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In the fifties there appeared a cultural anthology on mathematical writing edited
by James Newman1. The English title of this multi-volume enterprise was ’The World
of Mathematics’ and it was translated into Swedish as ’Sigma’. However, it was in its
original English incarnation I encountered it in my mid-teens, and as with most books you
encounter when young and malleable, it made a lasting impression. However, it was not
a sample of pure mathematics which made the deepest impression on me, but a chapter
called ’On Magnitude’ lifted out of d’Arcy Thompsons classical ’On Growth and Form’
which really caught my imagination. It was on scaling and its implications in biology and
mechanics and it did really, as they say, open my eyes. The fascination was to be found
in how some very simple mathematical principles could explain and illuminate diverse and
complicated phenomena. This is of course nothing but the seduction of Platonism, that
behind the bewildering complexity of the world known to us by our senses, there lies a
simpler truer world, accessible to us only by our minds and intellects. At the heart of
the matter we find Galileo’s principles that the strength (be it of muscles or support)
scale as surface areas, thus as squares, but masses by volumes, hence as cubes. Similarly
for heat loss, which gives a rather accurate estimation of the metabolism of hot-blooded
animals2. In fact one sees that it then would scale as the power 2/3 with linear dimensions,
underestimating it for long and skinny animals, with a relatively large surface area. The
typical scaling would then be given by power-laws. Among the illustrative examples of
such laws we may consider Keplers Third Law, namely that the orbital times T of plaets
scale as R3/2 where R is the distance3. From this we note, observing that T 2 is also
inversely proportional to the mass, that if we scaled the Solar system the orbital times
would not change, thus we could not determine the dimensions of the system by simply
looking at its qualitative aspects, while in many other applications there are indeed drastic
consequences. E.g large animals need to be much stockier with a arger proportion of their

1 1907-66, a lawyer and mathematician, whose anthology was fifteen years in the making
2 One of the group assignments I used to give to my teacher-students was to fill a milk-cartoon with

hot water and see how quickly it cooled, by scaling this gave a fairly accurate estimate of the energy

need of humans, under the assumption that most of the energy we need is simply to maintain our body

temperature, just as almost all the energy the Earth receives from the sun merely keeps it at a clement

temperature.
3 This is easy to derive from the inverse square law in the case of circular motions, where R is the

radius. In the general case of elliptical orbits R is replaced by the major axis, and the derivation is slightly

more involved and maybe not as transparent. See the appendix.
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weight taken up by their skeletons, than small animals4 The fact that things change with
scaling indicates that matter cannot be scale invariant, which in the case of biology points
to the presence of building blocks, such as cells, and more generally to atoms, which gives
to the physical world natural units that do not exist in the idealized Euclidean world5, an
important observation not made by the author.

Now for readers unfamiliar to scaling in general and d’Arcy Thompson6 in particular,
this must be very exciting and seductive, at least if they are mathematically competent and
inclined; and thus view the book as much more spectacular and groundbreaking than it
really is (not the the author claims undue credit, he does in fact later on in the text, refers
not only to both Galileo and d’Arcy Thompson7ut also to Haldane and Huxley8 and his
allometric scaling, but only as an afterthought and thus wittingly or unwittingly misleading
the reader about the originality of what is being presented). The real contribution of the
author is to extend those classical scaling ideas into the realm of the social world meaning
the growth and decay of companies and cities, noting that companies die, most of them
quickly, but cities on the other hand never seem to die, but flourish for centuries. The
research that goes into this strikes a pure mathematician as rather pedestrian, which to
some extent (maybe even to a large extent) is due to a lack of proper appreciation of the
nature and challenges of applied mathematics. As the author notes: in biology as opposed
to physics the hard work is to formulate the relevant mathematical problems, once that
is done, they are fairy simple to solve; while in physics it is the other way around, in
particular calling for much more sophisticated mathematics.

Now the ambition of the author is to explain it all to the mathematically illiterate,
which is a classical challenge, which sadly is seldom successfully met. The author takes
great pain not to be technical, and eschews any semblance of a mathematica formula, but
does include a lot of diagrams, maybe forgetting that diagrams may be almost as much of a
challenge to a general reader as a simple formula. The mathematics needed is not difficult
let alone sophisticated but should be within the grasp of anyone with normal intelligence
and in fact ought to be known by any educated person, as far as the notion of beong eduated
has any real meaning. In short what the author is trying to convey should have been part
of basic school education, and if school has not managed to convey such understanding
during the years of an individuals optimal period of learning, why should an hour or so
of reading, often at a mature age, be able to make up for years of neglect? You do not

4 As a child I was puzzled by the fact that when I had my toy cars colliding they did not suffer the

dramatic damage that real cars did. The point is of course that kinetic energy grows with the fifth power

not the third.
5 Thus in the Newtonian world matter has no finer structure, thus making it more geometry than

physics
6 The true significance of Thompson’s work was to exlain the physical constraints on evolution withot

which an acount if it would be sadly incomplete. Many things can evolve, but the laws of physics cannot

be flaunted. In fact external constraints lmits evolution to certain furrows and thus explains much of

the convergence it exhibits. While the vision of Darwin explains the great confusin variety, uderlying

constrains can be thought of as Platonic forms.
7 b
8 Grandson of the great Huxley, and brother of the novelist
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learn mathematics by simply being fed information, you need to internalize it and obtain
understanding, that elusive concept which lies at the heart of mathematics, and which the
author raised and educated as a theoretical physicist, well understands. One can compare
it to finding your way by GPS or a classical map. The GPS gives you clear commands
what to do and you just follow them mechanically as would you be a machine, while in
a map you figure out yourself what to do and thereby ’understanding’ your choices. The
first case is very unstable, if you miss one command, you are literally lost, while the second
allows continuous modifications. It not only allows internalization it demands it, and as
a consequence your imagination is engaged, while it is totally absent in the former case.
Sadly, as technology gets more and more sophisticated as well as ’user-friendly’ there is less
and less demand on the imagination, and by implication the intelligence as well, because it
is hard to separate them. When it comes to mathematics most people seem to prefer the
linear way of GPS orders rather than creating their own two (multi?) dimensional maps.

There are certain things every person should know, among them some elementary but
basic mathematics. If you do not, you are lost in many settings, such as the one presented
by the author, and your ignorance will not be remedied by a crash course of a few pages. If
I had not known what an exponential function was I would hardly have been enlightened by
the explanation of the author9. An elementary explanation does not need to be rigorous,
this is not the problem, but it need to engage the imagination of the reader, and there is the
real challenge. Among the things people should know are arithmetic and geemetric series,
constant differences versus constant quotients. Nowadays they are replaced by lnear and
exponential, sexy buzzwords most people do not understand. They were good for Malthus
and should be good for the general reader as well. Intimately connect to exponential are
logarithms and without a reasonable firm understanding of them you are not properly
an adult10 The interplay between the arithmetic and geometric in the above sense is a
fundamental theme in much of basic mathematics as well as its applications. Weber’s law
that the strength of sensory impression is subjectively proceeding arithmetcally, but really
proceeding geometrically, the notion of magnitudes of stars being a prime example11. Now
power laws come ut very nicely when graphed on log-log paper (i.e. both scales being
logarthmic) because then the graphs will be straight lines (easy for anyone to see and
understand) with slopes corresponding to the exponents.

The metabolic scaling has actually exponent 3/4 rather than 2/3 as you would get
if you naively thought that it was mainly a question of staving off heat loss. But how
do you get the right exponent? The explanation given by the author is completly incom-
prehensible to me, maybe a mathematical explanation would have been more accessible?
This points to a common pitfall, of what the French calls vulgarization, making things

9 There is one exception. The author imagines bacteria growing exponentially in a petri dish, say with

a doubling time of a minute say, and if the dish is full after half an hour, when was it half full? Illustrating

the sudden emergence in exponential growth
10 It is hard not to sympathise with Snow, without such understanding science will for ever be beyond

you.
11 The reason being that there is no canonical unit to measure them all, so you need to compare the

sensations two by two, i.e. relatively to each other. William James is a bit skeptical about it in his famous

book on Psychology, but I suspect he did not understand the principle.
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equally incomprehensible to the layman and the professional alike. There is some intrigu-
ing but non-sensical reference to the body being four-dimensional, and this explaining the
denominator being four. But disregarding this rather serious flaw, there is an interesting
digression on the vascular system, which lies behind the attempt. The vascular system is a
tree that needs to reach every cell in he body. Mathematically it is a fractal, whose closure
fills up the whole body. In reality the fractal nature has a necessary cut off point at the size
if individual cells. It structure is that of a branching tree, which at each bifurcation splits
up into two vessels of the same area adding to the original area of the branching vessel.
There is supposedly a physical reason for that we are told, namely to minimize resonance
effects in the ocisllating blood flow. There is a similar, but not quite as rigid structure of
trees, where at each branching, as already observed by de Vinci the crossections at each
banching add up area wise to the original area. There is a striking mechanical explanation
for that, namely we can think of the tree as being made up of fibers, each going al the
way to the leaves at the very end. Some features should be pinted out, common to both.
The size at the end of the trees is the same for all animals and trees, cells (and leaves)
being of the same size. What differs is the number of branching levels, the bigger the
animal, the more branching levels. Basically each level increases the mass of the animal
with a facor of two. Also the original trunk, the main aorta, will predictably increase in
size. Another important fact is that when the vessels are small (and narrow) the blood
can no longer pulsate. The author likens this to the transmission of electricity by either
alternate current or direct current, the former with oscillation being much more efficient.
Tus for small animals, most of the volume of blood is flowing in DC-mood, maing up for
less efficiency,.

Now this model should not be taken literally, because if so, the number of cells in
a body would always be a power of two, and animals would come in discrete sizes, the
next size twice as big as its preceding. This shows that in applied mathematics you cannot
pursue things literally, the role of mathematics always is to some extent a metaphorical one,
not for calcuation but of guidance and illustration, meant to stimulate the imagination not
to replace it. As I never tire of saying, when metaphors are taken literally they just become
silly. The author speaks about coarse grained pictures that highlights the basic structures.
Interesting as the discussion is, it does not explain to me in what sense the human body
can be thought as 4-dimensional by adding one dimension to the 3-dimensional vascular
system. And even less as how it explains the 3/4 exponent. But anyway it all provokes
some elementary mathematical reflections relegated to the appendix.

There is also an explanation why an organism cannot grow beyond a certain size.
The idea being that the energy for maintaining the body becomes greater than the ability
to supply energy, thus there will be nothing left for growth. Implicit in that reasoning
is that an organism has certain constraints suppled by its architecture so to speak, and
those cannot be changed uring its life time, i.e. tey are genetically determined. Of course
evolution can change the genetic set-up, thus a mammal can be as large as an elephant,
but a human cannot grow to such proportions. This is something that the author should
have been more explicit about, the argument he presents is incomplete. It is not so much
a question of a lack of rigour but obfuscating the main ideas. With some care one should
be able to predict the length of growth depending on the size of the animal. And besides
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the actual biological situation is more complicated, elephans keep on growing for a long
time, maybe growh is only checked by death, as is the case of fish.

Now irritating as the rather tedious and repetitive accounts of the underlying math-
ematics maybe, at least to the mathematically competent, what irritates more are the
opinionated presentations of received ideas in the sense of Flaubert. We are treated to
the same tired story of the Greeks only speculating and never putting their speculations
to empirical tests; while it was not until Galileo came along that thought was confronted
with reality. This is if anything an over-simplification. Galileo probably never madethe
famed experiment from the Tower of Pisa, like old god stories it is too good to be true,
for the good reason that it would not have been conclusive, in fact it was a thought ex-
periment that convinced him of the principle12. Likewise, the principle that a body let to
itself would follow a straight path with uniform velocity13 acnnot be easily experimentally
verified, but is a fruit of a fecund imagination. But what Galileo pionererd was systematic
quantitative investigation, in particular the determination of constant acceleration14.

Fractals are of course inevitable in the context, after all one of their defining charac-
teristics being scale invariance. The author tells the nice story of Richardson pondering
the length of natonal boundaries, which did not make any splash at the time, published as
it was in obscure journals embedded in articles trying to elucidate the origins of bellicose
conflicts and wars. Mandelbrot may or may not have read them and been influenced. The
author fails, however, to note that their mathematics has been encountered and illumi-
nated already over a century ago, and that the contributio of Mandelbort was to see that
they were not mathematical pathologies and curiosites but could serve a useful role in
description of various forms encountered in nature. It is common to disparage Euclidean
geometry when introducing fractals, as if mankind had been blind until recently. It s true
that straight lines do not occur visually in nature15 bt that it is the whole point of Eu-
clidean geometry. It is concerned not with forms and shapes but by the nature of physical
space, and the key to this is ’triangulation’, triangles not occuring in nature. Without the
solid foundation suplied by disparaged Euclidean geomtry, fractal geomery would not have
taken off ground.

And of course there are the usual digs against Platonism as you expect from the
philosophically half-educated. The author actually writes

The overall agreement with theory is extremely satisfying. But much more than that, I find

the extraordinary unity andinterconnectivity of life that is revealed through this lens to be

spriritually elevating in the pantheistic spirit articuated y the philosopher Baruch Spinoza. As

Einstein wrote We followers of Spinoza see our God in the wonderful order and lawfulness of

all that exists and in its soul as it reveals itself in man and animal. Regardkess of one’s belief

system, there is something supremely grand and reassuring when one perceives even a tiny

piece of the mystifying chaotic world around us conforming to regularities and principles that

12 If two (equal) bodies fall, will they fall faster when conected? And if so what counts for a connection?
13 Galileo also hold open the possibility of cirular movement to account for the movements of celestial

bodies. The cean radical formualtion is due to Newton.
14 the fact that you consider change of velocity per time and not per length turns out to be crucial
15 The exception being the unbroken horizon by an open sea
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transcend th awesome complexity and seeming meaninglessness.

Quite a mouthful. Intended or not it is ironically a celebration of Platonism from an
author, who, when asked, very likely would disparage the same and deny any connection to
it adhering to received opinions about it. Even if the author would hope for, he certainly
would not find the same mathematical beauty in the biological and social world which
initially excited him in he physical. To point out that the mathematical models are not
perfect may be thought of as pedantic but it also has the consequence that the for all intents
and purposes inductive method of mathematics are no longer available. In mathematics
the conclusions are as solid as the assumptions and can thus be used at stepping stones for
further conclusions enabling long chain of reasonings the results of which are unpredictable
from the outset, a trivial example being calculations and thus lead to discoveries.

As noted the author, trained as a theoretial physicist, came rater late in life to what he
terms the ’big questions’. His ambition has been to apply mathematics in a more consistent
way to fields, such as biology, which traditionaly has shunned them. By the consistent
application is meant not only serious quantification but also drawing what C.S.Peirce
refers to as the necessary conclusions in his characterization of mathematical activity.

But actually worse than the above-mentioned inadequate explanations, where too
much attention is given to the elementary and obvious but where attention is needed there
is merely hand-waving, and worse than the reiteration of half-digested, or even undigested
opinions as noted above is the abundance of abstract mumbo-jumbo that does not add
anything to the text, but only provides a stream of clichés and homilies, such as mindless
repetitions on the wonder of the variety of life, going on and on. This is the kind of prose
that is mechanically produced and could easily, I gather, be computer generated. As a
reader you tend to skip through it impatiently as it does not give any purchase of thought.
As an example of it, the following excerpt is typical, but far from the worst as there is at
least some content to be distilled

Consequently, in parallel with the quest for the Theory of Everything, we need to embark on

a similar quest for a grand unified theory of complexity. The challenge of developing a quanti-

tative, analytic, principled, predictive framework for understandig complex adaptive systems is

surely one of the grand challenges for twenty-first century science. As a vital corollary to this

and of greater urgency is the need to develop a grand unified theory of sustainability in order

to come to terms with the extraordinary threats we now face. Like all grand syntheses, these

will almost certainly remain incomplete, and very likely unattainable, but they will nevertheless

inspire significant, possibly new revolutionary ideas, concepts, and techniques with implications

for how we move forward and whether what we have so far achieved can survive.

A dedicated and competent editor would have cut all that fat out, significantly re-
ducing the bulk of the book. On the other hand its presence should also be viewed as
cautionary. It is indeed easy as a writer to fall into the trap thinking to be clever and
profound, especially during a the first initial stage of a write-up when the main concern is
to get all your thoughts down on paper.

The biological examples are just meant to whet the curiosity of the reader, the real
contributions lie in tha author’s ambition that in a serious manner bring to the tradi-
tionally descriptive and qualitative disciplines of social sciences hard core quantitative
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methods. Quantification is not just about assigning numbers, the numbers have to be put
to work in calculations, by themselves they signify nothing16. What is better than the
scaling approach which has been so iluminating in biology (and mechanical engineering)?
The author is very proud of the extensions to cities and companies, although I as a reader
has difficulty sharing his excitement, especially as I do not see any real applications and
predictions (applications is of course the one thing you have a right to epect from ap-
plied mathematics, otherwise it is just ’pseudo-mathematics’). However, he points to a
remarkable fact, namely that companies are short-lived, while cities are long-lived. Why is
that? Cities seem to have a remarkable resiliency and they seem to appear spontaneously
when the conditions are favorable17. The explanations the author gives are predominantly
qualitative. In a city a lot of different activities are going on, and the geographically fo-
cused extent of a city18 encourages contacts between different people. The pace of a city
is simply faster, people walk at a brisker pace, social contacts are more frequent (if not
necessarily deeper), and hence innovations (as say quantified by number of patents) and
general economic and cultural activity. Cities in the modern third world grow actually
super-exponentially, a trend which is of course not sustanable, only as long as there is a
reseroir of rural people to be sucked in. Companies are not diversified and they have to
face tourgher and tougher competition and old companies typically cannot keep up and
make the necessary adjustments, butbthose are left to new companies being formed. One
wuld think that a diversified company would have a better chane, but that does not seem
to be the case. The companies which ae surived the longest are actually fairly small com-
panies,which are attached to a fixed niche which has persisted for a long time and shielded
it from competition. Just as in the growth of an individual, companies need to maintain
a high profit margin to flourish, and when it flags, the end is inevitable. Thus companies
should be likened to individuals, while cities to entire populations of species.

The common background to of all this is the Santa Fe institute, devoted to the study
of comple adaptive systems, for which the book can be seen as a celebration. If smart
people from different disciplines come together wondrous things are bound to happen. A
statement of faith as outrageous and necessary as many other statements of faith. But how
should a research institute be run actually? One aswer is provided by the late Perutz, a
student of the legendary Lawrence Bragg, who has a particularly spectacular track record
when it comes to students and achievement. Perutz had a simple advice. Handpick
the staff and do away with all tthe trappings of bureuacracy. The tendency in modern
science is the opposite as it becomes more and more industrial. You do not learn the
quality of a researcher by keeping statistical attention to publications, but by knowing
them personally. Old-fashioned human relations lies at the heart, while modern bureacracy
wants to automate the process. The result is an overabundance of mediocrity in which
real talent runs the risk of drowning. A development made possible by the computer age

16 The historian of ideas - S-E Liedman - refers to ’pseudo-quantities’ when this is not the case.
17 Such as at confluency of rives or at natural harbors
18 The phyiscal extent of a city in terms of being defined by how far people are prepared to commute,

depends on the availability of transport. Commutig time is typically limited to haf an nour, and when ony

walking is anoption, cities are more compact and hence more limited as to growth. With the car, urban

sprawl has been made possible.
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and its capacity to process huge amount of data. This has suggested the idea that with
machines automatically learning from huge data set, science can be automated as well.
This is bringing Baconism to its logical conclusion. Bacon preached that truth is manifest
(and easy to discover as long as you have an open mind) by observation alone. Now the
ease with which to do so is far from clear nowadays, in principle it should be possible, as
truth is inherent in the data and only needs to be teased out, a process that may transcend
the possibilities of collective human intelligence, let alone individual. In practice it means
finding hidden correlations, but the author wisely warns against the pitfalls of fortuitous
coincidences. This ties up with the development of AI and the possibility of super-human
intelligence, to which he remains skeptical.

So what is the big question? Sustainable living. Superexponential growth is not
sustainable, ideas which go back to Malthus who contrasted the arithmetic (linear) growth
of food production with the geometric (exponential) growth of population. Malthus has
almost always been dismissed as a cynical minister blaming the plight of the poor on their
unchecked procreation, and that he did not take into account technological improvement
due to the creativity of man. Some people claithat the latter can always keep ahead
(an article of faith if any), others like the author are a bit more cautious, if not overly
pessimistic as the Doomsday sayers the inheritors of Malthus. He warns that innovation
will need to be done at an increasing pace, and after all there may be biological consraints
on human cognition. Then of course human cognition could be replaced by super-cognition,
such as superintelligence, but then, as many people are quick to point out, history does no
longer belong to humans, who will become more and more marginalized. But is it not a
sign of sentimentality to decry the demise of our own provincialspecies, the future belongs
not to the meek but the strong.
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Appendix

1. Kepler’s power laws

In the circluar case we have two elementary derivations. In the first approach we
observe that a circle with radius R deviates (infitesimally) from a straight line by the

amount x2

2R . If it moves with velocity v we have x = vt and if it falls with acceleration

a we get x2

2R = at2

2
. Now by Newton acceleration is proportional to R−2 (and in fact the

constant of proportionality is proportional to the mass (M) of the central attracting body)
and of course T = 2π

v . Putting everything together we get that T 2 is indeed proportional
to R3 (and inversely proportional to M). The second approach is to consider circular
motion z = Reiωt where ω = 2π

T and hence the acceleration z̈ = −ω2z taking absolute
values |z| = R we get the same formula. Of course in both cases it boils down to the

same thing, namely a = v2

R from which the law is immediate. Note that in a homogenous
medium when acceleration is proportional to R, orbital time is constant independent of R.

2.The vascular system

The vascular system is likened to the branching of a tree. However there is a major
difference, the vascular system has to be everywhere dense (in some appropriate real-world
sense) while the branching of a tree only becomes dense in the canoy which is a surface as
the leaves need to catch some sunlight otherwise there is no point. (The root system is often
thought of as being the mirror image of the tree itself, but it also needs to be everywhere
dense, serving a mirror image of the vasuclar system, drawing nourishment rather than
supplying it). Yet the branching principle is the same. What makes the difference? The
angle of the branching. If acute we get a tree, if obtuse, say each branch orthogonal to the
mother branch. We see the two cases below.

Another similar branching, not mentioned in the book, is given by a river, which is
dense in its drainage area.

Now let us get down to some elementary mathematics. Inspired by the second exampe
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of the branching above we will consider all sums
∑

n∈U ±rn with r > 0 and U a subset of
the non-negative integers. If r ≥ 1 they only make sense for finite number of terms and
form an infinite discrete set. From now on we only consider the case 0 < r < 1 and the
closure X of the finite subsums is contained in the closed interval = [ 1

r−1
, 1

1−r ]

We have

Proposition:

In the case of U being an arbitrary subset of the non-negative integers X = I iff r ≥ 1

3
,

otherwise X is a Cantor-type set; but if U is the whole set of non-negative integers (no
term are omitted) then the condition is instead r ≥ 1

2
and if not satsified X is a classical

type of Cantor set.

Proof: It is convenient to set α = r + r2 + r3 + =̇ r
1−r (note that r = α

α+1
). In terms

of α the interval is given by [−(1 + α), (1 + α)]

−1−α −1+α −α α 1−α 1+α

We have three closed intervals each of length 2α. Unless α ≥ 1

2
(r = 1

3
) they will

not overlap and leave two open intervals as indicated in the figure above. Denote them
by L,M,R respectively. Numbers in L start with −1, in M by 0 and R with by 1, the
complement is inaccessible. To get the second term, we need to repeat the procedure on the
appropriate interval and so on. Numbers which survive the whole process will obviously
have a representation, so the condition is also sufficient. The case of U being the entire
set, it is simpler, then M is removed and we are left with an open interval in the middle,
unless of course 1− α ≤ 0.

If α = 1

3
then 1

2
will constitute the intersection M ∩ R consequently have two rep-

resentations 1

3
+ 1

32
+ 1

33
+ . . . and 1 − 1

3
− 1

32
− 1

33
− . . .. In fact all numbers of form 1

2
t

with t a triadic number, i.e. corresponding to U is finite, will have ambigious representa-
tions, completly analogous to the well-known case of unending 9’s in decimal expansions.
If α ≥ 1 (i.e. r ≥ 1

2
) then numbers can have infinitely many different representations.

Similar results is easily obtained for the second case.

This will have applications to branching trees. First let us start in the plane, and
consider stems that decrease with a ratio r < 1 and bifurcates with two stem perpendicular
to the original. The tree will be contained in a square with vertices at (±(1+ 1

1−r2 ),±(1+
1

1−r2 )) and if we project onto the axis we are in the 1-dimensional situation of above, with

r replaced by r2. Thus we get a dense tree, iff r ≥ 1√
2
the border case corresponding to

the most parsimonous, where except for a countable number of points, there is a unique
path leading to it. This has a straightforward generaization to three dimensions when the
crucial scaling factor now becomes 2−

1

3 .

The vascular system is a bifurcating tree, ’dense’ in the body, such that each branching
of a vessel gives rise to two vessels of equal crossectional area and they add up that of the
original, thus diameters scale as 2−

1

2 while lengths as noted above scale as 2−
1

3 . Thus
vessels become skinnier and skinnier as they get narrower and narrower. If the initial stem
is referred to as the aorta and given volume V0 the total volume V of the system will be
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given by the geometric series

V = V0(1 + 2−
1

6 + 4−
1

6 + 8−
1

6 + . . .) =
V0

1− 2−
1

6

∼ 8V0

This ration is hence independent of the size of the system. The diameter of the human
aorta is about 3 cm, its length about 50 cm which is about half a litre, and indeed the
volume of blood is about 4 liters.

Furhermore the human body contains about 1013 cells, which is about 243 correspond-
ing to 43 branchings, however we do not need a vessel reaching each cell, the vessels are
of course made of cells themselves, which gives a lower limit of their diameters. In fact
those are given as about 5µm in diameter, comparable to that of cells. (Note that the
human body is about 7 · 10−2m3 (a cube with linear dimensions 0.4m) while that of a
sphere with diameter 5µm has a volume of 6 ·10−17m3 thus we are talking about 1015 cels,
which shows that human cells are on the average larger, more like diameters of 20µm).
Starting with 3 ·10−2m, and as diameters are scaled by a factor of 104 ∼ 213 we are talking
about 26 branchings, and thus each final vessel will have to serve 217 cells. Note that the
length of the final vessels will be 2−26· 1

3 ∼ 0.002 times 0.5m i.e. about 1mm which a two
hundred times the cross-section, thus its walls will lined by about a thousand cells. and
crowding around it over a hundred thousand cells to be in diffusive contact. Looking at
the end-points we are talking about 60 million, and if evenly distributed one at every cubic
millimeter, which tallies with the lengths of the final vessels.

A Blue Whale weighs about 200 tons, thus about 3000 times a human. Its linear
dimensions are thus about 15 times that of humans. The number of cells is about 212 that
of humans, hence we need 12 more branchings, hence the diameter of its aorta should be
26 times that of humans, say about 40 as the exponent 12 was an exaggeration, which
translates into a meter and a half. Its length should be scaled by 24 thus about 8 meters,
which would correspond to about 25′000 times the blood volume of a human, which seems
extreme. In fact the diameter of the aorta is more like 25cm which would correspond
to only six more branchings and thus a less dense system. Only six branchings would
correspond to an aorta the length of two meters, and thus a blood volume only 250 times
that of a human, which would not tally with ten tons of blood being pumped through
the system. On the other hand if metabolic activity would grow with the surface area
(heatloss), it would be in good agrement.

July 2-3, 2018

June 13-14, 17, 2018Ulf Persson: Prof.em, Chalmers U.of Tech., Göteborg Sweden ulfp@chalmers.se
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