1 Consider the space of all $n \times n$ matrices, given by the entries $x_{i j}$ and consider the hypersurface given by $\operatorname{det}\left(x_{i j}\right)=0$
a) Compute the dimension of all $n \times n$ matrices!
b) Compute the dimension of all singular $n \times n$ matrices!
c) Define inductively V_{k+1} as the singular locus of V_{k} and $V_{0}=\operatorname{det}\left(x_{i j}\right)=0$ and interpret those in terms of ranks of matrices.
d) Try to compute the dimensions of the various V_{k} !

2 The set up as in the previous problem, but now restrict yourself to symmetric matrices.

3 Consider the linear space $M(2,2, k)$ of all 2×2, removing the zero matrix and identifying two matrices if they differ by multiplication by λI where $\lambda \in k^{*}$ and I is the identity matrix.
a) Show that we get a natural 3 -dimensional projective space $P(M(2,2, k))$.
b) Show that the singular matrices make up a non-singular quadric in that space.
c) For any line $L \in k^{2}$ define the subsets $K_{L}=\{A \in M(2,2, k): \operatorname{ker}(A)=L\}$ and $I_{L}=\{A \in M(2,2, k): \operatorname{im}(A)=L\}$, show that those make up lines in $P(M(2,2, k))$
d) Consider the points $M_{L} \cap I_{L}$ for all $L \in P^{1}(k)$ what is the degree of that variety in $P(M(2,2, k))$?

4 Let $f=a x^{2}+b x+c$. Compute the resultant of the polynomials f and f^{\prime} and interpret it.

5 Let $k=\mathbb{F}_{q}$ be a finite field. Compute the number of elements of the Grassmannian $G(m, n)$!

6 Consider the Grassmannian $G(k, n)$ and let H be a fixed hyperplane in P^{n}. Show that we have a decomposition of $G(k, n)$ into two sets one closed consisting of $V \in G(k, n)$ such that $V \subset H$ and one open of $V: \operatorname{dim}(V \cap H)<k$ and use this to establish a recursive formula for the euler numbers of Grassmannian. In particular compute $e(G(5,8))$. Finally what is the relation with this problem and the previous?

7 Consider a pencil of quadrics in P^{2}. This means giving quadrics of the form $s_{0} Q_{0}+s_{1} Q_{1}$.

The intersection of $V\left(Q_{0}\right)$ and $V\left(Q_{1}\right)$ are called the base-points of the pencil.
a) Show that there are in general 4 distinct base points.
b) If Q is a quadric passing through the four distinct base points then it belongs to the pencil. (Show that there is a member of the pencil that intersects $V(Q)$ in five points
c) How many singular members does the quadric have? (Show that a quadric is singular iff it is the union of two lines).
d) Compute the euler-number of the fibration. Why does it differ from that of P^{2}

8 The three quadrics $x y, y z$ and $z x$ pass through three points in P^{2}. Which? Show that if you perturb those quadrics ever so little their intersections will be empty.

