsian Archipelago
£ is minimally thin at 1, we use the Poincaré series in the following way. By a
simple geometry argument we see that
ot
Wo(l) ~ "~ & hy < oo, wheret, =1—|v,0]|.
( ) Z \/t—Q 9

n

What about rarefiedness at 17 Well, we know that F is rarefied at 1 if W]
converges, see equation (13) on page 26. Let us do the same geometric argument
as above.

1 1y ~h

WS(U“Z\/Z i

However, the condition W(1) converges is not a necessary condition for rarefied-

= OQ.

ness. We have to examine the situation more carefully. Let us look at the sufficient
and necessary condition given in Theorem L on page 94.

We see there that there is a possibility to divide £ into two parts E’ and E”,
where, to obtain rarefiedness, W’ (1, E') < oo. It is not difficult to see that if we
choose a B(X;,r;) to cover each hyperbolic ball B; in the Fuchsian Archipelago,
we will obtain the same W] condition for E”. But maybe we can choose the balls
B(X;,r;) in a more efficient way to cover more than one island for each ball?
Yes, we can, but not more efficient then we gain a factor $ for the last series in
Theorem L, where ¢ is the step length when we have conjugated our parabolic
mapping to have the fixed point at oo (¢ = 1 in Figure II1.4) in the upper half-
plane. To obtain this we just study the upper half-plane where the orbit points
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lie horizontal. We cover them one by one and compare that contribution to the
series with a bigger covering.

We conclude that for our studied case, W (1) converges is both a necessary and
sufficient condition for E to be rarefied at 1.

Hence we see that the Fuchsian Archipelago, F, is not rarefied at 1 if " is a
Fuchsian group with a single parabolic generator.

4.2. Hyperbolic. Next, we turn to a Fuchsian group generated by a single
hyperbolic map. Let us go to the upper-half-plane-model and choose ¢ : z — 2z
as the generator. Let us compute the critical exponent 6 for this group (see

A hyperbolic orbit

FiGURE II1.5. This is another example. The group is generated by
the hyperbolic mapping z = 2z in the upper-half-plane. (In order
to make the picture more visible, we choose as the base of the orbit
not ¢ but ¢ 4+ 1, in the upper-half-plane.) ¢ = 0 but E is neither
minimally thin nor rarefied at 1, or at —1.

Definition A.7). Since we have chosen to map the unit disk to the upper-half-
plane by letting 0 go to ¢, we are interested in the orbit {7,:}, see Figure I111.5. We
have then that the whole orbit lies on the imaginary axis. Therefore, consecutive
hyperbolic distances between the orbit points can easily be computed.

= log 2.

d(ynt, g(mi)) = Im(g(7,))

Hence the orbital counting function n(r), i.e. the number of orbit points 7, such

that d(z,vy,t) <r,is
2
i) = (g )
log 2

where <%> stands for the integer part of % That is, n(r) &~ r. Thus, by the
definition of §, we get immediately that 6 = 0.

4.3. Combination. Let us now study a Fuchsian group generated by the two
generators above. We can not do that right away, we have to separate the fixed
points first. We accomplish that by conjugating the parabolic mapping. Let the
group be generated by the following two maps, z — h(f(h7*(2))) and z — 2z in
the upper half-plane, where f(z) =z + 1 and h(z) = 2;_—"'11

We have to avoid a situation where a parabolic element and a hyperbolic have
a common fixed point, that would generate a group which would not be discon-
tinuous, see [9, Theorem 5.1.2].

z2—4

Since h(f(h™'(2))) = %=, we have by the conjugation moved the fixed point

2—3"

from oo to 2. See Figure I11.6 for the result in the unit disk. In Figure IIL.7,
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that means that we have have the hyperbolic fixed points in 1 and —1, and the

parabolic ditto is in e arctan(4/3)i,

A parabolic orbit

FI1GURE II1.6. The parabolic fixed point is now in a new position.

FIGURE II1.7. Here we combine a parabolic and a hyperbolic gen-
erator. We add the hyperbolic generator from Figure I11.5 with the
parabolic generator in Figure I11.6.

5. Higher dimensions

Some of the above results are still valid in higher dimensions, d > 3.
Proposition III.2 holds without any changes.*

“Remember that T is of convergence type iff > (1 — |y;|)?~! converges.
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ProprosITION 1I1.16. The following are equivalent:

o I' is of convergence type.
o F is thin with respect to capacity.
o F is thin with respect to measure.

PROOF. I'is of convergence type if and only if 3", #1971 < co. By definition, E is
thin with respect to capacity if and only if -, ¢; cap(F N Q;) < oo, where cap(-) is
the Newtonian capacity. We can now adjust Lemma II1.5 by natural changes with
respect to dimension, i.e. cap(Q;) ~ ¢i % and cap(By) ~ t{7? (see page 165 in [30])
and let the constants ¢4 and ¢ instead be(é + 1)d and (i + 1)d respectively.

This will lead to

> gicap(E N Q;) < oo if and only if Etg_l < 00.
i %

Hence I' is of convergence type if and only if £ is thin with respect to capacity.

Now, let us assume that I" is of convergence type and for convenience, let us be
situated in the upper half-plane. The Hausdorff~type measure, H(-), is used to
check if £ is thin with respect to measure.

HEND,) < > (2t)%,

the tail

where D, is the hyper—strip {x € D; 0 < ay <t, @ = (21,...,24)}. Hence E is
thin with respect to measure.

On the contrary, assume that F is thin with respect to measure. Then there
exists a constant M > 1 such that the non-tangential limit set A.(0, M), has the
following property.

A:(0, M) C E*, the essential projection of E.

Lemma 6.5 in [4] tells us now that the Lebesgue measure of £*is 0. In a remark [25,

p. 29] we have o(A.(0, M)) = o(A.). Hence we have
0=0(E") > o(A(0,M)) =o(A,).

Thus, o(A;) = 0 and by Theorem J on page 91 we conclude that I is of convergence
type. 0

We also have validity of a generalization of Corollary I11.8

ProPOSITION III.17. If ha-r < o0 then E is rarefied a.e.

2

PROOF. Let d > 3. E is rarefied at 7 if

W7 (1) := ;# cap(FE N Q) < .

See Theorem L. on page 94 for the complete statement and [4, Theorem 3.2] for
the proof.
As above we have for the Newtonian capacity

cap(E N Q) ~ cap(By) ~ 1572,
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As in the proot of Proposition II1.6 we know there is an integer K such that
7 & Cr(7%(0), M) for a fixed M and all £ > K. For those k:s we have the estimate
Ry > «/Mt;. Hence the following holds.

o~ L(rl) -

k

sla) cslEn) -

k<K k>K
<K+Z( L )d_l Kt — Y ur <
= v = —aT k 0.
s \V Mty T ksK

Hence E is rarefied at 7 and thus almost everywhere, since o(A;) = 0 if har < o0,
2
see Proposition I1.14. O

Let us now also consider the case where I' is geometrically finite (or in the planar
case [ is finitely generated).

COROLLARY III.18. Let d > 2.
If T is geometrically finite and 6 < d — 1 then E s rarefied a.e.

PROOF. Since I is geometrically finite ¢ (the critical exponent of I') equals the
Hausdorff-measure of the total limit set, that is d(A) =6 < d—1. Thus o(A) =0
and almost every point 7 on the boundary is in the complement of A. Since 9B\ A
is an open set there is an open ball centered at 7 and with radius r, such that the
ball does not intersect E. Therefore we have for all k, r, < Ri(7) and as in the
proof above,

E \TT Tk

Hence E is rarefied at 7 and thus for almost every point on the boundary. [

Even the two propositions dealing with local behavior have their counterparts.
ProroSITION 1IL1.19. If 7 € CA, and hy_y < oo, then E is minimally thin at .

REMARK II1.20. Theorem IV.12 will give a much stronger statement.

ProposiTiON 1I1.21. If 7 € A, then E is not minimally thin at 7.

The proofs of the above propositions are straightforward generalizations of
Propositions I11.10 and III.12 once we know what minimal thinness means in
higher dimensions. The following lemma provides us with that information.

LEMMA I11.22. Let d > 3 , E as above and {y} the elements in I'. E is
minimally thin at 7 € OB if and only if

E<71 _MN')d < .

|1 — ’Yk(o)T
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PRrOOF. In Theorem K on page 94 a necessary and sufficient condition for a set
E to be minimally thin is given, i.e. £ is minimally thin at 7 if and only if

Zpk((]f—)d cap(F N Q) < 0.
k

(As usual ¢ is the distance from @i to the boundary, and pg(7) is the distance

from Qi to 7.) If we transform this condition in the usual manner, see the proof
of Lemma IIL.5, and use the fact that cap(Ey) ~ t{7?, we will end up with the
following convergence criterion.

> (tk/Ri)? < o,

&
which is the desired condition. O

5.1. The main result. Our main result concerning the global size of £ follows
now easily from the Propositions II1.2, IT1.12, TI1.16 and II1.21 above.

THEOREM 1I1.23. Let, for d > 2, E be a Kleinian Archipelago as above. Then
I' is of convergence type if and only if E is minimally thin a.e. on the boundary.

PRrROOF. Propositions 111.2 and II1.16 gives the necessary part, since we know
by [4, Theorem 1.2] that either thin with respect to capacity or thin with respect to
measure gives minimal thinness a.e.

The sufficient part is obtained by the following reasoning. Suppose that I' is
not of convergence type, then we know that the conical limit set has full Lebesgue
measure. That is, almost every point on the boundary is in the conical limit
set. If 7 is such a point, we know by Propositions 1I1.12 and II1.21 that £ is not
minimally thin at 7. We conclude that E is not minimally thin at almost every
point on the boundary. [
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CHAPTER 1V

Generalized limit sets and convergence criteria

In the previous chapters some results were established concerning minimal thinness
of hyperbolically covered Kleinian orbits and two different limit sets, the non-
tangential and the non-osculating limit set. We will here generalize some of these
results to a general family of limit sets. We will also sharpen some of the above
results with the help of these more general limit sets.

The family and its notion are cited from [33], where we also will collect some
results to be able to do the above mentioned generalizations.

1. Notations, definitions and basic relations

Let B be the d-dimensional unit ball and dB its boundary. The following
definition is cited from [33, p. 5].

DEFINITION IV.1. Let a € B and k,a > 0. We define
a
|al

Let T' be a Kleinian group that preserves the unit ball, i.e. ifd =2 ' is a

Ia:k,a)={z€0dB: < k(1 — |a])*}.

xr —

Fuchsian group. We denote the elements in I' by ~,,.
Let us also cite page 23 in [33] for the following definition.

DEFINITION IV.2.
LO:k,a)= [ U 1(7(0) : k,a).
m=1n>m

From the definitions of the non-osculating limit set of 0 and M in Definition 11.4
and the non-tangential limit set of 0 and M at page 14, we obtain the following.

LEMMA IV.3. For the non-tangential

L(0: k1) =A(0,V1 + k?),

and for the non-osculating limit set

k?

1
L . k - ) = A/X - ).
(O 72) h(()? 2 )

PROOF. Let us reformulate with the help of the parameter [

I(a:k,a)={z € 0B: < k(1 —la])*} =

a
r— =
la

|
={x €dB: |z —a| <l —|a])*}.

35
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Let us for simplicity write ¢ for (1 — |a|), we will then obtain the following
asymptotic! relation #2 + k?t2% = [?t?% i.e.

(14) [ = \Jt20-0) 4 2,

Thus we immediately obtain the first result for @« = 1 and the definition of the
non-tangential limit set of 0 and M.

If « <1 we have that [ — k as t — 0. Deﬁnition IV.2 tells us that to obtain
the limit sets we will produce a lim sup process®. In other words: we are in fact
only interested in the limit case as ¢t — 0.

Let us now, to consider the latter statement in the lemma, put a = l

1 1—|—|a
{z€dB:|z—al’< EkQ( la])} = {z € OB : |z — a| < ky/ V1 —|al}.

Since o < 1 we have that

{x€ 0B : |<k\/1+|a\/1—|a}—>{;ﬂ€@B |x—| ||<k(1—|a|)%}

as |a| — 1, which is what happends when we construct the limit set. We obtain

the last statement in the lemma. O

To get the opening angle independent non-tangential limit set one takes the
union over all opening angles. We can do the same thing in our generalized
situation.

DEFINITION 1V.4. Let us denote the a-limit set by

=JL0:k a)

k>0

Let us cite Theorem 2.1.1 in [33].

THEOREM B. Let v be a discrete group acting in B for which the series

> (1— I7(0)) D2 converges.

~el

Then |L(a)| = 0, where | - | stands for the Lebesque measure on the surface 0B.

Thanks to Lemma IV.3 we have that the non-osculating limit set, see Defini-
tion I1.12, is in fact ,C(%) We can therefore obtain the result in Proposition 11.14
by applying Theorem B above for a = % We thus have an alternative proof for
that result.

REMARK IV.5. Let me here indicate and give the reference to two other ways
to obtain Proposition 11.14.

e We can use Lemma I1.8 together with the Borel-Cantelli type result in [40,
p. 218].

1t—>0
%e. Moo 1Un>m
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e One can rather easily see that the, by Pommerenke in [35] defined set of
oricyclic points, is the complement to the non-osculating limit set. Further-
more, I' is said to be of fully accessible type if the set of orocyclic points
is of full Lebesgue measure, see [35]. Varopoulos showed in Proposition 9.1
in [41] that for a Fuchsian group that satisfies h;_ < oo the group is of fully
accessible type.

Nicholls defines, on page 37 in [33], the following limit set.

DEFINITION IV.6. The horospherical limit set, H, is the union of points
& € OB such that for every a € B there is a sequence {v,} C ' such that

|£ - ’Vn(a)|2
1 — |ya(a)l

THEOREM C. Let v be a discrete group acting in B. Then the horospherical
limit set is given by

— 0 asn — oo.

H=)L(a:k,1/2).

k>0

REMARK IV.7. Note that the horospherical limit set is a subset of the non-
osculating limit set. It can be rather easily shown that the set difference, A, \ H,
is the so called set of Garnett points. Theorem 2.6.6 in [33] tells us that the
Lebesgue measure of the set of Garnett points is always zero.

REMARK IV.8. The author was kindly informed by L. Ward that in [32], K.
Matsuzaki defines in fact the non-osculating limit set. He calls it the weak horo-
cyclic limit set and denotes it by Aj.

2. Equivalent geometric interpretations

PROPOSITION IV.9. Let r, be the ray from the origin to 7 € OB and let a < 1.
The following are then equivalent.

o 7 isin L(0: k).

o There is a sequence {v;} of members in I' such that ;0 — 7 and such that

cosh(d(7,0,7,)) < k(cosh(d(’yi0,0))) _a.

o There is a sequence {7;} of members in I' such that v,0 — 7 and
d(7:0,7r;) < (1 — @)d(7;0,0) 4+ alog 2 + log k.

PROOF. Theorem 1.2.1 in [33] gives us an expression of the hyperbolic distance
to a geodesic between ¢ and n on the boundary. In our case we put ¢ = 7 and
n = —7 and obtain the following.

_ 270 = 7[00+ 7]
7+ 7|(1 = [0P)

when 4,0 is close to 7. In other words

cosh d(7;0,r;)

|v:0—7]
1=|7:0]

which is approximately

R,
coshd(7;0,r;) ~ . for ), N 7,0 # 0 and 7,0 close to 7.

n

What about the distance to the origin? Since we have that

1+ [d]
1 —|al

d(7:0,0) = log (see for example [9, p. 38]),
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we immediately obtain the following.

Lepop
B
That is, cosh d(~,0,0) ~ L as |y,0] — 1.

tn

By the Definitions IV.1 and IV.2 we have that 7 € L(0: k,«) if and only if
there are infinitely many ~; € I' such that 7 is in /(7,0 : k, «). That is,

cosh d(7,0,0) as |,0] — 1.

70
70

holds for a sequence of elements 7; in I' such that 7,0 tends to 7.

T —

< k(1 — [0])"

Since the orbit can only cluster at the boundary, we will have for our Whitney
construction that p, < kq¢* (or p./g. < k(1/q,)'~*) for infinitely many n where

Qnﬂ%() 75 @

Combining the parts above we get the following.
cosh d(7;0,7,) < k(cosh d(~,0,0))'

for a sequence {v;} in I' such that 4,0 tends to 7 if and only if 7 € L(0 : k, ). The
first equivalence is shown.

For the second one, we see that cosh d(7,0,0) tends to %ed(%w) as ¢ tends to oo.
Furthermore, since o < 1

ed(’y,‘O,’rT)
2
From the first equivalence we have then that 7 € L(0: k, «) if and only if, for

as 1 — oQ.

cosh d(v,0,7r;) —

infinitely many ~; € I', the following inequality holds.

ed(’yz'O,T,—) L ed(’yZ'O,O) 1-o
< .
2 2

Hence, 7 € L(0: k, ) if and only if
d(7:0,7r;) < (1 — a)d(7:0,0) + alog 2 + log k

holds for a sequence {7;} of members in I' such that 4,0 — 7. O

REMARK IV.10. From the above we see that if there exists a sequence of orbit
points tending to a boundary point 7 in such a way that the (hyperbolic) distance
from the points to the ray r, is bounded by a constant, then 7 € A.. Furthermore,
if there exists a sequence of orbit points tending to 7 such that for each point in
the sequence the distance to the ray r, is less than half the distance to the origin,
then 7 is in the horospherical limit set, H. (Compare this with Definition IV.6.)

3. The non-minimally thin set 91

In this section we will show that, 91, the set on the boundary where the Kleinian
Archipelago is not minimally thin, is almost the non-tangential limit set A..

We can introduce a strong type of the limit set £(«) by taking the intersection
instead of the union in the following manner.

DEFINITION IV.11. We define the strong a-limit set to be
Li(a)=)L0O0: k).

k>0
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Thus we have that H = /35(%) and that
0B D L(a) D Ls(a) D L(a+¢) forall e > 0.

Propositions II1.12 and II1.21 above says that if 7 € L£(1) then the Kleinian
Archipelago is not minimally thin at 7. We will in this section study the op-
posite relation.

We will show the following theorem.

THEOREM IV.12. If « < 1 and 7 € Ls(a) then the Kleinian Archipelago is
minimally thin at 7.

In the proof we will need the following result which we state in the form given

in [4, p. 357].

THEOREM D. (e.g. [14] (for the planar case), [2, p. 440], [15, p. 98]) Let us
consider the upper-half-space

H={:=(X,y) eR": X = (21, 22,... ,24-1) € R and y > 0}

and the subset
Ey={z=(X,y) e R": 0 <y < f(IX]},

where f is a positive non-decreasing function on (0,00). Then

/() dr < oo.

x

Ey is minimally thin at 0 iof and only zf/
0

PROOF OF THEOREM IV.12 . Let 7 ¢€ L (a) then there exists a k& > 0 such

that 7 € L(0: k, @), i.e. there are only finitely many orbit points in the truncated
a-"cone”, Cy(k, 7), which we define as (H \ £f) N B(0,1) where

To obtain E, we fatten the point sequence. We will have to take care of the extra
intersections — which may be infinitely many, see Figure IV.8 where the point
sequence lies outside the “undashed” a-cone, but every hyperbolic ball intersects
it.

We will now show that it is possible to get a slightly smaller cone by changing
k to % in C, so that the number of balls B; in E that intersects Ca(g, 7) is finite.

y

FIGURE IV.8. The undashed curve represents z = ky® (i.e. z =
f~Yy)) and the dashed line x = ky* — py, with p = p(rr).

We see that no balls B; in £ can reach inside the a-cone C,(k,7) more than a
hyperbolic distance rp. In the H model, the hyperbolic distance is approximately
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the Euclidean divided by the distance to the boundary (i.e. y) for small horizontal
hyperbolic distances. Due to the fact that the hyperbolic distances we are inter-
ested in are bounded by the constant rr we can find a p only depending on rr
such that a hyperbolic ball with radius rp with its (hyperbolic) center on the curve
x = ky® does not intersect the upper “dashed curve” = = ky® — py, see Figure
IV.8.

We see that

k k)
—y“ < ky® — py holds for every y < [ — :
2 2P

Since I' is discrete we know that the orbit can not have a cluster-point inside H,
hence there are only finitely many +; € I such that

o (3

We conclude that the number of balls B; in £ that intersect Ca(g, 7) is finite.
Now, let us split £ into two parts

1—a

k k
FEy = E\Ca(§,7) and By = F ﬁCa(g,T).

From Theorem D above with f(z) = (%x)i and the fact that minimal thinness

is a local property, we know that A = H\ Ca(g, 7) is minimally thin at 0. Since

A D E; we have that F; is minimally thin at the origin.
For the “inner set” F,, we consider a slightly bigger set

E2 = U Bz
BinCao(£,7)#£0

By Lemma II1.5 and the fact that B; intersects CQ(S,T) at most finitely many

times give us the following W-series for Fj.
W(T, Eg) < WQ(T, Eg) < oQ.

In other words, £5 is minimally thin at 7, c.f. Theorem K on page 94.
If we put this together we will obtain

W(r, E) < Wo(r, E) < Wo(r, Er) + Wo(r, E2) <

S CIV(W(Ta El) + W(T7 EQ)) < o0,

where ¢y is the constant from the proof of Lemma II1.5. We have shown that the
Kleinian Archipelago £ is minimally thin at 7. [

3.1. The Hausdorff dimension of 9. From Propositions I11.12 and III1.21
we learn that A, is a subset of 9, but Theorem IV.12 tell us that for all o < 1
Ls(a) D M where we have that £,(1) C £(1) = A.. This implies that the sets N

and A. can not differ very much. In fact, they are of the same dimension.

COROLLARY IV.13. Let I' be a non-elementary Kleinian group. The Hausdorff
dimenston of the non-minimal thin set M equals the critical exponent of I'. Or in
other words, A. and N have the same Hausdorff dimension.
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PROOF. Let us view the situation in the upper half space H. As usual, let us
by é denote the critical exponent of I'. That implies,

(15) > (1 = 17:0])°** < oo for all & > 0.

vi€l
Let us now try to estimate the 1-dimensional Hausdorff measure of £ (). In the
construction of the limit set £;(«), we use the the a-caps, see Figure 11.2 where
a %—cap is drawn. The radius of a ball in R4, centered at |1::8|7 that exactly covers
the a-cap at 7,0 is k(1 — |v;0|)%, see Definitions IV.1, IV.2 and IV.11. Hence we
get the following estimate of the one-dimensional Hausdorff measure.

Hy(L4(0)) < K1~ 0])°

tail

By equation (15) we have that

Hase (L£4(@)) < 3R (1= [30])° 5 = Y k(1 — [0])™ < oc.

@ N R
tail tail

ote for

Thus we see that the Hausdorff dimension of £s(«) is less then or equal to
any € > 0. Since Ls(«) is independent of ¢, we have that dim(L,(a)) < g.

Theorem IV.12 gives us that M C Ly(«) for every o < 1. Thus we have
immediately that the Hausdorff dimension of 91 is less then or equal to g, but
since M is independent of a we obtain dim(9%) < 6. Propositions I11.12 and I11.21
give us that A, is a subset of 91. Since I' is non-elementary, Theorem 1.1 in [13]

gives us that 6 = dim(A.). Hence, dim(M) = 6. O

3.2. The geometrically finite situation. The question is now: Is in fact
N = A7 If we limit ourselves to study groups that are of geometrically finite
type, we have the following affirmative answer.

COROLLARY IV.14. IfT" is a geometrically finite discrete group then M = A..

PROOF. First, we note that 91 is a subset of the limit set A since if 7 is not in
A then there exists a neighborhood in the unit ball of 7 such that the Archipelago
of I, £, do not intersect that neighborhood.

As in (a) in the proof of Proposition I1.17, we have that for a geometrically
finite group the limit set A is the union of non-tangential limit points (i.e. A.) and
parabolic fixed points, see [8].

Let now 7 be a parabolic fixed point. We have then that 7 ¢ £;(«) for all®> o > %
By choosing an « € (%, 1), we have from Theorem 1V.12 that £ is minimally thin
at 7. We conclude that 91 C A, and we are done. [J

3We have in fact 7 ¢ Ls() (= Ap) but 7 € E(%) if 7 is a parabolic fixed point.

1
2



42 IV. GENERALIZED LIMIT SETS AND CONVERGENCE CRITERIA



CHAPTER V

Boundary Layers
Joint work with H. Aikawa

REMARK V.1. This chapter is in fact [6]', which is joint work with professor
Hiroaki Aikawa, Shimane University, Japan 2.

The concept of boundary layers, introduced by A. Volberg in [42], is generalized
from subsets of the unit disk to subsets of general non-tangentially accessible
(NTA) domains. Capacitary conditions of Wiener type series of both necessary
and sufficient type for boundary layers are presented and the connection between
boundary layers and minimally thin sets is studied.

1. Introduction

In [42] A. Volberg studied domains in the plane with harmonic measures compa-
rable to the Lebesgue measure for boundary arcs and defined the concept boundary
layer. More precisely, let U be the unit disk {|z] < 1}. Suppose E is a closed
subset of U and Q = U \ F is a domain containing the origin 0. Volberg [42] said
that € is a boundary layer if there is a positive constant ¢ such that

(16) w(0,1) > ¢|I| for all arcs I C 90U,

where w(0, I) is the harmonic measure of [ in the domain  evaluated at 0 and
|7] is the length of I. Loosely speaking, a subset Q of U is a boundary layer if it
is sufficiently “big” and sufficiently “connected”, seen from the boundary of U, so
that a Brownian particle starting in a given point in the subset should be able to
hit any arc of U with probability comparable to the length of the arc. For the
historical background and the original motivation for studying boundary layers,
see [42].

In [42, Propositions 1.1 and 1.2] Volberg presents capacitary conditions of
Wiener type for boundary layers. Volberg’s work was then continued by M. Essén
in [20, Chapter 5]. The following formulation is taken from Essén [20]. Let {Q} be
a Whitney decomposition of U and let g, = dist(Qg, 0U) and pg(¢) = dist(Qx, ).
We put

Wie) = Wi E) = prjg)? (log Cap(zq; Qk)) ’

k

where cap denotes the logarithmic capacity.

Included here with kind permission given by the editors.
Ze-mail address: haikawa@fagus.shimane-u.ac.jp
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THEOREM E. Let %U C Q. Then there exist positive constants My, My and
go < 1 with the following properties:

(i) If supgesy W(E) < (1 — ¢)/My then (16) holds, i.e. ) is a boundary layer.
(ii) If (16) holds with ¢ > 1 — qo, then supgcqy W(E) < My(1 —¢).

M. Essén gave in [20, Chapter 5] a relationship between boundary layers and
minimally thin sets. Namely, [20, Theorem 3] says: A necessary but not a sufficient
condition for & = U \ E to be a boundary layer is that E is a minimally thin set
everywhere on OU. At the International Conference in Potential Theory 1994,
[21], Essén raised the following question: “Can we characterize boundary layers in
terms of concepts from potential theory?” Our motivation of this paper is to give
an answer to this question. In fact, Theorem E will be generalized and improved
in our Theorem V.15.

The paper is organized in the following way: In Section 2 we generalize the
notion of boundary layers to general non-tangentially accessible (NTA) domains
instead of the unit disk. Since the Martin boundary of an NTA domain is homeo-
morphic to the Euclidean boundary and every boundary point is minimal ([22]), it
is natural to deal with these domains. Section 3 contains the main characterization
of boundary layers based on series of reduced functions. We shall use some subtle
estimates of the Martin kernels, which can be proved by the boundary Harnack
principle. In Section 4 we shall restrict ourselves to smoother domains, namely
Liapunov or C'* domains. For such domains the Martin kernels behave like those
for the unit disk. Hence we can give a direct extension of Theorem E. Boundary
layers are characterized by Wiener type series based on capacities (analogous se-
ries were studied in [5], [20] and [42]). In particular, Theorem V.15 shows that the
constant gy in Theorem E may be arbitrarily close to 1. Of course, the constant
M, tends to oo as g9 — 1. We can estimate its growth. In Section 5, we shall
discuss a stronger type of boundary layers, which are called good boundary layers.
We shall observe that good boundary layers are characterized by the uniform con-
vergence of a certain series involving capacities. In Section 6, we shall discuss a
weaker type of boundary layers which turns out to have a precise connection to
minimal thinness. See Proposition V.24. In the last section, relationships among
various types of boundary layers will be given.

2. Equivalent definitions of boundary layers

In [22] Jerison and Kenig introduced the notion of non-tangentially accessible
domains, NTA domains. Hereafter, we let D be a bounded domain in the Euclidean
space R with d > 2. By é(x) we denote the distance dist(z,dD). We say that D
is an NTA domain if there exist positive constants M and rg such that:

(a) For any £ € D, r < rq there exists a point A,(¢) € D such that M~'r <
|A, (&) — €] < rand §(A.(€)) > M~'r. (Corkscrew condition.)

(b) The complement of D satisfies the corkscrew condition.

(c) If ¢ > 0 and z; and z3 belong to to D, é(x;) > ¢ and |z1 — x| < Ce, then
there exists a Harnack chain from z; to x5 whose length depends on ', but
not on e. (Harnack chain condition.)

In this and the next sections we let D be an NTA domain. As mentioned above,
it is known that the Martin boundary of D is homeomorphic to the Euclidean
boundary dD and every boundary point is minimal ([22]). To be precise, we fix a
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point xg € D. Let G(x,y) be the Green function for D and put g(z) = G(z, xo).
Let K(z,y) = G(z,y)/g9(y). Then K(z,y) has a continuous extension to D x D.
We denote the continuous extension by the same symbol. Sometimes we write
K¢ for K(-,€). The kernel K is referred to as the Martin kernel for D. For each
¢ € 0D the Martin kernel K is a minimal harmonic function with K¢(zo) = 1.
Throughout this paper we let £ be a relatively closed subset in D and assume

that @ = D\ E is a domain. We fix 2o € Q. In general, we denote by w(z, I, V)
the harmonic measure for an open set V of I C 9V evaluated at @ € V. For
simplicity we let, for I C 0D,
w(z, ) =w(z,1,Q),
Oz, 1) =w(z,I,D).
DEFINITION V.2. Let ¢ € (0,1). We say that Q is a c-boundary layer (at xq) if
w(xg, I) > cw(xg,I) for every Borel set [ C dD.

“., »
c_

We sometimes drop the prefix if Qs ac-boundary layer for some ¢ > 0.

REMARK V.3. Let D be the unit disk U and zq = 0. Then &(0,1) = (27)7 ||
Hence our definition generalizes Volberg’s boundary layer.

Let £ C D and let u be a non-negative superharmonic function on D. We put
RP(z) = info(z),

where the infimum is taken over all non-negative superharmonic functions v such
that v > v on E. It is known that the lower regularization

}A%f(;v) = liminf R%(y)
y—x
is superharmonic in D and RY = f?f g.e. on D, i.e. the equality holds outside a

polar set. Moreover, ]%f = u q.e. on K. The function }A%f is called the (regularized)
reduced function of u with respect to E.

PROPOSITION V.4. The following statements are equivalent:
(i) Q is a c-boundary layer.

(ii) E%ﬁ(l’o) <1—c for every { € OD.
(iif) 1
iii
h(zo)
PROOF. For a moment, we fix a Borel set I on the boundary 9D and write
w=w(-,I)and & =&(-,I). Since

- {0 g.e. on dD,
O—w=

w q.e. on kE,

]A%E(J:o) <1 — ¢ for every positive harmonic function h in D.

it follows that
w—w= f?g on ().
Hence € is a ¢-boundary layer if and only if
c(wg) < B(wo) — RE(wo),
or equivalently

(17) Eg(xo) < (1 —¢)o(xg) for every Borel set I C dD.
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In general, a positive harmonic function £ is called a kernel function with respect
to g at ¢ € D if h vanishes continuously on 0D \ {¢} and h(z¢) = 1. It is known
that a kernel function at ¢ is unique and coincides with K¢ (cf. [22, Theorem
5.5]). Hence if r, — 0 and &, = &(-, B({,r,) N dD), then the limit of the ratio
On [@n(x0) exists and is equal to K¢. Hence (17) yields

(18) ]A%gﬁ(xo) <1 —cfor every £ € 0D.

Thus (i) = (ii). The Martin representation theorem (e.g. [18, 1.XI1.9]) yields
the equivalence (ii) <= (iii). Letting h = ©(+, 1) in (iii), we observe that (17)
follows. Thus (iii) = (i). Proposition V.4 follows. O

3. Series of reduced functions and boundary layers

In this and the next sections we give more concrete characterizations of boundary
layers. We shall need many positive constants. So, for simplicity, by the symbol
M we denote a positive constant whose value is unimportant and may change from
line to line. If necessary, we use My, M5, ..., to specify them. We shall say that
two positive functions f; and f, are comparable, written f; = f;, if and only if
there exists a constant M > 1 such that M~'f; < f, < Mf,. The constant M
will be called the constant of comparison.

Since our Martin kernel K(z,y) has a reference point z, it is necessary to
assume that the set £ is apart from xq. In this and the next sections we assume
that

(19) E C Dy= D\ B(zg,r1) with r; > 0.

This assumption corresponds to %U C Q in Theorem E. For a boundary point £,
let us define a Wiener type series of reduced functions.

DEFINITION V.5. Let I;(¢) = {z : 277 <|a —¢| < 2177} and E;(¢) = ENI;(§).
We define

@(6) =Y 1 (o).

We have the following theorem.

THEOREM V.6. There exists a positive constant Ms depending only on D, xg
and r1 with the following property:
(i) If supgeop ®(€) < g <1, then Q= D\ E is a (1 — q)-boundary layer.
(ii) If Q= D\ E is a (1 — q)-boundary layer, then

sup ® < M .
éea% (&) = 31—(] l—gq

Theorem V.6 (ii) has an immediate corollary.

COROLLARY V.7. Let 0 < g9 < 1. Then there s a positive constant M,, de-
pending only on D, r1 and qo such that if Q is a (1 — q)-boundary layer with
0 < g < qo, then

sup ®(¢) < Myyq.
€€oD

Moreover, My, ~ (1 — qo)_1 log[2/(1 — qo)].
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PROOF OF THEOREM V.6 (1). We note that the constant M5 is not involved
in this part. This is straightforward from the countable subadditivity of reduced
functions. We have

RE (x0) < 30 RO (wo).
Hence by Proposition V.4, we see that if supscsp ®({) < ¢ < 1, then Q is a
(I — g)-boundary layer. O

The second part of Theorem V.6 is not so obvious. We need several lemmas
about the estimates of the Martin kernels.

LEMMA V.8. There are positive constants o and My such that if ¢ € D, z,y €
Dy and 2|y — ¢&| < |z — €|, then

K(z,y) (Iy—fl)a
K(z,) 1‘§M“ e¢l)

We have in particular,
o ly — €\
K(z,y) < |14+ M, | q K(z,¢).
.:l'/' J—

PRrOOF. If y € 0D, then this is the Holder continuity of K(z,y)/K(z,§) of
order a given in [22, Theorem 7.1]. The same proof works, provided y € D and
2y =&l <z =¢l. O

LEMMA V.9. There are positive constants 3 and Ms such that if ¢ € 0D, x,y €
Do and 2|z —¢| < |y — €|, then

. B

PROOF. Let r = |z — €| and R = |y —&|. Since g is a positive harmonic function

outside zg and vanishes on the boundary, it follows from [22, Lemmas 4.1 and 4.4]
that there is # > 0 such that

9 < M(5)°9(An(€)) on B(&,r) N D.

Hence, in particular
B
o) ALy (1)

Next we show

(21) K(y,z) ~ K(y,§).

Observe that G(-,y) and g are both positive and harmonic on B(¢, Mr) N D and
vanish on B(&, Mr) N dD. It follows from the boundary Harnack principle [22,
Lemma 4.10] that

R 9(2) or z r
G 6.y ~ glAe) P EBEnnD.
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Since the above comparison holds uniformly for z € D N B(&,r), we obtain (21)
by letting z — x and z — &.
By the maximum principle we have

sup  K(-,¢) < sup  K(-¢).
DndB(¢,R) DnaB(¢,r)

Hence the boundary Harnack principle yields

Once more, we use the boundary Harnack principle to get
K(z,§)  g(z) Ky,§) gy

K(A(6),8) ~ g(A(€)) K(AR(€),6) ~ g(Ar(é))’

or equivalently,

K(e.)  K(A©L8) K8 _ K(Au(£).9)
g(x) 9(A:(&) T gly) 9(Ar(&))
Now (20), (21), (22) and (23) imply

(23)

oK) KO K(A(E.6)
]X(x,y)— g(y) g( ) (y) g( ) g(AR(f)) g()
K(A(9.6) g(AdE) K@) vy
< M=) gtane)?™ =M g0 (79

which finishes the proof of the lemma. [
For a positive integer k& and ¢ € 9D we let
]j,k(f) = {13 eD: 2_j_k < |.?7 — €| < 2k+1_j}.

LEMMA V.10. Let o, B, My and Ms5 be as in Lemmas V.8 and V.9. Fore ¢ > 0
we define

1 M,y M5}

ko(s):max{ lo g — Flog 2

If k is an integer such that k > ko(e), then
K(z,y) < (14+e)K(x,&)  forax e l;(€) andy € Do\ 1;1(€).

PROOF. Let x € [;(¢) and y € D\ I, ,(¢). Then one of (a) or (b) below holds,

(a) |y - €| < Z_j_k{
(b) ly —¢| > 25417
Case (a). Since |y — &|/|z — €] < 27%, it follows from Lemma V.8 that

e

< (1 + M42_k“)]((:c, £) < (1 +¢)K(z,8).

alog?2

Case (b). Since |z — £]/]y — €] < 27, it follows from Lemma V.9 that
K(z,y) < Ms27" K (z,¢) < K(z,€).
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Thus in both cases we obtain the required inequality. The proof is complete. [

PROOF OF THEOREM V.6 (1I). Let ko(e) be as in Lemma V.10. For ¢ = (1 —
q)/2 we can choose and fix a positive integer k such that

bofe) < k< Mlog —

Take an arbitrary boundary point ¢ € dD. For simplicity we will use the notation
I7(¢) = I;1(&). Lemma V.10 gives us that

(24) K(ey) < (14 5 DK (,6) = 221K (,6)

for z € I;(§) and y € Do \ I7(£). Let us now use the distribution y defined by

R, = Kp.
By (19) g is concentrated on Dy. Since K(zg,y) = 1 and since Q is a (1 — ¢)-
boundary layer, it follows that

(25) Il = Kp(xo) = R (w0) <1—(1—q) =g,
We have from (24)

K(z,y)du(y) < K(z,¢).
Jorie Kool < E25- 2K (0.6)

On the other hand, since Ku > K¢ q.e. on E, it follows that for q.e. « € E;(¢)

. q3—q)\ . l—q
K(z,y)du(y) > |1 — ——= | K > ——F .
g Keint) > (1= D) K (06) > 2R
The last inequality comes simply from the fact that 0 < ¢ < 1. Hence, by putting
Hi =

1:(6), We obtain
. 1 — 4580
Kp; > TRKJé on D.
Evaluating both sides at zq, we see that

- 1 —q 58,
luill = Kpj(wo) =~ Bi& (o).

The “annuli” {I3(£)} overlap each I*() at most 2k + 1 times. By (25)

1-— q ~E; .
5 LR @) < Xl < 2k + g
Therefore 5 5
q q
Q&) < ——(2k+1) <M 1 :
© < 2Lk n) < wplotog 2
Theorem V.6 (ii) is proved. O

REMARK V.11. We have actually proved a pointwise estimate: for each fixed
£EedD
q 2
log .
l—q¢ " 1—g¢
We say that £ is minimally thin at ¢ € 9D if f%gf(”c) # K¢(z) for some z € D.
The minimal thinness can be characterized by ®(¢&).

R (20) Sq <1 = &(¢) < Ms

PROPOSITION V.12. Let £ € OD. Then the following statements are equivalent:
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(i) E is minimally thin at £.
(i) R, ( ) <1
(iil) () <

)

(iv) 352, RI‘E( ) is a Green potential.

As an immediate corollary to Theorem V.6 and this proposition, we have the
following, which is a generalization of part of Theorem 3 (a) in [20].

COROLLARY V.13. IfQ = D\ E is a boundary layer, then F is minimally thin
at every £ € dD.

PROOF OF PROPOSITION V.12. (i) = (ii): We know that f%ﬁﬁ = K¢ q.e.
on F and hence (i) implies that there is ;1 € Q@ = D \ F such that ﬁfﬁ(ml) +

K¢(x1). Since Q is a domain, it follows from the minimum principle that Efﬁ (z0) <
(i) = (iii): By Remark V.11 we have ®(¢) < oo.

pE;(€)

i) = (iv): It is easy to see that each R’ is a Green potential. B
y IXE p y

pE; (&)

assumption the summation is convergent at zo and hence >°72, Rp/™" is a Green

potential.
(iv) = (i): Since 3322, R?f(&) is a Green potential, which majorizes K¢ over
221 E;(€), it follows that ]A%gs is a Green potential, and in particular ]A%Eﬁ # K.
Thus F is minimally thin at (. O

4. Wiener type criterion for boundary layers

In this section we study boundary layers in Liapunov or C''* domains instead
of NTA domains. In view of Widman [43] we have the following estimates

(26) g(z) =~ 6(x), K(z,8) ~ g(zx)|z — &~ for z € Dy, € € OD.

From these estimates and the quasiadditivity of the Green energy we will obtain
a Wiener type criterion for boundary layers in terms of capacity. The following
series was introduced in [42] and considered in [20], [3] and [5] also.

DEFINITION V.14. Let {Q1} be the Whiltney decomposition of D. For the cube
Qr, let g = dist(Qr, dD) and pip(¢) = dist(Qk, &). By cap we denote the logarith-
mic capacity when d =2, and the Newtonian capacity when d > 3. We put

4 lo Aqk )_1 o
W) =W( E) = %:Pk(g)Q ( & cap(E N Q) f ,

szjz)d cap(£ N Q) if d > 3.

k

THEOREM V.15. There exist positive constants Mg and M7 depending only on
D, xq and ri with the following properties:
(i) If supgcap W(E) < Mesg, then Q is a (1 — q)-boundary layer.
(ii) If Q is a (1 — ¢)~boundary layer, then

sup W <M .
fea% (&) = 71—‘1 l—gq
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COROLLARY V.16. Let 0 < g9 < 1. Then there s a positive constant M,
depending only on D, ry and qo such that if @ = D\ E is a (1 — g)-boundary layer
with 0 < ¢ < qqo, then

sup W(¢) < Myyq.
£eoD

Moreover, My, ~ (1 — qo) ' log[2/(1 — qo)].

REMARK V.17. In view of Remark V.11, we have pointwise results in Theorem
V.15 and Corollary V.16: for each fixed ¢ € dD.

(i) W(¢) < Meqg = Egﬁ(%) < q.

.. DE q 2

(ii) ijﬁ(Io) <g<l = W) < M'71 — qlog .
(i) R (o) < gwith0<q<go<1 = W(£) < Myq.

For the proof of the above theorem we use the quasiadditivity of the Green

energy. For a subset K of D we observe that }A%f is a Green potential, G(-, \g).
The energy

1B = [[ Gla.pdrs(@)ds(y)

is called the Green energy of F (relative to g). Observe that
(27) 1B = [ REd\p = [ gdhs = GAp(wo) = BE (o),

where the second equality follows from ]:?f = ¢ q.e. on the support of Ag. In view
of (26), the quasiadditivity of the Green energy [5, Corollary 2] reads as follows.

THEOREM F. Let E C Dy. Then

-1
4qk .
2 (1 —) if d=2,
T tigy)

v(E)
> gt cap(E N Q) if d> 3.
k

PRrROOF OF THEOREM V.15. Let us for a moment consider the case d > 3. We
have from (26)

K(,6) ~ gl@le — €7 % 2%(2) for « € 1,(6)
Hence we have from (27) and Theorem F

Ri29 (o) m 29 RP ) (1) = 2705 (E;(€)) ~ 2773 g} cap( Bj(€) N Q).
k

Since pi(£) & 277 for E;(€) N Qy # 0, it follows that

OE D W EREICLEAE Zpi’f) cap(E N Qx) = W(e).

The same type of arguments hold for the case d = 2 and we conclude (&) ~ W (¢).
Hence Theorem V.6 readily yields the theorem. [

In view of ®(¢) ~ W (¢) and Proposition V.12 we have the following well-known
result ([3], [5] and [20]).

COROLLARY V.18. Let £ € OD. E is minimally thin at & if and only if W(€) <

Q.
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5. Good boundary layers

In this section we shall work with Liapunov or C** domains again. So far we
have considered boundary layers. There is also a strong type called good boundary
layer defined by Volberg in [42, p.155] for the case when D is the unit disk. The
definition has a natural generalization. Let D, := {z € D : é(xz) > 1/n} and
define 2, to be QU D,, and F, to be E\ D,. (We note that Q, = D \ E,.)

DEFINITION V.19. Q is a good boundary layer if Q, is a (1 —e,)-boundary layer
with lime, = 0.

The following proposition is a straightforward generalization of Theorem 1.4 in

[42].

PROPOSITION V.20. Q is a good boundary layer if and only if W () converges
uniformly on the boundary 0D.

PRrOOF. For simplicity we prove the theorem only for d > 3. The case when
d = 2 is similar. Since D is bounded, we may assume that Whitney cubes () are
enumerated as ()1, ()2, ... so that )y approaches to the boundary if and only if
k — oo. We will prove the proposition in two steps.

Suppose that  is a good boundary layer. Take an arbitrary ¢ > 0. We find
¢ = q(&) > 0 so small that

q 2

lo <e

1—gq & 1—g¢q ’
where M7 is the constant in Theorem V.15. Since ) is a good boundary layer, by

Mz

choosing n large enough we see that €, is a (1 — ¢)-boundary layer. We have from

Theorem V.15 (ii)

sup W(¢, E,) < M
668% (& £n) T—q °1—¢

which means that
2

4k
sup cap(E N Q) < e,
g€aD g,;n pr(§)?
with k, being the least integer k, such that Qr C {x € D : é(z) < 1/n} for
k > k,. Thus W(¢) is uniformly convergent.
On the other hand, let us assume that W(¢) is uniformly convergent. Take an
arbitrary ¢ > 0. Then there is kg such that

2
‘ 9k

28 sup E cap(F N Q) < Mege,
(28) £€9D Sk p(§)d ( ) °

where Mg is the constant in Theorem V.15. We find n = n(ko) such that

1
(29) {freD:é(x) <=} C | Qs
n k>ko
Therefore,

sup W(&, E,) < Mge.
£edD

Theorem V.15 (i) gives us that Q, = D\ E, is (1 — ¢)-boundary layer. Thus, by
definition, & = D \ E is a good boundary layer. [
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Let us note that a good boundary layer is always a boundary layer. This prop-
erty does not seem to follow from the definition directly. For the classical boundary
layers this was proved by Essén [20, Theorem 3 (b)]. Our proof heavily depends
on Theorem V.15.

THEOREM V.21. If Q = D\ E is a good boundary layer, then Q is a boundary
layer.

PrOOF. For simplicity we prove the theorem only for d > 3. The case when
d = 2 is similar. Let us prove the theorem by contradiction. Let & = D\ E be a

good boundary layer and suppose it is not a boundary layer. By Proposition V.4
we find & € 9D such that

(30) fzﬁ'ﬁ_(fﬁo) — 1 as t — o0.

Taking a subsequence, if necessary, we may assume that & converges to & € dD.
Since W(&p) < oo, it follows from Corollary V.18 that £ is minimally thin at o,
and hence from Proposition V.12 that Rﬁﬁo (zo) < 1. Let

RB‘S ( )

—>().

(31)

By Proposition V.20 W (¢) is uniformly convergent and we can find ko such that
(28) holds. Let n = n(ko) be such that (29) holds. By Theorem V.15 we have

(32) sup RB‘S(T:O) < e.
£eobD

By the Holder continuity of the kernel functions [22, Theorem 7.1], we see that

K¢, /K¢y — 1 uniformly on F), = U EnN Q.
Qr{z€D:§(x)>1/n}#0

Hence we may assume that K¢, < (14 ¢)K¢, on F,. This implies
Rz < (L+e)R < (1+e)Rg, ~ on D,

and in particular

(33) Ri (wo) < (1 + )RR, (x0).

Now, (30), (31), (32) and (33) altogether and the subadditivity of reduced func-
tions yield

1 = lim RA (”CO) < hmsupRI\ (UO) —I—hmsupRhﬁ (o)
1+2RK (xo)
<et(14e)RE (2) = — Ra "0
or el (00 = 55 R (oo

Thus a contradiction arises. The theorem is proved. [
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6. Weak boundary layers

In the original definition of boundary layers, we take the harmonic measure in
the origin. In Definition V.2 we put z¢ in that position. How important is the
choice of reference point? We will in this section investigate that question.

Let D be an arbitrary NTA domain in R9, as in section 2. In order to simplify
the notation, we will introduce an auxiliary function. Let

He(z) == ﬁf{%}ﬁ@).

From Proposition V.4 (ii) we see that € is a boundary layer at zq if and only if
He(zo) < g < 1forall £ € dD. (Recall that K¢(z) =1.)

Let us now choose the “best” reference point for our purpose instead of xg to
get a slightly weaker assumption on €, i.e. let

(34) inf sup He(z) < 1.
z€EQ £€8D

It turns out that this weakening does not make any essential difference.
PROPOSITION V.22. Q is a boundary layer at xq if and only if (34) holds.

PROOF. It suffices to show the ‘if” part. Suppose that (34) holds. Then there
exist ¢, 0 < ¢ < 1, and z; € Q such that supgcyp He(z1) < ¢. Let ¢ < ¢' < 1.
Since both K¢ and Ei are positive and harmonic in 2, it follows from the Harnack
principle that there is ¢ > 0 such that B. C 2 and

sup He(z) < ¢ for z € B,
£eoD

where B. = B(x1,¢). In view of Proposition V.4, we see that  is a (1 — ¢')-
boundary layer at z, € B. i.e.

(35) w($2,]) > (1 _q/)@(‘f%I)

for every Borel subset I C dD. For a moment we fix the Borel set I C dD. By

the minimum principle

w(z, I) > w(z,0B.,Q2\ B.) min w(xy,I)

372€8B5
for z € O\ B.. Using (35), we evaluate the above inequality at = = zo to obtain
w(zg, I) > w(zo,dB., 2\ B.)(1 — ¢') mé% O(xq, ).
T2€ €

By the Harnack principle again

O(xg, ) ~ O(xg, 1) for x93 € OB,
and hence

w(zo, I[) > M (1 — ¢"YM&(xo, ),

where M, = w(z9,dB.,Q\ B.) > 0. Since I is an arbitrary Borel subset in 9D,
this implies that  is a M.(1 — ¢')M-boundary layer at zo. O

The following chain of inequalities encourage us to define another variant of
boundary layers.

(36) sup inf He(z) < inf sup He(x) < sup He(xo).
¢€oD €L =€ ¢coD ¢€dD
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DEFINITION V.23. We say that Q is a weak boundary layer if

sup inf He(z) < 1.
sup inf e(z)

In view of Definition V.5 we introduce

0(é.2) = 3 ——R2 9 (a),

7=1 ](g(l') Re
®,(¢) := inf (& ).
We have the following proposition (cf. Proposition V.4).

PRrOPOSITION V.24. The following statements are equivalent:
(i) Q is a weak boundary layer.

)
)
v) @,(£) =0 for every £ € dD.
) E is minimally thin at every £ € dD.
)

1 =~
(vi) inf me(:ﬂ) < 1 for every positive harmonic function h.
z h(x
1
(vii) inf me(r) = 0 for every positive harmonic function h.
= h(x

This proposition is an easy consequence of the following pointwise result, which
can be shown by the well-known minimal fine limit theorem (e.g. [18, 1.XII.18]).

THEOREM G. Let h = Kpuy, be a positive harmonic function on D and let u be
a Green potential. Then, for pj almost every boundary point £, there is a set F;
which s minimally thin at £ such that

PROPOSITION V.25. Let £ € OD. Then the following statements are equivalent:
(i) inf, He(x) < 1.

(ii) inf, He(z) = 0.

(iii) ®,(&) = 0.

(iv) E is minimally thin at ¢

PROOF. By the countable subadditivity of reduced functions and the definition
of minimal thinness we readily have (iii) = (ii) = (i) = (iv). Suppose
(iv) holds. By Proposition V.12 we see that )72, ]:?%ﬁ(g) is a Green potential. By
Theorem G there is a set F¢ minimally thin at £ such that

lin% o(¢,x) =0.
In particular (iii) holds. O

PROOF OF PROPOSITION V.24. The equivalence (i) < (ii) < (iii) <
(iv) <= (v) readily follows from Proposition V.25. Obviously, (vii) = (vi).
Since K¢ is a positive harmonic function, it is obvious that (vi) = (ii). Let us
show (v) = (vii). Suppose E is minimally thin at every { € dD. Let h = Kpy,
be a positive harmonic function. Since E is minimally thin at every ¢ € 9D,
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it follows that RF is a Green potential (see e.g. [18, 1.XIL.17 Example]). Hence
Theorem G says that for pz-a.e. £ € D, and hence at least one £ € 9D, there is
a set [y minimally thin at £ such that

In particular, (vii) holds. O

7. Relationship among various boundary layers

We conclude with a list of implications between the different types of boundary
layers. In this section we let D be a Liapunov or C** domain. We have

(i) Q is a good boundary layer =  is a boundary layer.
(ii) © is a boundary layer =  is a weak boundary layer.
(iii) For &, € 9D and a > 0 let I'(&) = I'y(&) = {z € D : 6(z) > alz — &}
be a non-tangential cone or “Stoltz cone” with vertex at &. If £ C I'(&),
then the three types of boundary layers coincide.

In Theorem V.21 we have observed (i); in view of (36) and Proposition V.22, (ii)
is obvious. These implications can not be turned around as seen from examples [42,
Ex. 5.1] and [20, Theorem 3 (a)] combined with Proposition V.24. The coincidence
(iii) follows immediately from the following proposition.

PROPOSITION V.26. Let & € 0D and o > 0. Suppose E C T'(&o) = I'y(&).
Then Q = D\ E is a weak boundary layer if and only if Q is a good boundary
layer.

PROOF. Let us assume that ) is a weak boundary layer. Then we have from
Proposition V.24 that F is minimally thin at &, or equivalently W (&) < oo. For
every Whitney cube Q) intersecting I'(&y) we have g &~ pr(&). Therefore we have
that the convergence of W (&) is equivalent to

4qy, - .
| fd=2
2 (Og cap(Ek)) s ’

k
Y g dcap(ENQy) < oo ifd >3
k

Since g < pi(€) for every £ € 9D, we conclude that W () is uniformly convergent
for £ € dD in both cases. Hence, due to Proposition V.20, £ is a good boundary
layer. The opposite implication is trivial. [



CHAPTER VI

Boundary layers that are the complements of Kleinian
Archipelagoes

We will show that the statement about necessary conditions for boundary layers
defined as the complement of the “fattened” orbit of a Fuchsian group in [31] can be
sharpened and generalized. We will also see that the statements are meaningful. In
other words we will show that there is a Kleinian group I' such that the complement
of the fattened orbit of I' is a boundary layer.

Furthermore, we will give an exact description of those Kleinian groups which
have the property that the complement of their Kleinian Archipelago is a boundary
layer, see Proposition VI.7.

We will also show that a complement of a Kleinian Archipelago is a good bound-
ary layer only in the trivial case.

1. Two necessary conditions

Let us first recall some definitions from Section 1 on page 21. Let I" be a Kleinian
group. By the fact that I' is discontinuous it is possible to find an rp > 0 such
that the balls B; do not intersect each other, where B; := {z € D : d(z,7,0) <
rr,y € D\ {/}}. Let E :=J; B; and  := D\ E. That is, E is the fattened orbit
of T.

First we show a tuned up version of Proposition 5.7 in [31].

PropPOSITION VI.1. Let Q be the complement of a Fuchsian Archipelago. If )
is a boundary layer then 1" is of convergence type.

PROOF. Let us use the following notation.
Qk =U \ Uj?ngj = U Bk

Since (2 is a boundary layer we trivially also have that )y is a boundary layer,
i.e. there is a ¢/ > 0 such that

w(Qo, 1,0) > |I|, for all arcs I € T.
Let us then choose I to be the whole boundary T. We then get that
(37) w(§o, T,0) > ¢, where ¢ = 27¢.
Since () = Q and
W(Bo) = {1z 1 d(2,0) <rr} = {z 1 d(y¢'2,0) <rr} =
={z:d(z,v%0) < rr} = By,

d7
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we note that

V(o) = 1 () Uve(Bo) = QU By = (U,
we also recall the basic fact that the harmonic measure is invariant under Mobius
transforms, which, together with the invariance v;(T) = T, implies that

w(Q(h T, 0) = w(’yk(ﬂo% ,}/k(r]r)’ 7190) = w(le T, 7190)
That together with (37) implies that for every k
(%, T,7£0) > ¢ > 0.

We are then in the position where we can use the result [24, Theorem 2] to reach
the conclusion that Y, t; converges. That is, I' is of convergence type, see for
example page 90. O

Let us use a result in the previous chapter to generalize the situation above (to
higher dimensions and weaker assumptions) and give this stronger statement.

PRrROPOSITION VI.2. Let Q be the complement of a Kleinian Archipelagoas above.
If Q is a weak boundary layer then the set of non-tangential limit points, A., is
emply.

PrOOF. We know from Proposition V.24 that  is a weak boundary layer if
and only if £ minimally thin everywhere. Hence by Proposition I11.12 we see that
Ac = @ |:|

REMARK VI.3. Proposition VI.2 implies in fact Proposition VI.1, see page 66.
A natural question to ask is: Is there really an example of a I" such that the
generated () is a boundary layer? We will in the next section study that question
closer.

2. An orbit projection

For simplicity, and since the second statement in Proposition V1.2 above was a
planar statement, we will consider the Fuchsian case first. We will in this section
show that if I is just generated by one element, which is parabolic, then €, defined
as abovel!, is a boundary layer.

Let us first for simplicity and without loss of generality transform the situation

to the upper half-plane and let the orbit of I' be situated on the boundary of a
1

5 (in the Euclidean sense) as depicted in

horocycle with center at %] and radius
Figure VI.9.

From the picture it is easy to see that F is minimally thin everywhere, since
the only point in question is the origin but since 0 ¢ ,CS(%) we can use Theo-
rem IV.12 and obtain that £ is minimally thin at the origin. Hence we have from
Proposition V.24 that ) is a weak boundary layer.

However, as we will later see, () is not a good boundary layer.

That leaves us out in the shadow-land, where we have to be more precise to
analyze the question if € is a boundary layer. (We can compare this situation
with Vasyunin’s example on page 160 in [42] and the example on page 100 in
[20].) The plan is as follows. First we will show that Wy (which was defined
on page 23) is not only finite but uniformly bounded. Then, by adjusting the
hyperbolic radius in the definition of the covering balls B;, we can get a suitable

If we allow ourselves to choose the hyperbolic radius rr for the balls B; small enough.
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o o
o o
| e

FiGURE VI1.9. The upper half-plane with the orbit of I' with its
parabolic fixed point at the origin. Note that we have, for plotting
reasons, put Euclidean disks on the orbit points instead of hyperbolic
ones.

bound of the series W (see Definition B.2). By suitable we mean that we can now
use (i) in Theorem V.15 to draw the conclusion that  is a boundary layer.

In Theorem B.2 on page 94 we learn that £ is minimally thin at ¢ if and only
if W(¢) < co. From Lemma II1.5 we conclude that the same condition holds for
Wy, i.e. F is minimally thin at ¢ if and only if Wy(¢) < oo. Hence Wy(€) < oo for
all €.

3. The essentially unique boundary layer

Let us concentrate on the right side of the orbit. We will use a geometric
2
9k

pr(€)?
vk(%) onto the line {z : Im(z) = 1}, see Figure VI.10. Note that the intersections

of the projection lines with the horizontal line are at constant distance, ¢, from

transform to study the fraction . Let us from the origin project orbit points

each other. We will get the same situation by transforming the upper half-plane
by a Mobius transformation that takes the origin to infinity. Recall that every

parabolic element is conjugated to a mapping of the form z — z + ¢. (In our

example ¢ = 1.)

FIGURE VI.10. The normalization transform—or transforming the
parabolic fixed point to infinity.

Let us define

5:2#

=14+ (ke)?



60 VI. BOUNDARY LAYERS AND KLEINIAN ARCHIPELAGOES

We see that
(38) 2§ — 1 = Wy(0).

It is also possible to give, with the help of Maple, an exact expression of S in

terms of the digamma function, ¥(x) := % log(T'(x)), as follows.
@ @ ?
s=u-Y - u,

REMARK VI.4. In our concrete example, we can then give an approximate value
of S.

S =i(V(—22)+ V(20)) ~ 3.64.

To show that Wy is uniformly bounded, we have to consider lim sup,_,, Wo(z).
We will do that by letting > 0 be sufficiently small but fixed and study the series
Wo(x) in the same fashion as we did for Wy(0) above, we will in fact repeatedly
use the comparison with §. The summation Wy(z) will be chopped up into four
different pieces and analyzed in a basic geometric way.

The dividing comes naturally into play if we are repeating the projective con-
struction above. We will now, for x > 0, not get a constant distance between the
intersection of the projection lines and [ = {z : Im(z) = 1} but something in the
following manner. Let us suppose we are plotting the intersection points, one each
second, we will then watch the points march on the line /.

First the intersection points will go to the right in a rather even speed — like
the points in the Wy(0) situation — but the speed will eventually decrease and
even change direction. That sequence is studied in Part T below.

After the points have very slowly turned around they will increase their velocity
and at some time pass above the base point x. This is the Part II sequence.

Part III is the situation where the points goes steady to the left until they pass
above the “half way stop” Z.

Finally, the points goes out to the horizon to —oo in Part IV.

In order to give a more concrete picture, we have made a series of Maple plottings
of an example where I" is as above and = = 0.19.

FiGure VI.11. Part I for our example where z = 0.19.

3.1. Part I. The “march of the points” are changing direction when the pro-
jecting lines are approximately the tangent of the horocycle that passes through
the base point z. Since we have that z is small we can approximate the horocycle
with the graph of the squared function. That is, let us suppose that the tangent
point is above zyg. We can then of course easily compute ¢ = 2z from the tangent
relation z3 — 2x¢(zg — ) = 0. See Figure VI.12.
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.
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X X0 a b

FIGURE VI.12. z; is the tangent point.

Let us for the sake of notation use ¢’ = a — . We then get from Figure VI.12
that

, 1 1
Q@ = — — —
2xg 4z
and that
o 1
b = —2 = .—‘
x5 2z

Note that we, unlike the Wy(0) situation where the first intersecting point is
right above the origin, get at least one point to the left of the base x; but since x
is small we can without loss of generality assume that there is only one point in
the beginning that lies above to the left of z.

Furthermore, due to the fact that the point “slows down” before the turning
point, we have that the points are gathered more to the right than equally spread
out. In other words, we can get an upper estimate of this first part of the series
by assuming that the intersection points are equally spread out. To see what the
step length, ¢y, would be for this equally spread out situation we just note that
the number of intersection points between the origin and b for the original W;(0)
situation is approximately % That give us that the step length ¢y is “TIC Then we
can do the following rough estimate for the even distribution.

1 sl 1 1 g0 1
— < — <1 —/ dt =
lel—{—k?c%_zl—l—k?c%_ —I_CIO 1+ ¢2

k=0

cl o 1 c b
+ o 1+t — S +a’8

cr c Cr
That, together with the above considerations give us the following estimate of
the first part of the series Wy(x).

2
q
Sr = <141
P S

where a and b are defined in Figure VI.12.

S=2+28,

3.2. Part II. In this part we consider the points in the orbit from the tangent
point, zg, to the point roughly above z. Let by be the first coordinate of the
intersecting point of the line [ and the line from origin through (x,z?). That is,
b, = 2. We can then do as in Part I above to get an estimate by first noting that

the number of intersections in Part II is approximately bQC_b and then, due to the

fact that the intersection points are gathered to the right, get an upper estimate
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FiGure VI.13. In part I, the intersection points with [ are gath-
ered to the right similar to the picture in part I.

by computing an estimate for the even point distribution. The even step length

will be ¢jy := bZ;—Cb and as in Part I, we can estimate in the following way.
s C bg —b
<l4+—8=1+ S.
%: L+ k2 1 Z:: L+ kQCH Crr a
We conclude that
by — b
Si<l+-2—8=1+28,
a

3.3. Part III. Let us now turn to the Sy;; part. Let ¢t € [2, z| be the first
coordinate of a point of the parabolic orbit for part I1I. Furthermore, let v(¢) be
the first coordinate of the neighbor point to the left of the point above ¢.

Since we know that the projected sequence seen from the origin onto the line
[ ={z:Im(z) = 1} is even distributed with distance ¢ we can give an explicit
formula for v(t). Since

v t
=G E
we have immediately that
1
v(t) =
( ) ct +1

FIGURE VI.14. The projected step size is is increasing as one goes
to the left.
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Let us denote by s(t) the step-size of the projection from z to [ of the points
above t and v(t). (See Figure VI.14.) We have that

S(t)::c—v :c—t:$<(ct—|-1)2 1) _ 2 2cx

vz 12 12 12

Since ﬂgtﬂ < 0, the smallest step is the most right one which is s(z) = 2z +¢ > c.
(Which is indeed the case in our example, see Figure VI.14.)
We can therefore do the following estimate

S <S.

3.4. Part IV — the tail. Let us now consider the points that starts above
5 and goes off toward the origin, i.e. the tail. The tail is very easy to take care
of. We just note that pi(x) > pi(0) for every k in the tail. We end up with the

estimate S;y < S.

3.5. Adding up. Let us now put all this together. Since the contribution of
the terms from the points on the left side of the imaginary axis in the Wy(x) series
is less than &, we have finally that

limsup Wo(z) < (24+285)+ (1 4+285)+S+S+S5 =75 +3.

r—0

Note that from equation (38) we know that Wy(0) = 25 — 1 giving us that
sup Wo(z) <78 + 3,

where the supremum is taken over the real line. The same estimate will hold if we
transform the upper half-plane back to the unit disk U.

3.6. An analogue for the higher dimensions. We will see that a similar
reasoning, as above, holds also for the general, higher dimensional case. Let the
dimension be d and consider a point x close to the origin but lying on the hyper-
surface of dimension d — 1 which is the boundary of the upper-half-space model
of the d dimensional hyperbolic space. Let us also consider a horoball at 0 whose
surface includes the orbit point of the single parabolic group. Note that the group
can be of different ranks, i.e. 1 to d — 1. If we can get a uniform estimate as above
for a rank d — 1 situation, the other cases will automatically follow. Thus, let us
assume that ' is generated by a single parabolic element of rank d — 1.

Let us now consider the unique hyper-surface (of dimension d — 1) whose in-
tersection with the boundary 9H is perpendicular to the vector x and is tangent
to the horoball. Furthermore, let z¢ be the projected point on 0H of the above
tangent point. We will also need the point that is halfway to the origin from z, i.e.
%x. By using the above points z, z¢ and |g—|r and the hyper-surface through the
origin and perpendicular to x, we can, analogously to the above, split the series
Wo(x) into five parts: the part connected to the “opposite-half-horoball” and the
four parts as in the subsections above I, 11, TII and TV.

We can think of the line [ as the hyper-surface Iy parallel to dH with distance
1 to OH. Furthermore, we can think of the constant step-size ¢ (introduced on
page 59) as the reciprocal point density of the projection of the orbit points on
the hyper-surface [4 seen from the origin. The step-size s(t) at page 63, is now to
be thought of as the (non-constant) reciprocal point density of the projection on
{4 seen from z.
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Using the above analogue we see that we can get similar estimates for this
general case. That is

sup Wo(z) < C1(d)Wo(0) + Ca(d).

3.7. Conclusion. We can for every m > 0 choose an rp such that for d = 2

At -1
los——* ) <mt k
(og Cap(Eka)) < m lfor every k,

and for d > 3,
cap(E N Q1)
il
Recall that rp is the hyperbolic radius of the disks or spheres whose union is
the set F.
Let us now choose m to be %—j_qS in the case d = 2 and for d > 3, let m =
Cl(d)wﬁ%%_l_cz)(d), where Mg is the constant in Theorem V.15 on page 50 and ¢ €

(0,1). Then we have

< m for every k.

sup W(¢) < sup mWo(¢) < Megq.
£eoB £€oB
Now (i) in Theorem V.15 gives us that © is a (1 — ¢)-boundary layer.
Thus we have the following result.

LEMMA VL.5. Let T be a Kleinian group generated by a single parabolic element.
For every ¢ in (0,1) there is an rp > 0 such that for E = UB;(rr) we have that
Q(rp)=U \ E is a c-boundary layer.

4. ) is not a good boundary layer

Let us start with the planar case and let £ be the complement of the Fuchsian
Archipelago of a group generated by a single parabolic element. We will show that
 is never a good boundary layer. As above, let us consider the upper-half-plane
H.

Let Q, = QU H,, where H, = {z € H: Immz > %} We are going to show that
there exists a sequence {z,} of points on the real line such that lim,_., W(z,) >
Const. > 0. If we can find such a sequence we can conclude that 2, is not a
(I — ¢)-boundary layer such that ¢ — 0 as n — oo (see Corollary V.16). Hence
,, would not be a good boundary layer.

Let us for a moment fix n and choose z, = = = ﬁ Asymptotically, the

situation will be as in Figure VI.12 with z¢ = NG and every island in the Fuchsian

Archipelago removed if their distance to the boundary is greater than %

We aim at a lower estimate of S;;;. How many terms are there in Spp;? Let
us use the fact that we have an even distribution of intersecting points projected
from the origin, see Figure VI.10. We let o and 3 be the first coordinates of
the intersecting points on the line [ of the projection of (z,z*) and (£, g—z) seen
from the origin. Then the number of terms in Sy;; will approximately be ﬁ%a,
where ¢ is the step length of the parabolic map after the transformation according
to Figure VI.10. Let us estimate this number by the following easy geometrical

observation.

e z/2 _izl
b (x/2)? 2?2 o
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Let us by N denote the integer part of i

Let us now project onto [ from z instead of the origin and let /777 be the smallest
connected sub-interval of [ such that the projected points of Sj;; are in Iy .
We obtain that the length of the interval [;;; is 3, due to a similar geometric
construction as above. We know from Part III above that the smallest step, when
we project from z, is the rightmost on the interval {;7;. Hence, if we rearrange the
intersecting points so that we have an even step-size, we will get a smaller sum
than S[[[.

Let us denote the even step length by ¢. = % We have immediately that

I¢] _ﬁ:l;c: 2¢

i—l_l—xc 1 —zc

— 2¢ as x — 0.

ce <

Let us therefore suppose that z is small enough such that ¢, < 3¢ If we put this
together we obtain the following.

2 N N 1
SHI:%;(,O;C( )) z_:l—l—k%2 kz::ll—l—9k2c2'
Let us now free n. Asn — oc z =z, — 0 and N — oo. Hence
(39) hmmeH[ > Z # = My > 0.
11+ 9k2c?

We can give an exact expression for the constant Mj;; by the use of the digamma
function again.

? —1 ?
M —) | =1
mi= (0G0 - v
For the W-series, we have, thanks to Lemma I11.5, Wy(¢) < ey W () and thus,

1 1
gseua%w(f) (2\/— \/—) > —Sm

Due to Equation (39) above, we have that S;;; tends to something greater than

) > —WO(

the strictly positive constant My as n tends to oo. That gives us now

sup W(€) » 0 as n — oo.
EeoH

We conclude that €2 is not a good boundary layer. This holds for every strictly
positive choice of rp.

Now, since we studied the most promising case of ) to be a good boundary
layer (i.e. the simple parabolic case), we have the result in Lemma V1.6 below for
Fuchsian groups.

For the higher dimensional case, we argue as in the proof of Lemma VI.5 and
obtain that part I1I will always contribute with a strictly positive amount, although
we do not explicitly compute an estimate as in the Fuchsian case. Hence we see
that ) can not be a boundary layer and we have proved the following lemma.

LEMMA VI.6. The complement of a Kleintan Archipelago is a good boundary
layer if and only if the Kleinian group is trivial, i.e. I' = {I}.
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5. The main result

Thanks to the first result in Proposition V1.2 we have that for €} in general, it
is necessary that I' is such that A, is empty. This is a rather strong condition as
we shall see now. Let us suppose that I' is generated by two or more parabolic
elements with different fixed points, and let us again go to the upper half-space
model. We can without loss of generality assume that z ~— z 4 ¢ is one of the
generators. We see that it will have its fixed point at co. Let 7 € JH be the
fixed point for another parabolic generator, then 7 + ¢ is in A and 7 + 2¢ etc.
We will have the limit set A to be of infinite cardinality, i.e. I' is non-elementary.
Then we can use Theorem 1.1 in [13], which says “if [' is non-elementary then
§(T) = dim(A.)”. We also know from page 28 that §(I') > 1. Hence, if T is
generated by more than one parabolic element, the non-tangential limit set A. is
not only non-empty, but has Hausdorff dimension greater than % That implies
that I' must be of the form studied above, i.e. generated by a single parabolic
element. Thus, by the Lemmas V1.5 and V1.6, we have a complete description of

the situation when a Kleinian group generates a boundary layer.

THEOREM VI.7. Let I' # {I} be a Kleinian group and let Q be the complement
of the Archipelago of I'. Then Q is a boundary layer if and only if I is generated
by a single parabolic element and rp ts chosen small enough. Furthermore, ) is
never a good boundary layer.



CHAPTER VII

On Discrete Potential Theory
and
Discrete Groups

We will investigate some relations between the theory of Kleinian groups and
potential theory in the language of discrete potential theory. To be able to do
that we need to define some concepts such as minimal thinness and boundary
layers from the continuous potential theory for a discrete setting.

1. Introduction

Discrete groups are, by the very construction, and as their name indicates,
discrete. If we, on the other hand, study the classical potential theory, we are
dealing with the continuous world.

We tried in Chapter III to compare thin sets from the continuous potential
theory with the theory of Kleinian groups. We did that by forcing the discrete
group to the continuous playground by putting a hyperbolic disk around each
point in an orbit of the group to derive a set with strictly positive capacity.

In this present chapter we will try to stay in the “discrete park” as far as
it is possible, to let the concepts meet there. The theory of discrete potential
theory with its natural connections to Markov chains and random walk is not
only a nice variant of the classical continuous potential theory, but also interesting
for the applications (e.g. electrical nets, c.f. [46]) and its adaptedness to concrete
numerical calculations. It should, for historical reasons, also be mentioned that the
very start of the potential theory was rather discrete when Isaac Newton studied
point particles.

This chapter is organized as follows. In Section 2 we recall the notation and
definition of some basic concepts in the theory of Markov chains, the transition
operator matrix, the Green kernel, the Martin kernel and the Martin boundary.
We also discuss absorption and give a definition of minimal thinness in a discrete
meaning, see Definition VIL.6.

Section 3 is devoted to results about minimal thinness. We will show that
minimal thinness is a local property (Proposition VIL.7T). We will also get some
equivalent formulations of minimal thinness using the notion of conditioned ran-
dom processes in Theorem VII.11 and Proposition VII.14. As a spin-off effect of
Theorem VII.11, we will give a result in Corollary VII.12 about ordinary contin-
uous minimal thinness.

By choosing a special capacity, and using a result in [11] together with Propo-
sition VII.14, we get an equivalent formulation for minimal thinness in terms of

67
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capacity in Corollary VIIL.17.

The last part of Section 3 deals with a discrete semi-analogue of a result of
A. Beurling, Theorem I, which already in its original formulation bears a strong
flavor of discreteness as it contains a separated point sequence. We give in fact two
results in the spirit of the first half of Theorem I; Proposition VII.19, that stresses
the connection to minimal thinness, and Corollary VII.21, where the corresponding
condition (57) in Theorem I is given a probabilistic interpretation.

Minimal thinness is related to the concept boundary layer introduced by A.
Volberg in [42] and studied in Chapter V above. In section 4 we give a discrete
definition and some results giving connections with the absorption matrix, BY,
which was used in the definition of minimal thinness. We will also give a discrete
definition of a variant of boundary layers, which is even closer connected to mini-
mal thinness, called weak boundary layer and was introduced on page 55. Propo-
sition VIL.27 gives the strong complementary connection between weak boundary
layers and minimally thin sets.

In Section 5 finally, we turn to the theory of discrete or Kleinian groups. We
start by stating and proving a result, Theorem VIL.31, which is a discrete analogue
to Theorem I11.23 above.

At last, we get very concrete by studying a special case of Fuchsian groups,
the Schottky groups. For simplicity, we will then also let the transition operator
be of nearest neighbor type and uniformly distributed. We will then see, among
other things, that the complement of a horocycle is minimally thin at the “tangent
point”, see Proposition VII.34.

2. The discrete setting

Our universe in this and the following sections will be the countable set X.

2.1. Basic definitions. Let us begin by recalling some definitions and notions.
The stochastic transition operator matrix will be denoted by

P~ (st y>)wex,

with non-negative elements and row sums equal to one. We will assume that P is
irreducible, 1.e.

Va,y € X thereis an n such that p(”)(m,y) > 0,

where p{™)(z,y) is the z,y-element in the matrix which is the product of n copies
of the matrix P and can be interpreted as the probability that after n steps in
a P-random walk, we have gone from the Markov state = to the state y, i.e.
Pr.[ X, = y].

Furthermore, we will assume that P is such that the Markov chain {X,} is
transient. That is, there is an © € X such that

Pry[dn: X, =z| < 1.
For equivalent formulations, see [44, Theorem 2.1].

DEFINITION VIL.1. The discrete Laplacian is P — 1, i.e. h is P-harmonazc, or
simply harmonic, if Ph(z) = h(z), where Ph(z) is defined as

Ph(z) =Y plz,y)h(y).

yeX



2. THE DISCRETE SETTING 69

(The harmonic functions are sometimes called regular, see for example [28].)

DEFINITION VII.2. We define the Green kernel by
Glz,y) = > p"(z,y).
n=0

The Green kernel can be probabilistically thought of as the expected number
of visits in y for a Markov process, X,, following the law of P, i.e. p(z,y) =
Pr[X,+1 = y| X, = 2|, and starting at x.

DEFINITION VIL.3. We make the following definition
F(z,y) = Pry[3n > 0 such that X,, = y].

That is, F'(x,y) is the probability that a process started at state x reaches state
Y.
Let xg be a fixed reference point in X.

DEFINITION VII.4. The Martin kernel
G(z,y)
G($0,y)

Once we have defined the Martin kernel, we can define the so called Martin
compactification X* to be the minimal completion of X such that, for every

K(z,y) = for x,y and z¢ € X,

x € X, K(z,-) extends continuously. See for example [17] or [28, Chapter 10] how
this is done.

The resulting limit set, 0X = X*\ X, will be called the Martin boundary of
X, or Martin exit boundary as in [17] and [28]. Finally, we extend the Martin
kernel to that boundary by

M for £ € 0X.

y—¢ G(20,y)
(The limit exists, due to the definition of the boundary.)
REMARK VIL5. Note that G(z,y) = F(z,y)G(y,y), and thus
F(zo,y)’

i.e. the Martin kernel K(z,y) is the fraction of the probability to reach state y
from x over the probability to reach y from zy. We will later use the notation

Ke(+) for K(-,¢).

K(z,y) =

2.2. Absorption and minimal thinness. To be able to accomplish a discrete
analysis we will have to convert some definitions and results from the continuous
settings concerning small sets at the boundary (such as minimally thin sets) to
the discrete setting.

BY is called the absorption matrix for £ (see [28, p. 109]) and is defined as

(BY)zy = Pr,[3n>0: X, =y € E, the first entry in F].

In the finite case (i.e. when X is finite) we can view the operator BY as a square
matrix with X as the index set. If we renumber the states in X such that we
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“start” with the states in £ we can divide the matrix into four parts as indicated
below,

I 0
BE:(B o)

where [ is the identity matrix, indicating that if we start with a state in £ we will
for sure be absorbed, and B the matrix with elements

B, = Pr.[X, is absorbed in y] for z € X \ £ and y € E.

All of the above notations and definitions are standard, see for example [28], [17]
or [39]. The similarity to the classical situation (see Proposition V.12) encourages
us to make the following definition.

DEFINITION VIL6. E is minimally thin at ¢ if there is an x in X \ E such
that

BYK¢(z) < Ke(x).

3. Equivalent conditions for minimal thinness

We will in this section study the concept of minimal thinness defined above and
give some equivalent formulations.

3.1. Minimal thinness is a local property. Using the above definition for
the operator BY we immediately obtain the sub-additivity for BEK;. Let x €
X\ E.

B K (2)= > BeuKe(z))= Y. Bop,Ke(zj)+ >, Bou Ke(z)).
ITJEElLJEQ IjeEl 1’]€E2
By the definition it follows that
By, = Pr.[dn >0: X, = z; € Ey, the first entry in £y U By <

< Pr;[dn >0:X, =x; € Ey, the first entry in Fy],
and similar for E£5. Thus we have that
(40) BRYE K (2) < BM K¢ (2) + B K¢(x).
We say that £° = X \ E is irreducible if for all z,y € E° there is an n such

that
Pr.[X, =y and X1, X5,..., X,,.1 € E] > 0.

ProprosiTION VIL.7. The following two properties holds for minimal thinness.

o Minimal thinness is a local property. That s, for every neighborhood O of
£ € 0X, where O is a subset of the Martin compactification X*, we have
the following. E is minimally thin at & of and only of E N O is minimally
thin at €.

o [f we suppose that E° is irreducible, xo € E° and that E is minimally thin
at £ € 0X then

BYK¢(z) < Ke(z) Vo € E°.
We have especially that
BEK¢(zo) < 1.
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PROOF. We know, c.f. [28], that K¢ is P-harmonic and that B¥ K is P- super-
harmonic, hence g := B¥ K¢ — K; is superharmonic. Since E is minimally thin at
¢ we know that there are points (maybe only one) in X \ £ such that BE K¢(z) <
Ke¢(z), ie. g(z) < 0. Suppose now that x; € X is a minimizing point of g. Then
the minimum principle (see for example [44] or [38] p. 20) tells us that ¢ must
be constant, which contradicts the fact that ¢ = 0 on £ and g(z1) < 0. We
conclude that there is a minimizing sequence for ¢ of points in £° tending to the
boundary. We can say more than that. Since ¢ = 0 on the boundary outside every
neighborhood of the limit point ¢ we know that the minimizing sequence must
tend to ¢ € 0X.

Let £y = E\ O and F; = E N O, and suppose that F, is minimally thin
at . Then we know from the above, that there is an z; in O N X such that
B2 K¢(z;) < K¢(x;). Let us choose an ¢ such that

B2 K¢(x;) < (1 — &) K¢(as).
Let us now study the whole set E. We have due to the sub-additivity in (40), that
(41)  BYK¢(x;) < BP K¢(x;) + B Ke(a;) < B Ke(a) + (1 — ) Ke().

Let us study the first term closer. We see from the definition of the absorption
matrix that we can make the following estimate for x € O N X.

BP K¢ (z) < sup Ki(y) == M < cc.
yed

Let us now, if necessary, choose a new point z; closer to ¢ such that K¢(x;) > M/e
and such that BP2K¢(z;) < (1 — &)K¢(x;) still holds. This can always be done
since K¢(x) — oo as ¢ — &, and since there exists a minimizing sequence tending
to €.

Let us use (41) to obtain the following.

BYK¢(x;) < BT Ke(z;) + (1 — ) Ke(x;) < M + (1 — &) Ke(x;) <
< eKe(z;) + (1 — ) Ke(zj) = Ke(;).

That is, £ is minimally thin at £&. The opposite implication is immediate thanks
to the trivial estimate B"1YP2 K, > BP1 K.

We conclude that minimal thinness is a local property. We have finished the
first part of the proof.

For the second part, let us assume that £° is irreducible. From Lemma VII.9
below we see that ¢ is in fact harmonic, seen as a function on E°. Therefore, we
have also the maximum principle, which we will now use. Suppose that z, is a
point inside E° such that g(x3) = 0. Then we see that the harmonic function ¢
attains a maximum inside £° and we obtain a contradiction from the fact that the
maximum principle forces ¢ to be constant in £°. [

Let us now introduce the normalized restricted transition matrix P as the restric-
tion of P to the states in £° normalized so that the series 3>  pe p(z,y) = 1.

REMARK VIL.8. We can use the substochastic operator P, defined in equation
(46) below, to describe P.

plz,y)

——— forz,y € E°.
Yoeme P, 2)

plx,y) =
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LEMMA VIL9. If E¢ is irreducible then BEK¢(z) is a P-harmonic function in
k.

ProoF. We will just show that ]BBE]Q(J:) = BYK¢(z) for = € E*.
PBPK¢(z) = Y pla,y)B Ke(y) = 3 pla,y) Y By, Ke(zj) =

yeke© yeE® ;€L
= Y Ke(z;) Y b2, y)Bye, = > Ke(zj)Beo, = BYK¢(z),
z;ER yeke© z;ER

since we have by definition that ) e p(2,y) = 1 which means that we have an
expansion equality in the second last equality above. [

3.2. Conditioned processes. Let 7, be a process that started at the state
xg and is conditioned to go to the boundary point £ € X and let E be a subset
of X. More precisely, we will by Z,, mean a process on X acting under Doob’s
conditioned transition operator, which is a re-normalization of P.

Thanks to this conditioned transition operator we can view the conditioned
process as an ordinary, unconditioned, random process with an adjusted transition

law (see [18, p. 566]),

(42) (Pi)ay = palz,y) = ©

where h(-) is the Martin kernel at ¢.
We immediately get that

p(xo,y)Ke(y)
Ke (o)

REMARK VII.10. Note that Py is a new stochastic operator since P, has row-
sums equal to one. (That follows easily from the P-harmonicity of the Martin

kernel).

pr(To,y) = = p(xo,y)Ke(y), since Ke(xg) = 1.

THEOREM VIL11. E is minimally thin at ¢ if and only if there exists an x in
X such that the conditioned process Z,, with starting point at x conditioned to go
to &, avoids F with non-zero probability.

PROOF. Let us prove the complementary statement, i.e. let us prove the follow-
ing. F is not minimally thin at ¢ if and only if for every x € X the conditioned
process Z, with starting point at = hits £ on its way to ¢ almost surely.

We start with a remark of the iterated transition operator. Analogously to
equation (42) above, we get that

P (@, y) Ke(y)
Ke(x)

(43) p(2,y) =

since we can view P as another transition law and study its conditioned matrix
P}En) in the same way as for P.
Next, by Definition VII.6 we have immediately that

(44) E is not minimally thin at { & BPK:(z)=1, Vz € X.

Ke(x)

Let us now show that the right-hand side of the above equality is equivalent to
the second statement in the theorem.
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We then have as above that the probability of the conditioned process 7, with
starting point at = to hit F on its way to & can be expressed in the following way.

(45) Pr[{Z,} hits E] = > Pr[{Z,} is absorbed in y].

yeE

We will now study the absorption case closer. Let us now study a variant P of
the transition operator P by letting £ be an absorption set such that

oo pley) e g E,
(46) p($’y)_{o if e k.

Thus P is a substochastic transition operator, i.e. the row-sums YyerP(y) <

1. Furthermore, it is easy to see that F(m, y) = By
The construction of the conditioned operator is as before as seen at page 566 in
[18], i.e.
: p(z,y)Ke(y)
47 pr(x,y) =
( ) ph(ray) [X’g(.fl?)

and as in equation 43 above

P (a,y) Ke(y)
](g(.ﬂ)

(48) A (2,y) =

Let us now study the conditioned variant of F'(z,y) when ¢ F and y € E to
see that

(49) Ey(x,y) = Pr[{Z,} is absorbed in y],

where, as above Z, is a random process that started at « conditioned to exit at ¢.
That is, Pr[{Z,} hits E] = Fu(z,y).
Now, since in Remark VIL5, G(z,y) = F(x,y)G(y,y), we have that for the

conditioned analogue

Gh(‘ra y)
50 Fplz,y) = ——=%,
(50) W) Gily,y)
where we define the conditioned Green kernel as
Gnle) =P ()
n=0

Hence, by the use of equation (43), we have that

=

e(y)
From that we immediately get that G (y,y) = G(y,y) which we can use in equa-
tion (50) above to obtain

(51) Gz, y) = G(z,y)

Gr(z,;
Fh(x7y) = %
and by equation (51) we get
G(x,y) Ke(; K
Fh(.fl?,‘y) _ (‘I y) f(y) _ F(ZC,y) ﬁ(y)
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Since we can think of P as just another substochastic transition operator, we
analogously have that

(52) Fi(z,y) = F(a,y) %

Thus we have from equation (49) that

. : Ke(y) 1 E
Pr[{Z,} is absorbed in y] B, —— B Ke¢().
= "L Ew TR

Hence by equations (45) and (44) we conclude that the probability of the con-
ditioned process Z, with starting point at = to hit £ on its way to ¢ is one for
every * € X if and only if £ is not minimally thin at &.

O

3.3. A continuous analogue. The above Theorem VII.11 give us a nice prob-
abilistic interpretation of the discrete minimal thinness for an arbitrary discrete
irreducible stochastic operator.

Is the analogue true for the classical (continuous) case? That is, can we give
a probabilistic interpretation of classical minimal thinness with the help of condi-
tioned Brownian motion?

Yes we can, and it is rather easy thanks to the rich book of Doob [18]. (The
conditioned Brownian motion is defied at page 668 in [18].) Let us show the
following.

COROLLARY VIL.12. Let D be a Greenian set*. Furthermore, let B; be a con-
ditioned Brownian motion in D, conditioned by the Martin kernel K, to exit at
7 € 0D. Then E is minimally thin at 7 if and only if there exists a point x € D
such that

Pr.[B; avoids E] > 0.

PRrROOF. If we translate (b1) in Theorem 1.XII.11 on p. 208 in [18] and combine it
with equation (7.3sm) and the equation below on page 686, where we put v = K,
¢ =1z, A= F, and note that K, < oo for all x € D, we get that £ is minimally
thin at 7 if and only if

PEATE < TP} < 1,

which we translate in the following way.

FE is minimally thin at 7 if and only if the probability for a K,-conditioned
Brownian motion to hit £ before hitting the boundary 9D, when started at € D,
is strictly less than one. [

REMARK VIIL.13. This corollary can be useful to heuristically describe ordinary
minimal thinness. Furthermore, it is a good example how the discrete situation
can generate conjectures about the original classical case.

TAn open subset of RY which supports a positive non-constant superharmonic function.



3. EQUIVALENT CONDITIONS FOR MINIMAL THINNESS 75

3.4. A zero-one law. Let us return to the discrete case. The following propo-
sition is inspired by [18, 3.111.3] which deals with Brownian motion. Set Lz to be
the last hitting time of E.

ProrosiTioN VII.14.

Pr{Lg = oo =

0 i E is mintmally thin at £ € 0X,
1 if £ is not minimally thin at ¢ € 0X.

REMARK VIL15. It is sometimes useful to do the basic reformulation Pr[Lg =
oo] = Pr[Z, € E infinitely often] to get a slightly different statement?.

PROOF. Let us consider the Martin compactification of X under the conditioned
transition operator Pj. Since any random walk is forced to go to the one and only
point ¢ which lies on the underlying Martin boundary for the original transition
operator P, we see that we have a one point compactification, i.e. the Martin
boundary for the law P, is just the lonely point £.

Hence we can only get constant solutions to the trivial Dirichlet problem thanks
to the maximum- and minimum principles. In other words — every bounded F;-
harmonic function is constant.

Let us use this fact together with an argument from the proof of Proposition
3.5 in [11] where the following auxiliary function was presented.

u(z) := Pr.[Z, € E infinitely often |

(recall that 7, is conditioned to exit at £).
We have immediately that u is bounded and F,-harmonic. Hence it is constant.
The Markov property gives us now that

u(Z,) =Pr[{Z; : k >0} hits £ i.0. |Z1,Z4,... ,7,] =
= E(X{Zk hits Ei.o.}|Z17 Z27 s 7Zn)a

where y stands for the characteristic function. Due to the martingale convergence
theorem we have the following.

E(X{Zk hits £ i.o.}|Z17 Layenes Zn) — X{Zy hits F i.0.}+

By the fact that u is constant we will obtain the following zero-one situation.
o 0
u = Pr[Z, € E infinitely often] = |

By the remark above, we see that Pr[Lr = o] is either zero or one.
We will now couple this dichotomy to the minimal thinness of . First, let us
suppose that E is not minimally thin at the conditioned exit point £&. Then we

have by Theorem VII.11 that
(53) v(z) = Pr[{Z,}n>1 hits E] =1Vz € X,

Let now T} be the hitting time for the k:th visit of Z,, at £. Due to Equation (53)
we see that T} < oo for all & > 1 almost surely. We have that T} is a stopping
time and we can consider the new stochastic variable

Wk = ZTk-

Zas in the proof below
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The strong Markov property give us then that

K-1
Pr[{Z,} hits E K times or more] = [] v(W) =1

k=1

since we had that v(z) =1 for all z € X. Going to the limit we will then obtain
the following.

P1[Z, € E infinitely often] = ] vo(Wy) = 1.

k=1
That is, if £ is not minimally thin at ¢ then Pr[Ly = oo] = 1.
On the other hand, let £ be minimally thin at the boundary. Then we know
from Theorem VII.11 that there is an = € X such that

Pr.[Z, hits E] < 1.
Thus we can write
Pr[Lp = oo] = Pr[Z, € E infinitely often] =
Pr[Z, hits E i.0. and Z, hits 2] + Pr[Z, hits E i.0. and Z, does not hit z] <
< Fu(xo,2)Prz[Z, hits E i.0] 4+ (1 — Fu(ze,2)) < 1,
where we used the fact that the conditioned variant of F(-,-),
Fir(zo, ) = F(ag,2)Ke(x),

is strictly positive due to the irreducibility of P. Hence we see that if £ is minimally
thin at a boundary point ¢, then Pr[Lg = oo] is strictly less than one which, due
to the zero-one situation, implies that Pr[Ly = cc] =0 O

3.5. Capacity. In this subsection we will present an equivalent condition of
minimal thinness. By a special choice of capacity one can get both a necessary
condition and a sufficient condition for minimal thinness. We will obtain that in

Corollary VII.17 below.

Let us cite some definitions made in [11].

DEFINITION VII.16. Let E be a set and B a o-field of subsets of E. Given a
measurable function H : E x E — [0,00] and a finite measure p on (E,B), the
H-energy of p is

Tu(p) =3 > H(wi,x;) pi s
i
where x; € E and p(x;) = p,;. The capacity of E in the kernel H is

-1
Capy(F) = [i%f ]H(,u)]
where the infimum is over probability measures p on (F,B) and, by convention,
oo™t = 0.
We also define the asymptotic capacity of E in the kernel H as

(54) Capi?(E) = inf  Capp(E\ E).
{E, finite}

(Classically, the choice of the kernel function H has been the Green kernel
Gz, y).
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In [11], the authors used another kernel, namely the Martin kernel K(z,y), to
obtain the following second half of Theorem 2.2 in [11] which we cite here for the
convenience of the reader.

THEOREM H. Let {X,} be a transient Markov chain on the countable state
space X with initial state xo and transition probabilities p(x,y). For any subset £

of X we have

1
(55) §Cap(lgo)(E) < P, [ X, € E infinitely often | < Cap(lgo)(E)
where K is the Martin kernel.

We will now study a variant of the Martin kernel, more suitable for our purposes.
Let from now on the kernel function H(xz,y) be the conditioned Martin kernel at
£, l.e.

H(z,y) = K (2, y)——
TRy

From Theorem H and Proposition VII.14 above, we get the following corollary.

COROLLARY VIL17. Let H(z,y) = K(x,y)Kﬁlw. Then the following holds.

E is minimally thin at ¢ if and only if Capﬁo)(E) = 0.

PROOF. Let us once again consider the conditioned random walk Z, on X

conditioned to eventually go to ¢ at the boundary. The transition probability

is pr(z,y) = p("c,y)ﬁizg (Note that we mark the dependence of the transition

operator in the conditioned Martin kernel by the lower index h.)
Nevertheless, Theorem H still holds for that transition operator, i.e. equation
(55) transforms into

1 o P oo
(56) §Cap(Kh)(E) < Py, [ X, € E infinitely often | < Cap(Kh)(E).
From Proposition VII.14 we have that E is minimally thin at ¢ if and only if

Pr,,[Z, € FE infinitely often | = 0.

Hence we have from equation (56) that £ is minimally thin at ¢ if and only if
Cap(jgz)(E) = 0.
The only thing that remains to do is to actually compute the kernel Kj,.
By definition,
Gh(‘r7 y)

Ki(z,y) = ma

where we recall that the conditioned Green kernel

Guley) = o) 548

from equation (51) in the proof of Theorem VIIL.11. Since K¢(z9) = 1 we finally
get that
Glz,y) 1 1
= K(z,y)—
Glaoy) Kelo) " OV

ending the proof of the corollary. [

[(h(xv y) =
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3.6. Beurling’s equivalence sequences. Let us for a while leave the discrete
world and recall a classic result from 1965. Beurling defines and characterizes the
so called equivalence sequences in [12] in the following way. Let D be a simply
connected domain and let S = {z,};° C D be a sequence tending to the limit
point ¢ € dD with the property that for each positive harmonic function u in D
and A > 0,

u(z,) > AKe¢(2n) Yn = u(z) > AK¢(2) Yz € D.

S is called an equivalence sequence for £ if the above property holds.

THEOREM . S s an equivalence sequence for & if and only if it contains a

subsequence {z,}°2, with the two properties
Sup g(2n,,, 2n,) < 00
uFv
(57) Zg(z,zny)[&’g(zny) =00, z€D,

v=1

where g is the Green function for D.

It is well known (c.f. [7] or [20]) that the concept of equivalence sequences is
closely related to minimal thinness. If we let £ be the union of hyperbolic disks®
with centers at z, € S, we will have that S is an equivalence sequence at ¢ if and
only if £ is not minimally thin at £.

We will see that the use of hyperbolic disks is the price we have to pay as we
work with the continuous case. Let us now turn back to the discrete setting.

Following the definition above we define the following.

DEFINITION VIL18. E := {z,}° C X is an equivalence sequence of ¢ € 0X
if for each positive super-harmonic® function h in X

h(z,) > Ke(x,) Yn = h(z) > K¢(x) Vo € X.
Let us now state and prove a result in the spirit of Theorem 1.
ProprosITION VIL.19. Let, as above, F be a subset of X, then

E is an equivalence sequence at £ € 0X

=
E is not minimally thin at £ € 0X

=

Y Glwo,y)Ke(y) = oo.

yek

3We have to put hyperbolic disks around the points due to the fact that a denumerable point
sequence is always polar and thus always minimally thin.
4i.e. super-regular in the notion of [28].
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PROOF. The equivalence is almost immediate since we know that BYK; is the
smallest positive superharmonic function such that B¥K; > K¢ on E. Defini-
tion VIL.6 then tells us that £ is minimally thin if and only if £ is not an equiva-
lence sequence finishing the first part of the proof.

Let us now show that the first statement implies the third. Let Z, be a process
with transition law P that started in the state z¢ and conditioned to go to the
boundary point £ € dX. Let us first compute the expected number of times that
7, visits a point y € X. A way to study this situation is given by the conditional
random walk matrix (see (42) just above Theorem VII.11). We have that

p(zo,y) Ke(y)
Ke(zo)

We also get from equation (43) that

2 (20, y) = P (20, y) Ke(y).

Let us recall the definition of the conditioned Green kernel introduced in the

pr(To,y) = = p(zo,y) Ke(y).

proof of Theorem VIL.11: Gi(-,-) =302, pgln)(-, -). Now, we are ready to compute
the expectation value

(58) E(#{Z, visits y}) = Gp(xo,y th To,Y) =

—Zp (20, y) Ke(y) = G20, y) Ke(y)-

Next, let us compute the expected number of times that 7, visits the set £ C X
on the way to £.

(59)  E(#{Z. visits E}) = Y E(#{Z, visits y}) = > G(xo,y)Ke(y).

yEE yEE
(I am sorry for using the letter £ in two different meanings on the same line
above.)

Consider now the notion of exit times Ly introduced in section 3.2. Proposi-
tion VII.14 tells us that if £ is not minimally thin at £ we have that Ly = oo
almost surely; or in other words: Z, visits F infinitely many times almost surely.
Equation (59) then gives us

0o = E(#{Z, visits E}) = Y G(xo,y)Ke(y).
yeE
U

REMARK VIL.20. As a byproduct of the proof we get the probabilistic interpre-
tation of the series 3° cp G(x0,y)K¢(y) to be the expected number of visits of E
of a random process that starts in z¢ and is conditioned to exit at £ € 0.X.

The remark above encourages us to formulate the following straightforward half-
side analogue to Beurling’s Theorem I.

COROLLARY VIIL.21. Let Z, be a random process conditioned to eventually go
to £ € 0X. Then the expected number of times that 7, visits E is infinite if F is
an equivalence sequence at &.

REMARK VIIL.22. In [7, Theorem 7.2 p. 18] A. Ancona gives in fact a discrete
version of Theorem I in the framework of Gromovs theory of 6-hyperbolic graphs.
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4. Boundary layers

4.1. The discrete definition. Since we have assumed that P is a transitive
operator, i.e. it generates a transitive Markov chain, we can define the asymptotic
stochastic variable X, see [44]. Let us then study the class of harmonic measures
(vz)zex, derived in [44, Chapter 2]. The measures are defined in the following
way.

vo(B) = Pr,[X.. € B,

where B is a Borel set and a subset in dX. Let us do the same construction for
the set £° = X\ F, where we suppose that E° is irreducible, and call the resulting
measure class (0;)zege. (We will in the proof of Proposition VII.25 below see that
we indeed are dealing with a measure class.) We can now mimic the situation in
Definition V.2 on page 45.

DEFINITION VII.23. Let ¢ € (0,1). We say that E° is a c-boundary layer (at
Veo (1) > cvyy (1) for every Borel set [ C 0X.

“., »
c_

We sometimes drop the prefix if Qs ac-boundary layer for some ¢ > 0.

E° is a boundary layer if one can, by a random walk, reach each subset of
the boundary, without hitting the “taboo set” K on the way, with probability
comparable to the size of the boundary. In other words, £ should be small enough
everywhere near the boundary 9.X.

The following is inspired by Proposition V.4.

ProrosITION VII.24.
BYK¢(x0) <1 —c forall £ € 90X,
if and only if E° is a c-boundary layer.

PrOOF. We will closely follow the proof in [6] of Proposition V.4. Let us fix a
Borel set [ on d.X. To simplify the notation, let v = v,(1) and v = v,(1).

We will have
) {0 on 0X,
v—1U =

v on FE.

We also note that v — v is P-harmonic in £°. From this we see , by the uniqueness
of harmonic functions and Lemma VIL.9, that

v—1p =By on E°
Hence E° is a c-boundary layer if and only if
Wiy < Vgy — BEV($0),
or equivalently
(60) BEI/(J:O) <(l —¢)vy for every Borel set [ C 0X.

Let us rewrite this in the following form.

(61) BEL(:EO) < (1 —¢) for every Borel set I C 0X.

Vg
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Proposition 10-21 in [28] tells us that for a Borel set A in 9.X, we have the
following.

(62) vo(A) = / K(z,2) dvay (2).
A
Now, let v™* = v(-, B({,r,) N 0X) and r,, — 0 as n — oo, then we obtain
" K(z,z)dv"
lim Yo _ lim fB(g’T") (z,2) dv O(Z) = K(z,{) = K¢(z),

n—oo V;’Lo n—oo fB(Eﬂ“n) dl/go (Z)

due to the continuity® of the second variable in the Martin kernel (c.f. p. 340
in [28]).
Hence (61) implies

(63) BYK¢(z0) <1 —cfor every ¢ € 0X.

On the other hand, suppose that (63) holds and let us integrate both sides of the
inequality with respect to the harmonic measure v,, over the Borel set I. The
right hand side will then be

[ =) dvay () = (1 = (1),
and for the left hand side we have
[ BEKe(0) diy (&) = [ 8 Buga, Kela) vy (€) =

z;EE

= Y Buy, /I K¢(x;)dv,, (€) = (Equation (62)) =

z;EE
= Z Bayoyve, (1) = BEI/(:I:O) (with [ as the underlying set).
;€L
Comparing the left and right sides we get that (63) implies (60) and we obtain
that E£°is a c-boundary layer if and only if (63) holds. O

4.2. Weak boundary layers. We have put the reference point in a special
position in the definition of boundary layers. Can we weaken that slightly to
choose the “best” possible starting point for 7,7

Yes, we can do that as is shown in the following proposition, which is a parallel
to Proposition V.22 on page 5H4.

ProprosITION VIL.25. E° is a boundary layer if and only if

BEK¢(z) < 1.

inf su
2EX genx Ke()

PROOF. Suppose that

BEK¢(x) < 1

inf su
z€X &eal))( K¢(x)

holds. Then we know that there exist ¢, 0 < ¢ < 1, and z; € E° such that
SUPgeax Ki—zl)BEKg(xl) < ¢q. Due to Proposition VII.24 we see that E° is a

(1 — g)-boundary layer at x;. That is,
Ve, (1) 2 (1 = q)ve, (1)

5The continuity follows from the construction of the Martin compactification.
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for every Borel subset I C 0.X.
Now, thanks to the irreducibility of £°, we have that

oy (1) 2 Fo,20)i, (1) = F 0, 21)(1 — q)rn (1) >

> Flao,e)(1 = q)F (a1, 20} (1) > C(1 = (D).

(F is with respect to E° not X.)

Since [ is an arbitrary Borel subset in d.X, this implies that E° is a boundary
layer at xg.

The “only if” part is trivial. [

The above condition tells you heuristically that it is enough to study the proba-
bility of random walks to hit sets on the boundary starting at good starting points,
i.e. not necessary the origin.

Let us now take this a step further and not only study sequences of good starting
points but also to let the hitting point be decided in advance, i.e. a switch of
the order of limiting sequences. Or in other words: exchange the order of the
supremum and infimum above and define the following variant of boundary layers.
(Compare with Definition V.23. )

DEFINITION VII.26. E°¢ is a weak boundary layer if

sup inf

BYK:(z) < 1.
ceax z€X Ke(x) (e)

Encouraged by Proposition V.24, we state the following.

ProprosITION VIL.27. E° is a weak boundary layer if and only if E is minimally
thin everywhere at 0.X .

PROOF. First, let us suppose that the statement “F is minimally thin every-
where at X7 is false, i.e. there is a £ € dX such that

1
Ke(x)

(64) BYK¢(z) =1 forall z € X,

Let now {z;} be a sequence in X such that

lim

BYK:(z;) = inf
N {¢(x;) = in

BYK:(z).
) @) (e(x)

Since now (64) holds, we see that

BEK¢(z) = 1.

K@)
Hence E° is not a weak boundary layer.

To show the other implication, we suppose that £ is minimally thin everywhere.
Proposition VII.14 tells us now that for every ¢ € 90X the conditional process
Z, (conditioned to eventually go to ¢) has a last exit time of E, Lg, such that
Pr(Lg = o0) = 0. Thus we see that it is possible to choose a sequence of starting
points {z;} tending to ¢ such that the probability to hit the set £ for 7, will tend
to zero. That is, by considering the proof of Theorem VII.11,

1
Ke¢(z;)

BEK¢(z;) — 0,
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which gives us

BEK¢(z) = 0.

inf

1
7 Ke(x)
Since this holds for every ¢ € 0X we conclude that

BEK¢(z)=0

sup inf —
e © Ke(x)

which means, by the definition, that £° is a weak boundary layer. [

REMARK VIIL.28. We note that the proof gives us that the expression in the
definition of weak boundary layers above is either zero or one, i.e.

FE° is a weak boundary layer
0 or equivalently

FE is minimally thin everywhere,

(65) supinf

—BYK¢(z) =
e © Ke(x)

E°¢ is not a weak boundary layer

1 or equivalently

FE is not minimally thin everywhere.

5. Kleinian groups

In this section we will try to use the above definitions and statements to study
the situation on the orbits of Kleinian groups, and especially the comparison of
subgroups. Let I' be a Kleinian group, and let X be the orbit set of the reference
point z¢ which we for simplicity will take to be the origin.

C. Series has given some results concerning the limit set of Fuchsian groups and
the Martin boundary of X. See [37, Corollary 1.4]. Before we plunge into the
discreteness, let us recall a result from the continuous setting. Theorem I11.23
says that I' is of convergence type if and only if £ is minimally thin a.e.

5.1. Subgroups of Kleinian groups. Where we in the continuous situation
use the unit ball as the implicit universe for the set of orbit points, we introduce
Now super-groups, f, to be able study the orbit of I" as a subset of the orbit of r
and thus be able to use our results about discrete minimal thinness and discrete
boundary layers.

Let as above I' be a Kleinian group and X its orbit. Let furthermore, I" be a
subgroup of T which generates the orbit set X.

We see immediately that X is a subset of X and that there are two questions
we could ask.

o How big is the set on X where X is minimally thin?
e Is X\ X a boundary layer?

The answer of the two questions above depends of course on the choice of the
transition matrix P.

REMARK VIIL.29. Note that we can do a similar set up for the slightly more

abstract situation where we pick the elements in I' to be our denumerable set X
instead of first taking the orbit.
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ProrosiTtion VII.30.
¢ € 0)?\ 0X = X is minimally thin at €.

PROOF. Suppose that X is not minimally thin at ¢, then by the above Propo-
sition VIL.14, we see that Pr[Lx = oc] = 1. Thus ¢ must be in dX. O

We can also obtain something in the spirit of Theorem I11.23 to answer the first
question above. Note that Theorem I11.23 can be viewed in the following way.

I is of convergence type if and only if
|{¢ € 0B : FE is minimally thin at £}| = |0B].

THEOREM VIL31. Suppose that T has no parabolic elements. Then there exists
a transition matriz P on X such that the following holds.
If ' has a critical exponent strictly less than the critical exponent of I' then

Uro({€ € 0X . X is minimally thin at £}) =1,
where Uy (+) is the harmonic measure with respect to X.

PROOF. S.P. Lalley’s Theorem® 14 in [29] tells us that there exists a P matrix”
on X such that the “exit measure” Uz, equals the Patterson measure on aX.

Furthermore, it is well known that for the conical limit set, the Patterson mea-
sure is comparable to the Hausdorff measure of dimension equal to the critical
exponent of T. Since we know that I’ has no parabolic elements, it is clear that
the conical limit set coincides with the limit set 9X.

Thus we can conclude that v,, ~ H;, where 6 and § are the critical exponents
of ['and T respectively.

We immediately get that

Uz (0X) =0

since the Hausdorff dimension of X is é which is strictly less than 3
It is now easy to do the following estimation by the help of Proposition VII.30.
Us({€ € X : X is minimally thin at &} >
Uy (OX \ 0X) > 1) (0X) — Dy (0X) = 1 — 0.
O
5.2. The Schottky group situation. For a so called Schottky group (see
Definition A.5), we have a tree like situation, see for example [36, p. 337]. We
will for this section suppose that P is of nearest neighbor type® and uniformly
distributed, i.e. a simple random walk (SRW).

Let us first give an answer to the two questions in the beginning of this subsec-
tion.

PROPOSITION VIL.32. Let T be a Schottky group. Then
X is minimally thin at & if and only if £ € 05(\\ 0X.

Y. Peres kindly informed me that Furstenberg had a similar result 1971 in [23].
“Note that P will have infinite range.
8l.e. X, goes, with probability one, to a neighbor point in the graph.
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PrOOF. From Proposition VII.30 we have the “if” part. To prove the other
implication let us suppose that ¢ € dX. Since we know that the Schottky group
gives us a tree?, see for example [36], and we know that there is a unique branch
that leads to a boundary point!?, £, in a tree, we have, by considering the condi-
tioned process Z, introduced in section 3.2, that Z, can not have a last hitting
time of F, otherwise ¢ € 0X. Hence by Proposition VII.14 we conclude that X is
minimally thin at £&. 0O

PROPOSITION VIL33. Let I be a Schottky group, then
)A(\ X is a boundary layer if and only if A = {I}.

PROOF. It is trivial to see that 8 = X \ X is a boundary layer if A = {I}.
On the other hand if Q is a boundary layer it has to be a weak boundary layer.
Q is a weak boundary layer if and only if X is minimally thin everywhere on
90X due to Proposition VIL.27, which is equivalent to say that X is empty by
Proposition VII.32. Therefore, we can only have the trivial subgroup A = {7}. O

FIGURE VII.15. Here is a tree.

FIGURE VII.16. Grab a leaf in the tree in the above picture VII.15
and shake it well. This will be the resulting picture.

In continuous potential theory we know that the set in the unit disk outside a
internal horocycle that touches the boundary at the boundary point £ is minimally
thin at £. The same turns out to be true in our discrete Schottky case.

9A tree is a graph that is connected, but has no circuits.
10Also known as a leaf.
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PROPOSITION VIL34. Let T' be a finitely generated Schottky group. Let E be
the set “outside” a fired horocycle at 7 € 0X. Then E is minimally thin at 7.

REMARK VIL.35. By “outside” a fixed horocycle we heuristically mean that we
take the tree that the free group generates and cut all its branches, except the
root. The cut-off part will be the set £ 11

PROOF. Suppose first that we have a tree with degree ¢ + 1 where ¢ > 0 and
recall that we deal with the simple random walk situation. By drawing the tree

in such a way that the horocycle is a horizontal line, H,,, and the “outside” is

0
“below” we can get a good overview of the situation.

It is easy to see that the probability to go down in the tree is ¢/(¢+ 1) and the
probability to go up is 1/(q + 1).

We intend to use Proposition VII.14 later to show that E is minimally thin at
7. To be able to study the exit times of the conditioned random walk we will once

more'? use Doob’s conditional matrix.

(P, = p(z, y)h(y)

h(xz)

where Ah(-) is the harmonic function we know as the Martin kernel at 7
K(,7)= lgr; K(-, z2).

The Green function of a SRW tree of degree ¢ + 1 is known to be (cf. [16]).

4  _d4(.z
G(J)Zgjﬁqﬂ’%
where d(z,z) is the distance function which is the smallest number of edges be-
tween z and z.
We use this to obtain the Martin kernel.

%q_d(W) d d
(66) K(y,2) = S = gilon) =),
14 ’
Hence,
h(y) — hm d(l’,Z)—d(y7z)‘
Thus the conditioned probability to go up in the tree will be
1
P [13 ” — i
W(fup”) = e
and to go down
« » q _1 1
Py(“down”) = —— - -
ke ) q+1 K g+1

Since we are only interested in those two events of going up or down, we project
the study of the tree to the simple one-dimensional case and a stochastic variable
7 that takes one step up (+1) with probability q% and one step down (-1) with

probability q—I—Ll

1 This concept is due to W. Woess.
1235 we did in the proofs of Theorem VII.11 and Proposition VII.19
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The expectation value E(Z) is then
1 -1
g+1 g¢+1 q+1

which is strictly larger than 0 since we supposed that ¢ > 2. Since Z is transient

we will have a last visit of the reference point xy which means that we will have a
last visit time of the horocycle H,,.
Thus £ will be minimally thin at 7. O

REMARK VIL.36. Note that the level-lines of the Martin kernel in Equation (66)
in the proof above are in fact the horocycles.

REMARK VIL.37. Observe that this method can not give an example of a sub-
group of I' generating the set £ as a vertex set X due to a result telling us that a
parabolic fixed point has to be alone, see for example [9, Theorem 5.1.2].
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APPENDIX A

Kleinian groups

We will in this Appendix give some basic facts about the discrete groups and their
limit sets.

A good introduction to this area is given in Beardon’s “An introduction to
hyperbolic geometry” in [10, pp. 1-33].

1. Basic properties of discontinuous groups

Denote by M the group of Mobius transformations in R, that keep the unit
sphere BY invariant. In other words, if we consider the planar case, mappings of
the form

az + ¢
et where a and ¢ are complex numbers such that |a|* — |¢|* = 1.
cz+a

In higher dimensions M is taken to be the group of all finite compositions of
reflections (in spheres or planes) that preserve the orientation.

The elements in M are for our purpose too “dense”. We thus need to select a
sparser subgroup. This idea translates to a discreteness or discontinuity condition.

DEFINITION A.l (DISCRETE GROUP). Let us view M as a topological group
and ' as a subgroup of M. We say that T' is discrete if each point is isolated.
That is, if I' is discrete and ~, tends to the identity mapping I, then there is an
N such that v, = I for alln > N. Here {v,} denotes the members of I'.

DEFINITION A.2 (DISCONTINUOUSLY ACTING GROUP). ' acts discontinuously
on the unit ball B if I s a subgroup of M and if for every compact subset K of
B we have that v,(K) N K is non-empty for only finitely many ~, € T

REMARK A.3. In our case discrete and discontinuous groups are equivalent
which follows from the fact that the elements in I' preserve the unit ball and

Theorem 5.3.14 (i) in [9].

REMARK A.4. We will distinguish between the planar case and the general
higher dimensional case by calling discontinuously acting subgroups of M Fuch-
sian groups if d = 2, and Kleinian groups if d > 2. The notion “Kleinian” is
usually restricted to the case d = 3, but since our results are of the form that
we sometimes separate out the planar case and otherwise deal with the general
situation (d > 2) we choose this variant of notation. We hope that our choice of
notation will not create any misunderstandings.
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DEFINITION A.5 (SCHOTTKY GROUP). We say that a Kleinian group I' is a
Schottky group if it is generated by side-paring-mappings for an even number of
non intersecting spheres orthogonal to the unit ball, such that no sphere is mapped
to itself and such that the outside of an orthogonal sphere is mapped into the inside
of its image. (The region in the unit ball that is outside all the orthogonal spheres
will be a fundamental domain.)

The natural metric when dealing with the Mébius group is the hyperbolic metric,
since the members of M act as isometry mappings with respect to this metric.

DEFINITION A.6 (HYPERBOLIC DISTANCE). We define the hyperbolic distance,
d(-,-), between x and y in B by

2|dz|

L= |z*

where v is a smooth arc joining x and y.

d(z,y) = irylf/

We will also need a measure of the density of the orbit of I' with respect to the
origin.

DEFINITION A.7 (CRITICAL EXPONENT, 6). Let n(r) be the orbital counting
function, i.e. the number of elements ~, in I' such that d(0,~,x0) < r, then the
critical exponent is defined as

1
6 = limsup —log(n(r)).
r

r—00

(6 is independent of xq, see for example [34, pp. 260].)
Let us also define a fundamental series in the theory of discontinuous groups.

DEFINITION A.8 (POINCARE SERIES). The Poincaré sertes is defined as

ho(,y) = 3 e,

Y€l

The convergence of this series depends on the parameter s, but is independent
of x and y. Let us therefore denote hy(0,0) simply by hs.

LEMMA A.9.

‘ converges if s > 0.
ha(2, ){ diverges  if s < 6.

See for example [34, pp. 259-260] for the proof.
The subgroup I' of M is said to be of convergence type if the Poincaré series
converges with s = d — 1, the dimension of the boundary.

By using the above definitions we see that the series Y~ c(1—|7,(0)[)® converges
if and only if the Poincaré series does.
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2. The non-tangential limit set

Let us study the so called orbit of a Kleinian group I" which is a set I'zg =
{yxo : v € T'} of points in the unit ball', see Section 4 in Chapter III for some
orbit pictures. Since I' is discrete, the points can not cluster inside the unit ball,
but since it is infinite (unless I' is trivial) it has to cluster at the unit sphere 0B.
We call this cluster set A — the (total) limit set.

There is a special subset of A called the non-tangential limit set A. containing
the limit points that are the cluster points on @B of orbit points “clustering in a

non-tangentially way?”. See Remark II.5 on page 14 for a technical definition of

A..

If a Kleinian group is of convergence type then the non-tangentially limit set
has Lebesgue measure zero, see for example [1, p. 93] or [25] (from where we cite
Theorem A on page 13 above).

In 1978 Sullivan presented the following complementary relation.

THEOREM J. Let T’ be a Kleintan group. If the non-tangential limit set has
Lebesgue measure zero, then 1" is of convergence type.

See for example [1, p. 97] for the proof.

'We will usually set the reference point 2y to 0.
2A. is also called the conical limit set.
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APPENDIX B
Potential Theory

In the study of limit behavior of subharmonic functions one often meets the concept
of thin sets. We will use four different kinds of thinness at the boundary, two local
and two global ones. But first we give a short introduction.

1. A smooth introduction

Let us study the class of real valued smooth! functions u in the unit disk U in
the complex plane. We say that u is harmonic if
92, 92,
Au(z) = G5(a +iy) + 55 (e +iy) =0,
for all z = x 4 ¢y in the unit disk.

Let f(s) be a function on the unit circle T, and let us try to find a harmonic
function u that has the radial limit lim,_; u(rs) = f(s), r € (0,1). If we can find
such a u, we have solved the so called Dirichlet problem.

Let us now pick an arc I on T and choose f to be the indicator function for I,

i.e.
1 ifsel,
f(s)= .
0 ifséel.

Then the solution to the Dirichlet problem wu(z), can be interpreted in the fol-
lowing probabilistic way. The value of u(z) is the probability that a Brownian
particle? starting at z hits the boundary T for the first time at the arc I. The
bigger I seems, seen from the point z, the bigger will u(z) be. Therefore we call
u(+) the harmonic measure of I and denote it by w(-, I, U).

Let us now solve the Dirichlet problem for a given continuous boundary function
f. We can give the solution in the following integral form.

1—1z]*. :
= is called the Poisson kernel.

1
' =— [ P d here Py(z) =
u(z) 5 /T (2)f(s)ds, where Ps(z) P
The Poisson kernel is also a harmonic function on its own?®. It is minimal in the
sense that if A(-) is a positive harmonic function such that h(z) < Ps(z) for all
z € U implies that h(s) =0 or h(s) = ¢Ps(z) for a constant c.
Let us now make a variant of this. Let A be a positive superharmonic function,

i.e. Ah <0, such that h(z) > Ps(z) holds on a subset E of the unit disk. How
lu e CYU)
2A dizzy particle with no memory, no preferences and no sense of directions.

31t is the solution to the Dirichlet problem when f(s) = 27d;.
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strong is this condition? Can there be such a function A and a point z in U \ £
such that h(z) < Ps(z)? The answer depends on how “big” E is close to the
basepoint s. Is £ minimally thin at s?

2. Definitions of thin sets at the boundary

DEFINITION B.1 (MINIMAL THINNESS). A set £ is minimally thin at 7 €
OB® if there is a zo in the unit disc such that RE(ZO) < h(zo) where h = P, is the
Poisson kernel at 7 and Rf is the reqularized function, Rh (2) = liminf,_, RE(w).
The reduced function RE(w) is defined as

RE(w) = inf{u(w) : u € SH(B) and u > h on E},
where SH(B) is the class of non-negative superharmonic functions in the unit ball.

In [20] and [4] a metric condition for a set to be minimally thin is stated.
Let {Qk} be the Whitney decomposition of B. Let us also use the following
notation. We set ¢; to be the (Euclidean) distance from the Whitney cube Q) to
the boundary 0B and pi(7) to be the distance from @ to the boundary point
7. By cap we denote the logarithmic capacity when d = 2, and the Newtonian
capacity when d > 3, see for example [30].

DEFINITION B.2. We put

U (lgg 10 )_1 ifd=2

W) =W( E) = ;Pk(g)Q ( 5 cap(E N Q) f ,
qj . .

2 (e BN Q) ifd>3.

THEOREM K. (Essén [20]) E is minimally thin at a boundary point ¢ if and
only if W(¢, E) converges.

REMARK B.3. The definition and metric condition are stated in the plane but
will later be extended to the space, see Lemma I11.22.

DEFINITION B.4 (RAREFIEDNESS). A subset E in the upper-half space H is
rarefied at oo if

ZA E0)200-0 < o,

where d is the dimension, E ) the intersection of E with the half-annulus {z €
HUOQH : 2" < |z| < 2"} and N(E) is the Green mass of E. (See [19] for

some of its properties.)

There is also a Wiener type criterion for rarefiedness. The following theorem is
cited from [4, Theorem 3.2], see also [19].

THEOREM L. (Aikawa [4]) Let H be the upper half-space and let X € OH. Sup-
pose E is a bounded subset of H. Then E is rarefied at X if and only if E has a
decomposition E'U E" such that

-1
qk 4qy

1 ~d=2

2 o) (Og cap(E' 1 czk)) <o Jord=2

Zpk(;}# cap(E' N Q) < oo for d >3,
2
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where E" has a covering U; B(X;,r;) with X; € OH,0 < 2r; < |X — X;| and
-1

] LI R

i (|Xz' - X |) '
In [4], Aikawa introduces two global characterizations of exceptional sets:
DEFINITION B.5. A set E in B is thin with respect to capacity if

-1
Agr )
log ——— < o0 or d=2,

Zk:qk ( & cap(E N Qy) /

(67)
> grcap(E N Q) < oo for d > 3.
k

DEFINITION B.6 (THINNESS WITH RESPECT TO MEASURE). A set E in the up-
per-half-space H is thin with respect to measure if

HEND:) —=0ast—0,

where H is a Hausdorff~type outer measure defined below and Dy the strip of height
t from the boundary. The measure H(-) is defined as follows,

H(A):= inf{z r;i_l A C UZ-B(XZ-,TZ-),XZ- € OH}.
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