
Synopsis for Thursday, October 18

Blow-ups

Global picture

Consider the projection π : P 2 → P 1 given by (x0, x1, x2) → (x1, x2). This
is well-defined except at the center of projection (1, 0, 0). If we ignore that
point we can consider the graph Γ of the well-defined map P 2 \ {(1, 0, 0)} → P 1

inside P 2 \ {(1, 0, 0)} × P 1. If (x0, x1, x2; y0, y1) is a point in P 2 × P 1 then
clearly y0x2 − y1x1 = 0 for points in Γ, because that is just another way of
saying that (x1, x2) = λ(y0, y1) for some λ 6= 0. But this polynomial equation
makes sense for the whole product and its zeroes make up the closure Γ of the
graph. Now there is a projection π : Γ → P 1 given by the projection onto the
second factor, which is defined on the whole of Γ as it is defined on the whole of
P 2 × P 1. But what is the relation of Γ to P 2? There is of course a projection
of P 2 × P 1 to the first factor that can be restricted to Γ. What are its fibers?
If (x0, x1, x2) 6= (1, 0, 0) then not both x1, x2 can be zero, thus there is a unique
point (y0, y1) ∈ P 1 such that (x0, x1, x2; y0, y1) ∈ Γ. Thus the projection is
1 : 1. However over (1, 0, 0) there will be no restriction on y0, y1 so the fiber is
the entire line P 1! Thus Γ is the same as P 2 except over the point P where it
has been replaced by an entire line. We say that the point P has been blown
up! And we will refer to Γ as the blow-up Bp(P

2) of P 2 and the inverse image
of the projection center the exceptional divisor.

Remark 1 : This procedure of blowing-up to make maps defined can of
course be generalized. If we have a pencil of conics in the plane, there will be
in general four base points, where the map

(x0, x1, x2) → (Q0(x0, x1, x2), Q1(x0, x1, x2))

is not well-defined. We can consider the graph of the map where it is well-defined
and then take its closure. In this case it means that we look at the equation
y0Q1(x0, x1, x2) − y1Q0(x0, x1, x2) = 0 which incidentally is bi-homogenous of
degree (1, 2). Once again the projection of the closure of the graph is 1 : 1
except at the base points, where it is similarly blown-up.

Local picture

What is really going on? By taking away the line x0 = 0 we can also look at
the map π : C

2 → P 1 simply given by (x, y) 7→ x
y
. We see that it is constant

on the lines through the origin, and that its value is given by the slope of the
line. It is not well-defined at the origin, as that lies on all the lines. We are
there reduced to the classical problem of assigning a value to 0/0. This cannot
be done as we see, unless we replace the origin with all the possible values.
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Another way of putting it is this. Consider all pairs (P,L) such that P is
a point on the line L through the origin. When P is not the origin, the line L
is uniquely defined, but when P is the origin L can be any line. Thus what we
want to do is to replace the origin with all the directions through it. Those are
given by lines through it, and they are parametrized by P 1.

Remark 2 : We can of course do this for a pencil of conics as well. We
simply consider pairs (P,C) where P is a point lying on the conic C in the
pencil. The conic C is uniquely-defined by P unless it is a base-point, in that
case any C in the pencil will do, and the base point is replaced by P 1 which
parameterizes all conics in the pencil.

Now to return to the first case. This defines a line-bundle over P 1 by con-
sidering all the lines through the origin, but by having the lines separated there.
We know all the line-bundles over P 1 and they are classified by their degree.
What is the degree of this line-bundle?

If (x, y) are the co-ordinates of C
2 then they become homogenous co-ordinates

on the line of all directions through the origin, i.e. homogenous co-ordinates on
the exceptional divisor. Now we can think of x, y to be fiber-coordinates on the
fibers, which are simply the lines through the origin. We can also find two co-
ordinate patches on P 1 by chosing z = y/x and w = x/y. The relation between
the fiber co-ordinates then becomes

x = (x/y)y

or
x = z−1y

which means that the degree is −1. Thus the only section of this line-bundle is
the zero-section. That there cannot be any other sections is obvious, because
any such would map down to a compact connected complex submanifold of C

2

and any such must be reduced to one point. (the co-ordinate functions will
assume maximal values and hence be constant.)

We can further localize this construction by introducing local-coordinates,
namely set

u = x u′ = x/y
v = y/x v′ = y

Remark 3 Another way of putting it is to consider the open patches
(u, v) ∈ C

2 and (u′, v′) ∈ C
2 and the map π defined by π(u, v) = (u, uv)

and π(u′, v′) = (u′v′, v′) which implicitly define the relation between the local
coordinates. Working it out explicitly we get of course

u = u′v′ u′ = 1/v
v = 1/u′ v′ = uv

Note that the local equations for the exceptional divisor E will be given by
u = 0 and v′ = 0 respectively, and local coordinates for E will be given by v
and u′ with the relation v = 1/u′. Now if we think of u, v′ as fiber coordinates
we get u = v−1v′ thus once again degree −1.
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The topology of a blow-up

First we should note that we can localize the construction by instead of con-
sidering big open subsets C

2 which cannot in general be accommodated in a
2-dimensional complex manifold, we can choose an arbitrary small open neigh-
bourhood U around a point p (usually a small open ball) and then define a
small tubular neighbourhood around P 1 as in remark . What that means is
that we define a small tubular neighbourhood of the zero section in the lineb-
undle over P 1 of degree −1. Explicitly we cover the Riemann sphere with two
hemi-spheres (the northern and the southern) by |z| ≤ 1 and |w| ≤ 1 which meet
at the equator |z| = |w| = 1. Now we thicken the hemi-spheres by muliplying
them with discs of radius ǫ, or using fiber-coordinates we look at (z, ζ) with
|z| ≤ 1, |ζ| ≤ ǫ and similarly for (w, ξ). Now because of the relation ζ = z−1ξ on
the equator, those are compatible. The point is that if you puncture the tubu-
lar neighbourhood by removing the zero-section what you get is isomorphic to
a punctured ball in C

2. A blow-up is a special kind of surgery in which you
replace a small ball around a point with a small tubular neighborhood of P 1 in
the above line-bundle.

From this we see right away that if X is a 2-manifold and BX is a blow-up
of a point then e(BX) = e(X) + 1 because we replace a point P with e(P ) = 1
with a sphere P 1 with e(P 1) = 2. The point is that we can use this process
inductively and blow up any number of times.

We can also picture a blow-up in the real case. Then we can think of the
lines through the origin as a spiral stair-case. Consider the plane R

2 and a
vertical z-axis at the origin. Now each line y = ax with slope a through the
origin is lifted up to the line z = a and y = ax, where a = y/x becomes a loca
coordinate along the z − axis the exceptional divisor.

Now the tubular neighbourhood of the exceptional divisor in the real case is
just a Moebius strip, whose boundary is connected, in fact a circle S1. Blowing
up means that you remove a disc from a surface and glue on a Moebius strip
along its boundary. Clearly we lower the euler-number by one.

Example 1 In a stereographic projection of a sphere onto a plane, typically
by taking the lines from the northpole intersecting a plane through the equator,
we get a 1-1 correspondence between the sphere minus the projection point (the
north pole) and the plane. (In fact this is the way we get a local patch C on
the Riemann sphere, and if we do it from the southpole we get another patch,
and the relation between the local coordinates z, w is given by z = 1/w). But if
we want to extend this to involve the projection center as well? Then it is not
well-defined, as we will consider lines tangent to the sphere at the center, and
those will correspond to points at the line at infinity. But if we do a real-blow
up, this will be well-defined, so RP 2 is simply the sphere with a real blow-up.

Remark 4 In the terminology of real surface topology we are adding a
cross-cap. The result will be something non-orientable, as the Moebius strip
is non-orientable. Note also that this is compatible by thinking of the real
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projective plane as the glueing of Moebius strip along a disc, which we naturally
get by considering the projective plane as the sphere quotient out by the anti-
podal involution. Think of the sphere as a cylinder (S1 × I) along the equator
and two discs on either side. By doing the antipodal map the discs are identified
and the cylindrical strip is mapped onto a Moebius strip.

Remark 5 This makes sense in the finite setting as well. Then we replace
a point by q + 1 points.

Blowing up

As we have seen blowing up is a way of making maps well-defined by separating
the level curves where they intersect. Blowing up has an even more important
application in resolving singularities. So let us look at this a little bit system-
atically.

The node and the cusp

We have two fundamental examples of so called plane double points, namely
the ordinary node that can be exemplified by y2 = x2 and the cusp y2 = x3.
The first one is easily seen as two lines intersecting at the origin as y2 − x2 =
(y + x)(y − x) while the second is a bit more subtle, and the real picture is as
below

The complex picture is far more complicated, note however
that the cusp has a simple parametrization by t 7→ (t2, t3)
which establishes a homeomorfism between C and the cusp-
idal cubic given by the equation. This map is not a diffeo-
morphism, the cusp has a sharp ’cusp’. If we intersect the
cusp with the boundary S3 of a ball, we will get a curve lying
on a torus, and winding two times around one axis and three
times around another. In the case of the two lines, each will
intersect the S3 in a circle, and be a cone over that circle,
and the two circles will be linked.

Algebraically things are much easier. If we replace x by u and y by uv we
will get the equation u2(1 − v2) in the case of the node and u2(u − v2) in the
case of the cusp. Those will be the local equations of the pullbacks of the curves
to the blow up π : BP 2 → P 2 and will be denoted by π∗(C) for any curve C
and refered to as the total transform of C. We note that the exceptional divisor
E will occur with multiplicity 2 as that divisor is given by u = 0. That the
multiplicity is two illustrates the fact that we are talking about double points.
If we factor out the contribution of the exceptional divisor we get something
more interesting, and which we refer to as the proper transform. We can think
of this as the closure of the inverse image of C \ {P}.

In the case of the node we get v2 − 1 = 0 thus v = ±1 which corresponds
to the two directions of the two lines, which are now separated in the blow up.
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In the case of the cusp we get the proper transform u = v2 which is a parabolic
arc which is tangent to the exceptional divisor E given by u = 0.

In both cases the singularity has been resolved.
Now y2 = x3 is a cuspidal cubic, as a projective variety it has the equation

zy2 = x3. If we intersect it with the line at infinity given by z = 0 we see that
it intersects it with multiplicity three at the point (0, 1, 0). The line at infinity
is a so called flexed tangent to the cubic. If we make another dehomogenization
setting y = 0 as the line at infinity, we get the curve z = x3.

Now y2 = x2 is of course not a cubic, but if we multiply the right-hand side
with a factor (x − λ) it becomes one, namely y2 = x2(x − λ). The real picture
will be as follows, depending on the sign of λ

λ > 0 λ < 0

Note that when we let λ → 0 the node will approach a cusp

If we look at a strand of hair, when our line of sight is a secant to the hair
then we see a node, but if it is tangent we see a cusp.

Resolving plane singularities

If we dehomogenize a homogenous polynomial F (x0, x1, x2) to f(x, y) = F (1, x, y)
we can write it as

f(x, y) = f0(x, y) + f1(x, y) + f2(x, y) + . . . fn(x, y)
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where fi is the homogenous part of degree i.
f0 is a constant and f0 = 0 iff the corresponding curve goes through the

origin (which we can always normalize as to ensure) and which we will assume
from now on.

if f1(x, y) is not identically zero, it defines a line f1(x, y) = 0 which is in
fact the best linear approximation of the curve at (0, 0) in other words the
tangentline. Thus V (F ) is non-singular at (0, 0) iff f1(x, y) 6≡ 0.

The smallest m such that fm(x, y) 6≡ 0 is called the multiplicity of the
singularity, and we say that V (F ) has a double, triple, quadrupel etc point at
the origin if m = 2, 3, 4 . . ..

If we take the total transform of an m-tuple point, we can write the equation
as

π∗f(u, v) = umf(u, v)

where f(u, v) is the equation of the proper transform.
If m = 2 and f2(x, y) has two distinct roots, we have the case of an ordinary

node. One blow up resolves it. Then there are a whole slew of double points in
which f2(x, y) has a double root, by change of coordinates we can reduce it to
the case f2(x, y) = y2.

Making the pullback we get u2(v2 + uf3(1, v) + . . .). If f3(1, 0) 6= 0 then the
proper transform has a non-vanishing linear term and is thus non-singular after
the blow-up and we have a cusp. If f3(1, 0) = 0 we need to look at the next
higher order term and we look at v2 + uvf ′

3(1, v) + u2f4(1, v) if this has two
distinct roots, the proper transform has an ordinary node and we say that the
original curve had a tacnode. As an example we can look at y2 = x4 which is
given by two parabolic arc which are tangent, but which intersect transversally
after one blow up.

We can actually classify all double points in the plane inductively. We will
call an ordinary node by a1 and a cusp by a2. If a double point resolves to a
double point of type ak on the proper transform, we will call it a ak+2 point.
How do we know that this process terminates and thus makes sense. Patience!
We will shortly return to it.

The Neron-Severi group

To divisors on curves we may assign in a natural way the degree of the divisor,
but this is not the case of divisors on surfaces, which are linear integral combi-
nations of curves on surfaces. What we have instead is an intersection product
which we can see as a generalization of Bezouts theorem.

The preliminary definition of the Neron-Severi group is as a lattice generated
by an intergal basis of divisors up to linear equivalence together with a quadratic
form - the intersection product. We will denote it by NS(X) for a surface X.

Example 2 The projective plane P 2 has a Neron-Severi group isomorphic
to Z with a generator H (corresponding to a hyperplane, i.e. a line) and with
H2 = 1. In other words every divisor is lineraly equivalent to a line with
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appropriate multiplicity. The space of global sections corresponding to nH
with n ≥ 0 is naturally identified with all ternary forms (i.e. homogenous forms
in three variables) of degree n. The fact that nHṁH = nmH2 = nm is just
Bezouts theorem to the effect that a curve of degree n meets a curve of degree
m in nm points (with intersections counted with the appropriate multiplicities).

Remark 6 Why is this so? One idea is to think of P 2 as the union C
2∩P 1

where all the linebundles on C
2 are trivial, thus any line-bundle can be ’pushed-

off’ to the line at infinity and reduce to the case one lower. This is a vague
argument and it is not so obvious how to make it precise.

Example 3 There are many other compactifications of C
2 (unlike the case

of curves when C can only be compactified in one way) another example is the
quadric P 1×P 1. This surface has a Neron-Severi group equal to Z

2 with a basis
given by curves in the two fiberings of the surface. Let us call them F1 and F2.
Obviously F 2

1 = F 2
2 = 0 while F1F2 = 1. Thus we have the intersection matrix

(

0 1
1 0

)

. If m,n ≥ 0 then the space of global sections to the divisor mF1 + nF2

corresponds to bi-homogenous forms of bi-degree (m,n)
Now how should we define the intersection form? Given two curves C1

and C2 it is intuitively clear how we do it (although admittedly there may be
some problems with the appropriate multiplicities of the intersection points). In
particular if C1 and C2 are disjoint we ought to have C1C2 = 0 (as we assumed
above). Now to do it more formally, let L1 and L2 be the associated linebundles
of which the Ci (i = 1, 2) are sections. Fix C1. We can restrict the transition
functions of L2 to C1 and get a linebundle on C1. This correspond to linearly
equivalent divisors on that curve, which actually correspond to intersections
with linearly equivalent sections of L2 i.e. divisors linearly equivalent to C2.
In particular the degree of those is an invariant. But what if we take another
linearly equivalent divisor C ′

1 associated to L1? We just reverse the role of L1

and L2. Fix a divisor C2 of L2 and intersect it divisors linearlty equivalent to
C1. The degrees are invariant.

Remark 7 If we fix a divisor C, we get a finer invariant than just the
degree when we restrict a line-bundle. However, when C is allowed to move,
this finer distinction does no longer make sense, only the crude degree. Thus
we get a numerical value, when we try to intersect two line bundles.

Remark 8 The group of divisors up to linear equivalence may often be far
too big, so one introduces a cruder invariant, referred to as numerical equiva-
lence. Two divisors D1,D2 are numerically equivalent iff D1D = D2D for all
divisors D. For many elementary surfaces we will be encountering, numerical
equivalence turns out to be the same as linear equivalence (just as on P 1 being of
the same degree is not only necessary but also sufficient for linear equivalence).
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Example 4 If X is a surface and BX is a blow-up of that surface at a
point, we can relate the lattices NS(BX) and NS(X). In fact if π : BX → X
denotes the blow-up we can naturally embed NS(X) in NS(BX) via the total
transform π8 we have discussed before. Intuitively we avoid the blown-up point
P , and then what we do with divisors in X \ P is the same what we do in
BX \ E. However E is the ’new’ divisor in BX, and we have in fact that
NS(BX) = ZE ⊕NS(X) thus whenever C ∈ NS(X) we have CE = 0 as we can
think of C as ’moving away’ from a point. What about E2. We have seen E
as sitting as the unique zero-section of a line-bundle of degree −1. This means
that E2 = −1. As we have seen E is rigid, we cannot perturb it.

Normal bundles and self-intersections

It might be relevant to insert a little digression here. Given a curve C in the
surface X, it gives rise to a line-bundle L which we can restrict to C. Recall that
if C is defined locally by zi = 0 then zi/zj give the transition functions for L and
restricting them to C gives a line-bundle on C which is referred to as the normal
bundle of C in X. But a linebundle over a curve C can be seen as a surface on
its own merits. Admittedly it is not compact, but we can always compact it at
’infinity’ which we will do later, but anyway this is of no real importance. As
a curve in its normal linebundle it also has a normal linebundle in that surface.
But this is a kind of tautological construction, clearly its normal line-bundle in
its normal line-bundle will just be the origial line-bundle. However, if we ask
the stronger question about tubular neighbourhoods, we get a different more
interesting story. The tubular neighbourhood around the section in its normal
line-bundle may be different from its tubular neighbourhood in the original
surface. The line-bundle can be thought of as the first order approximation of
it. However it will turn out that for an exceptional divisor they are the same!
Thus we will see that given any smooth rational curve E with E2 = −1 has a
tubular neighbourhood which is isomorphic to a punctured ball. This allows us
to reverse the blow up operation and allow us to blow down so called exceptional
curves.

Functorial properties of the canonical divisor

We will study maps f : Y → X and see how we can recapture the canonical
divisor KY of Y from the map f and the canonical divisor KX of X.

We will be interested in three cases i) f is the inclusion of a hypersurface Y
in X ii) f is the blow-up of X in one point and iii) f is a finite covering of X.

Adjunction formula

Let z1, . . . zn be local cooridnates for X and let Y be cut out by z1. Now recall
that −KX is given by the Jacobians det | ∂zi

∂Z′

j

|. If we restrict those transition

functions to Y the first row of the determinant consists of zeroes, except the
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very first term which is given by ∂z1

∂z′

1

. By l’Hospitals rule that term can be

written as z1

z′

1

which give the restriction of the transition functions of the divisor

Y in X. The corresponding minor is simply the transition functions of −KY .
Thus we can write

(−KX)|Y = Y|Y + KY

which is refered to as the adjunction formula, and is more often written in the
form

KY = (KX + Y )|Y = (KX + Y )Y

where we have tried to make sense of the last product in the previous section.

Example 5 As a first application of this we can compute the canonical
divisor of P 2. All the divisors of P 2 are of the form nH for some n and H
denotes a hyperplane. Note that H|H = H2 denotes a point on H (two lines
meet in a point) and we can actually write down H2 = 1. We should have by
adjunction that (nH + H)|H = (n + 1)H2 = KH . As KH = −2 because H is
a P 1 we obtain n + 1 = −2 thus n = −3. Hence the canonical divisor of P 2 is
given by −3H.

Example 6 If we do the same thing on P 1 × P 1 we make the ’Ansatz’
K = mF1 + nF2 and use that both F1 and F2 are P 1. Hence we have both
((m + 1)F1 + nF2)F1 = −2 and (mF1 + (n + 1)F2)F2 = −2 which translates
into m = n = −2.

There is also another way of getting to the same result recalling that P 1×P 1

can be seen as a quadric Q in P 3. The canonical divisor in P 3 can be seen as
−4H (Any divisor is of the form nH, hardly surprising by now, and use the
adjunctionformula on H which is a P 2). Now use adjunction on Q = 2H and
we get KQ = (−2H)|Q. Now H|Q = F1 + F2 (Choose H to be tangent to Q!)
and we are done again.

Canonical divisors under finite coverings

Given a finite covering f : Y → X and let zi be local cooordinates on X, what
about π∗(zi)? Obviously if we consider them on π−1(U) where U constitute
open coordinate patches on X they cannot be local coordinates because they
will not separate points (unless the finite covering is trivial!). But obviously we
can try and rectify this by refining the π−1(U). If this works the covering is said
to be unramified, and this means exactly that the number of points in the fibers
stay constant. We have a so called topological covering, and we have disjoint
open sets around each point in the fiber, such that π : Y → X restricted to each
of those is 1 : 1. In the un-ramified case we clearly have

KY = π∗KX

in particular if the degree of the covering is n and X is a curve then deg(Ky) =
ndeg(KX)
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However in general the map may not be unramified, and then we can write

KY = π∗KX + R

where R is the ramification divisor, which can be tautologically defined as KY −
π∗KX . Although claiming that R can be chosen effective adds some meat to
the assertion.

In order to compute R we will restrict ourselves to the case of curves. Then
ramification comes about by having π∗(z) = un where z is a local variable on
X and u a local variable around a point P ′ in the fiber above a critical image
point P in X. The point is that there are only a finite number of such fibers
whose cardinality is not the maximal. Topologically it means that around the
point P the fibers contain n distinct points that come together at P ′ ∈ π−1(P ).
Now we do a formal calculation dz = nun−1du. How should we interpret it?
If we have a section of the canonical linebundle of KY it seems to pick up
an extra zero of multiplicity n − 1 at the point P ′ with ramification index
n. This would lead us to suggest that R =

∑

P (np − 1)P for all the points
P ∈ Y (note that for all but a finite number of points P we have nP = 1 so
the sum is actually only finite). Let us go bravely ahead. We would get that
deg(KY ) = ndeg(Kx) +

∑

P (np − 1) which we would like to compare with the
easy formula for eulernumbers e(Y ) = ne(X) −

∑

P (np − 1). In particular we
note that if deg(KX) = −e(X) for some curve X that would hold for all finite
coverings of X. Now it is easy to inspect that it holds for X = P 1 as the dgree
of the canonical divisor is −2 while the eulernumber is the same as that of the
sphere, thus equal to 2. Now every curve with a rational function f on it gives
a map f : Y → P 1 and we are done (modulo the fact that every curve does
have rational functions which will be a consequence of Riemann-Roch) and we
can state the fundamental

Theorem:(’Gauss-Bonnet’) If X is a curve than deg(Kx) = −e(X)

Canonical divisors under blowing up

Now we will restrict ourselves to a blowup π : Y → X a surface. This is almost
a trivial map, except that it is dramatically ramified above the blown-up point.
It is also clear that anything new will happen as regards to the two new open
sets introduced above the small ball around the blown up point. Recall the
coordinate changes

u = u′v′ u′ = 1/v
v = 1/u′ v′ = uv

We can write down the Jacobian

det |
∂u
∂u′

∂u
∂v′

∂v
∂u′

∂v
∂v′

| = det |
v′ u′

− 1
(u′)2 0

| =
1

u′

Those the transition fuction for the canonical divisor along E is given by u′.
Now E is defined by u = 0, v′ = 0 and hence the linebundle associated to E is
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given by u/v′ = u′. Hence we have K = E locally, or more generally we get

KBX = KX + E

which is a fundamental formula.

Calculating genera

We have seen that through the knowledge of the canonical divisor we can get
hold of purely topological information, such as the eulernumber. The euler-
number of a smooth orientable real surface, and hence of any smooth complez
curve, is always even and can be written as 2− 2g where g is referred to as the
genus of the curve, and can be interpreted as the number of ’holes’ of X (al-
though for complicated curves, say like those climbing devices in playgrounds,
it is not so clear how to identify separate ’holes’ and thus to count them). As
e(X) = h0 − h1 + h2 where hi is the i-th Betti-number i.e. hi = dim(Hi) and
h0 = h1 = 1 we see that dim(H1(X)) = 2g. As we will see later, we can split
up H1(X) in two vectorspaces of the same dimension g of which one will be
the space of complex 1-forms which is nothing but the space of global sections
of the canonical divisor, which is denoted by H0(K). This is in fact the most
elementary manifestation of the so called Hodge-decomposition.

Examples of calculating genera of smooth curves

Example 7 Let C be a smooth plane curve of degree n. By the adjunction
formula the degree 2g − 2 of its canonical class is given by ((n − 3)H)(nH) =

n(n − 3) from which we get 2g − 2 = n(n − 3) or equivalently g = (n−1)(n−2)
2 .

This complies with what we have computed earlier. In particular we note
If n = 1, 2 we have g = 0 i.e. a line and a conic are isomorphic with P 1, but

this we knew before.
If n = 3 then g = 1 and the curve is a torus. Such curves are called ellipic

curves by a historical accident (it would be more logical to call P 1 elliptic,
elliptic curves parabolic, and all the curves with genus g > 1 hyperbolic.) As
noted those curves provide enough material for a year-long course meeting five
times a week, four hours a day (with a two week recession around Christmas to
make it a 1000 hour course).

If n = 4 then g = 3 and the curve has three holes.

Example 8 The case of a curve of bidegree (n,m) in P 1 × P 1 will be left
to the reader as an exercise.

Example 9 If we consider the complete intersection C of two hypersurfaces
of degree n and m in P 3 we note that as the canonical divisor of P 3 is −4H we
get by a repeated application of the adjunction formula that

2g − 2 = (n + m − 4)nm

11



First use the adjunction formula on one of the surfaces, say that of degree
n. The canonical divisor is the restriction of (n−4)H to X = nH. The curve C
sits in X as the restriction of mH to X. Now use the adjunction formula on X
to conclude that the canonical divisor of C is given by the restriction of C of the
divisor (n+m−4)H|X . This gives ((n+m−4)H)(nH)(mH) = (n+m−4)nmH3

and as H3 = 1 we are done.
In particular the complete intersection of two quadrics in P 3 is an elliptic

curve.

Curves with singularities

Let C be a curve with an m-tuple point on a surface X. Blow it up and assume
that the proper transform is smooth. What is its genera?

This now follows from a straightforward computation. Note that if C is a
curvewith an m-tuple point to be blown up, its total transform contains the
exceptional divisor E with muliplicity m. Thus the proper transform is given
by C − mE.

We now use adjunction and get

2g−2 = (KX+E+C−mE)(C−mE) = (KX+C)C+m(m−1)E2 = 2gf−2−m(m−1)

as CE = 0 and E2 = −1 and where gf denotes the genus it would have had,
had it already been smooth on X. In fact we can define gf by 2gf−2 = (K+C)C
as a kind of formal genus, and the genus smooth perturbations of the curve would
have.

This process is clearly inductive. As we have for an irreducible curve that
g ≥ 0 and each singularity reduces it strictly, the process cannot continue in-
definitely, so some proper transform has to be smooth. This makes thus sense
of our inductive definition of ak.

Example 10 If m = 2 the genus is reduced by one. Thus nodes and cusps
are resolved by one blow up and the formal genera is reduced by one. Hence a
cubic with a node or a cusp becomes a P 1 after one blow up.

If we have an infinitely close double point, such as a tacnode requiring two
blow ups, the genus is reduced by two. Thus a cubic with a tacnode (a3) will get
genus −1. This is impossible for an irreducible curve, and indeed no irreducible
cubic can have a tacnode, but a reducible can. In fact a conic and a tangent line
make up a cubic with a tacnode. When reoslved we get two disjoint P 1 which
correspond to eulernumber 2 + 2 = 4 which indeed corresponds to g = −1.
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