
Synopsis for Thursday, October 11

Divisors and Linebundles

Divorsors

By a divisor D ⊂ X in a variety is simple meant a finite linear combination
of hypersurfaces. In particular if X is a curve, then a divisor is simply a finite
linear combination

∑
p npP of points. A typical eaxmple of a divisor is given by a

meromorphic (rational) function φ. It can be written as (φ) = φ−1(0)−φ−1(∞).
The first part is referred to as the zeroes of φ the second part to the poles. It
is clear that when we multiply rational functions we add their corresponding
divisors. Divisors form an additive group, in fact a huge one, as any non-trivial
variety over C is uncountable.

An important invariant for divisors over curves is their degree. It is defined
simly as d(

∑
P npP ) =

∑
P np and is clearly an integer.

First we must once and for all understand the basic
Proposition If φ is a rational function on a projective curve X then d(φ) =

0.
PROOF:If γ is a simply closed curve and φ is a meromorphic function then

1

2π

∫
γ

φ′

φ
= N − P

where N is the number of zeroes and P the number of poles inside the region
enclosed by γ (assumed positively generated, otherwise we have of course a
change of sign). Now let γ be a very small curve enclosing no zeroes and poles
in its interior. But what is its interior? There is the small region enclosed by it,
and the big one outside of it. The latter contains all the zeroes and poles, and we
can easily compute their number, with appropriate signs, which is nothing but
the degree of the divisor. As the integral by continuity can be made arbitrarily
small we are done.

Now we come to the central definition.
Definition: Linear equivalence Two divisors D,D′ are said to be linearly

equivalent if there is a rational function φ such that D −D′ = (φ)
What is the meaning of this? First of all we say that a divisor is effective if

we have that the multiplicities nD are all non-negative. A necessary condition
for effectiveness is that the degree is non-negative, but this is not sufficient. So
assume that D,D′ are effective. Then being equivalent means that D is say the
zeroes of φ and D′ the poles. The rational function φ gives a map φ : X → P 1

and we get a linear deformation of the divisor D via Dt = φ−1(t) that moves
D0 to D∞.

1



Line bundles

A line bundle L over X is a fibration π : L → X whose fibers are lines (C)
and such that the fibration is locally trivial. So what does that mean? We
should consider X to be covered with open subsets Ui over which π is trivial.
We can then write π−1(Ui) = Ui × C. Those need to be glued together, and
how do we express glueing data? We can think of local co-ordinates as (zi, t) for
π−1(Ui) where zi is so to speak the local fiber co-ordinate. Now if we have two
open covers intersecting in Uij = Ui ∩ Uj we should have zi = φij(t)zj where
φij(t) 6= 0 and defined on the intersection Uij . It is natural to think of φij as
holomorphic functions if we want L to be a holomorphic bundle. Now those φij
are referred to as the transition functions, and they cannot be arbitrarily chosen.
If Uijk = Ui ∩Uj ∩Uk is non-empty we have many identifications over points in
Uijk and they have to be compatible. What is the compatibility condition? It
is easily seen to be given by φik = φijφjk where we make the natural convention
that φij = 1/φji and hence φii = 1.

Now those transition functions are not uniquely determined by the linebun-
dle, after all we can effect changes of the fiber co-ordinates. Chosing non-zero
holomorphic functions fi on Ui we can introduce new co-ordinates z′i = fizi and
the new transition functions φ′ij will be transformed accordingly φ′ij = fi/fjφij .
It is clear that if φij satisfies the compatibility condition so does φ′ij . In partic-
ular if we can find functions fi such that φij = fi/fj then we can use those to
get a global trivialization of L, namely to write L as C×X.

Digression on Czech cohomology

By a Czech cochain is meant functions taking values in some sheaf F and de-
pending on intersections of open sets of an open covering. I will not give a
formal definition of a sheaf, it is easy enough, but you should think about it as
functions defined on open subsets of a topological set X. If the functions are
constant, we think of the sheaf as one of locally constant functions.

By a 0-cochain we can think of as functions fU defined on an open set U
in the covering, while a 1-cochain is given by functions fUV defined on U ∩ V
while a 2-cochain is similarly given by functions fUVW defined on intersections
U ∩ V ∩W . Now we can define a boundary operator ∂ defined as follows

(∂f)UV = fU − fV and (∂f)UVW = fUV − fUW + fVW and so on.
What does it mean that ∂f = 0 for a 0-chain? Simply that fU = fV on

U ∩ V . In other words that we can find a function F globally defined such that
FU = fU we say that the local data patches up to a globally defined function.
What does it mean that ∂f = 0 for a 1-chain? Namely that fUV = fUW + fWV

(Note that fXY = −fY X). This is almost the same thing as the compatibility
condition for transition functions, except that it is written additively instead of
multiplicatively. Furthermore a 1 boundary is of the form fu − fv which is the
additive interpretation of the multiplicative presentation of transition functions
which are trivial.
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If OX denotes the sheaf of holomorphic functions on X (it means simply
that we have for open sets U in some open cover, holomorphic functions defined
on U). As there are no global holomorphic functions, save the locally constant
on a compact complex manifold we see that H0(OX is simply a vectorspace of
dimension equal to the number of components of X. If the latter is connected.
the dimension is simply given by 1.

We can even introduce the sheaf O∗X which consists of non-vanishing holo-
morphic functions on X and should be treated multiplicatively (or by taking
logarithms seen as additive). Recall that whenever U is an simply connected
open set, we can write an element f ∈ O∗x as f = e2πig where g ∈ OX . We can
now interpret the set of linebundles as given by H1(O∗X)

Sections of line-bundles and linear systems

By a section s of a linebundle is meant a map L ← X such that πs = IX . A
section thus maps every point x ∈ X to a point s(x) in the fibre π−1(x) of x. A
section is given by local sections si such that si = φijsj . Note that the section
si may very well be zero on Ui so they do not trivialize the transition functions.
There is always a trivial section, namely the zero section. However if there is
a section that is always non-zero, i.e. never meeting the zero-section, we do
get that the line bundle has to be trivial. A trivial line bundle over a compact
space has only constant sections. Thus if we have a non-constant section it
has to meet the zero-section non-trivially, and in fact the si define a divisor by
looking locally at si = 0 at Ui. As φij 6= 0 those zero-sets coincide, whether
we look at them at Ui or Uj and thus are globally defined. Now if we have two
sections s0, s1 then s1/s0 is well-defined as a meromorphic function as the local
pieces satisfy the same transition factor. Thus the divisors D0 and D1 associated
to s0 and s1 respectively are linearly equivalent, as surely D1 −D0 = (s1/s0).
Thus any line-bundle defines linearly equivalent divisors. Conversely if D is any
effective divisor linearly equivalent to a divisor D0 associated to a section s0 of
a linebundle, then it is the divisor of some section. In fact if D − D0 = (ψ)
then s0ψ is a section. The key-point is that ψ is a bone-fide function on X and
thus we have locally ψi = ψj , hence s0ψ satisfies the same transition functions
as s0 and hence is a section of L. All the effective divisors linearly equivalent
to a divisor D is called the complete linear system associated to D. It can
be thought of as a vector space of meromorphic functions, namely the space
of meropmorphic functions ψ such that (ψ) + D is effective, or with obvious
notation (ψ) + D ≥ 0. It is a finite-dimensonal space, provided X is compact.
We will denote it by H0(D).

Line-bundles associated to divisors

Given a divisor D. Then it is locally given by equations fi = 0. For it to be
well-defined we need that the quotients φij = fi/fj are everywhere non-zero on
Ui ∩ Uj . Those φij define transition functions and hence line-bundles.
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It is now easy to see that linearly equivalent divisors give rise to isomorphic
line-bundles, and can be recaptured from those by considering zeros of mero-
morphic sections. If they are effective, then they can be recaptured as zeroes of
holomorphic sections.

Key Point. The crucial data are given by transition functions.
Those can be manipulated very easily, much more easily than individual

sections and corresponding divisors. Inherent in them is the ’moving property’
and as such they will give an easy proof of Bezout as we will see later.

Functorial properties of Line-bundles

If we have a map θ : X → Y we can lift any line-bundle L of Y to one denoted
θ∗(L) above X. The corresponding line-bundle is called the pull-back and is
almost trivially defined by considering its transition functions θ∗(φij) := φij(θ)
by composition.

If θ is an inclusion, then we simply restrict the transition functions from Y
to X.

Maps associated to linear systems

If we have two sections s0, s1 to the same line-bundle then we have seen that
s1/s0 is a well-defined meromorphic function, and hence a map into P 1. We
can also represent it as the map x 7→ (s0(x), s1(x). More generally, let V be a
linear subspace of H0(D). Such a space is referred to as a linear system. If we
choose a basis s0, s1, . . . sn for it we get a map of X into Pn in the obvious way.

Now we should be careful. If all si(x) = 0 we say that x belongs to the base
locus of the linear system, and it is only outside the base locus that we have a
well-defined map.

We can make the maps into projective space co-ordinate free, provided that
we map into their duals. In fact if x does not belong to the base-locus, the
sections vanishing at x form a hyperplane.

Given a map p : X → Pn associated to a line-bundle L. We can then
consider the hyperplanes H of Pn and look at p∗(H) those are referred to as
the hyperplane sections, and they correspond to divisors of sections of L and all
such occur in this way.

If we consider an arbitrary linear system i.e. a linear subspace of the com-
plete linear system, the map onto that can be thought of as a projection from
the complete Pn.

Pencils, which we already have encountered, are simply 1-dimensional linear
systems. They give rise to fibrations over P 1

2-dimensional systems are called nets classically, while 3-dimensional are
referred to as webs.

4



Linebundles on CP 1

It is a fact that every linebundle over C is trivial. Hence the line bundles on
the Riemann sphere can be thought of as a gluing of two copies of C2. More
specifically we have U0 with co-ordinates (ζ, z) and U1 given by (ξ, w) where
z, w are co-ordinates on CP 1 satisfying z = 1

w and ζ, ξ fiber-coordinates. In this
case the transition functions are reduced to a single one φ01.

Fact: Any holomorphic map f : C∗ → C∗ has a winding number
PROOF:Let γ be a simply closed curve around the origin in the source. As

it is compact and f is continous f(γ) is also a closed curve in the target, and
as such it has a winding number. This winding number depends continuously
on γ and being integer valued it has to be locally constant, hence constant and
independent of γ

From this we conclude that φ0,1 can be written for a unique n in the form znφ′

such that we can take the logarithm ψ of φ′. Consider the Laurent expansion
of ψ this means that we can write ψ(z) = ψ0(z)− ψ1(w) where ψ0, ψ1 are non-
vanishing analytic in U0 and U1 respectively. We can thus write the transition
function as znf0(z)f1(w) which means that we can normalize it to zn.

Theorem: The linebundles on the Riemannsphere are classified by the in-
tegers Z

Now we would like to determine the space of sections. We would like to find
analytic functions s0(z) and s1(w) such that s0(z) = zns1(w)

As w = 1
z we can write the right-hand side as

∑
k≥0 akz

n−k and thus the
condition ak = 0 if k > n. Hence if n < 0 we only have the zero section.
Otherwise the dimension of the linear space of sections is given by n+ 1.

Proposition: If Vn = Γ(Ln) is the vector space of sections of the line-bundle
Ln of degree n then we have

dimVn = n+ 1 n ≥ 0
dimVn = 0 n < 0

Furthermore we can identify Vn for n ≥ 0 with the vector space of binary
forms of degree n.

PROOF:This we have already proved, except for the last. Given any binary
form F (x0, x1) of degree n we can dehomogenize it in two ways

xn0F (1,
x1
x0

) = F (x0, x1) = xn1F (
x0
x1
, 1)

set z = x1

x0
and w = x0

x1
we have z = 1

w and F (1, z) = znF (w, 1).

Note that binary forms are not functions on CP 1 except in the trivial case
of n = 0 but that they are sections of appropriate line-bundles.

However the quotient of two forms of the same degree becomes a rational
function, and all rational functions can of course be written in that way.

From that we conclude the fundamental
Theorem:Divisors on CP 1 are linearly equivalent iff they have the same

degree.
Clearly the degree of a divisor is equal to the degree of its line-bundle.
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1-forms and vectorfields on the Riemann sphere

Now by the chainrule ∂F/∂z = (∂F/∂w)(dw/dz) thus a vector field given by
s0(z) ∂∂z = s1(w) ∂

∂w will satisfy s0(z)(dw/dz) = s1(w) or s0(z) = −z2s1(w).
Thus there will be plenty of holomorphic vectorfields on the sphere, in fact they
are given by the binary quadrics.

The dual case of 1-forms is different. Clearly dw = dw
dz dz and hence if we

have s0(z)dz = s1(w)dw we obtain s0(z) = −z−2s1(z) hence there are no global
1-forms on the sphere, except the trivial.

We have thus the fundamental
Theorem:The degree of the canonical linebundle of CP 1 is −2

Maps of linear systems on CP 1

The map CP 1 → CP 2 given by all binary quadrics has as an image a curve of
degree 2 i.e. a conic. And conversely all conics occur in this way as we have
already noticed.

The map CP 1 → CP 3 given by all binary cubics has as an image a curve
of degree 3. It is biholomorphic to CP 1 and is thus a so called rational curve,
referred to as the twisted cubic.

If we consider the linear system of cubics passing through a fixed point on
CP 1 this forms a net and hence gives a projection of the twisted cubic onto the
plane. The image will be a conic, as we can write the cubics as quadrics mul-
tiplied with a constant linear factor cutting out the fixed point. Geometrically
it means that for any point p on the twisted cubic C that curve is contained
in a quadric cone. Given two quadric cones corresponding to the points p, q
their intersection will consist of the twisted cubic along with the line passing
through p and q. The twisted cubic is not a complete intersection, you need
three quadrics to cut it out. Given any such three quadrics they will not only
cut it out but also generate all quadrics which contain the twisted cubic, which
constitute a net with the twisted cubic as a base locus.
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