
Synopsis for Tuesday, November 13

Cubic curves

Any non-singular conic can be written as the sum of three squares, does some-
thing similar hold for cubics? Naively, could any cubic be written as a sum of
three cubes? This is impossible, the group of projective linear transformations
has 32 − 1 = 8 dimensions, and the family of cubics depend on 10 monomials
and thus form a 9-dimensional family. We thus expect a 1 dimensional family
of different cubics. Classically we refer to those as the moduli of the cubics.

Our task is now to find different normal forms of cubics, and in order to do
so it is convenient to make a digression.

The configuration of flexes

As we have noted the flexes of a cubic correspond to the intersection with its
Hessian. Thus we get nine-flexes. They will constitute a very special configura-
tion which we will explore.

First choose co-ordinates x, y, z such that y = 0, z = 0 are flexed tangents at
the points (0, 0, 1) and (0, 1, 0) respectively. With such a choice of co-ordinates
we see that the equation of the cubic can be written under the form

yz(ax + by + cz) + dx3 = 0

From this we see that on the line x = 0 there will also be a third flex, with flexed
tangent ax + by + cz = 0, this is simply the residual intersection of x = 0 with
the cubic. Thus the line through any two distinct flexes meets a third. Thus
the flexes lie three and three on lines. How many lines are there? Fix a flex,
for any other of the eight choices of flexes we get a second one. Thus we can
pair them two and two and we get four lines through each flex. Thus there are
(9×4)/3 = 12 lines in toto. Combinatorially this is the same as the affine plane
over the field F3 which has 9 points and 1 + 3 + 9− 1 = 12 lines through them.
(The lines in the affine part correspond to the dual of the projective plane minus
the line at infinity.)

Hesse Normal form

If the cubic is non-singular it is easy to see that abcd 6= 0 we can thus scale
x, y, z appropriately as to make a = 1, b = −1, c = −1 and chose x − y − z as a
new basic co-ordinate. Thus we can write the cubic as

λxyz − (x + y + z)3

This can be seen as a normal form and we clearly see the parameter λ. The
normal form is invariant under the symmetric group S3 of permutations of
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variables and we can thus easily identify the possible singular points, as those
with orbits of 1, 2 or 3 elements, as no cubic has six singular points. In particular
we see that (1, 1, 1) is a singular point iff λ = 27 when we have a nodal cubic.
No cuspidal cubic can be put in this form as it only has one flexed tangent, and
any cubic under this form necessarily has three.

But there is another more beautiful normal form which we will derive from
the above. For that purpose we set new variables according to

x = u + v + w
y = u + ρv + ρ2w
z = u + ρ2v + ρw

where ρ 6= 1, ρ3 = 1 It is then easily checked that xyz = u3 + v3 + z3 − 3uvw
and x + y + z = 3u plugging into the normal form above and doing a rescaling
of u and renaming the variables we can set

x3 + y3 + z3 − 3µxyz

This is called Hesse normal form. It has the property that the Hessian of any
of its members is of the same form. Thus we have a pencil of cubics, spanned
by a cubic and its Hessian. The base points of the pencil will be the common
flexes of all the members.

There will be four values of µ for which the cubic becomes singular, namely
µ = ∞ and µ = ρi (i = 1, 2, 3). In all of the four cases the singular fiber will
split up into three lines. The base points (i.e the flexes) will lie three and three
on each of the three lines of a singular member, and in toto there will be twelve
lines.

Those singular elements of the pencil can be written down explicitly

µ
∞ xyz
1 (x + y + z)(x + ρy + ρ2z)(x + ρ2y + ρz)
ρ (x + ρ2y + ρ2z)(x + y + ρz)(x + ρy + z)
ρ2 (x + ρy + ρz)(x + ρ2y + z)(x + y + ρ2z)

We can easily write down the nine flexes explicitly by setting x = 0, y =
0, z = 0 respectively and get

(0, 1,−1)
(0, 1,−ρ)
(0, 1,−ρ2)
(−1, 0, 1)
(−ρ, 0, 1)
(−ρ2, 0, 1)
(1,−1, 0)
(1,−ρ, 0)
(1,−ρ2, 0)
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Note that e.g. (0, 1,−1) lie on the four lines x, x + y + z, (x + ρy + ρz), (x +
ρ2y + ρ2z) one from each fiber.

This so called (94, 123) configuration (four lines through each nine points,
three points on each twelve lines) is actually isomorphic to the affine space F2

3 of
pairs (X,Y ) and lines aX + bY + c = 0 with the exception of the line at infinity
c = 1. (There are of course 13 lines in F3P

2 removing the line at infinity, twelve
remain.)

Each triplet of lines in the table above corresponds to three parallel lines in
F2

3. So let us try to make an explicit correspondence between the flexes and F2
3.

So let us correspond the line x = 0 to X = 0 and x + y + z = 0 to Y = 0 and
set up a tentative table

(X,Y ) 0 1 −1
0 (0, 1,−1) (0, 1,−ρ) (0, 1,−ρ2)
1 (−1, 0, 1)
−1 (1,−1, 0)

Now consider the line x + ρy + ρ2z it will correspond to Y +±1 but which?
The points on the line are easily found, namely (0, 1,−ρ2), (−ρ2, 0, 1), (1,−ρ2, 0).
One of those points (0, 1,−ρ2) is already marked and is in the −1 column, where
should we put the others? The following is natural as y = 0 correspond to X = 1

(X,Y ) 0 1 −1
0 (0, 1,−1) (0, 1,−ρ) (0, 1,−ρ2)
1 (−1, 0, 1) (−ρ2, 0, 1)
−1 (1,−1, 0) (1,−ρ2, 0)

It should now be clear how to complete the table

(X,Y ) 0 1 −1
0 (0, 1,−1) (0, 1,−ρ) (0, 1,−ρ2)
1 (−1, 0, 1) (−ρ, 0, 1) (−ρ2, 0, 1)
−1 (1,−1, 0) (1,−ρ, 0) (1,−ρ2, 0)

The principle on which the table is constructed is by making the following
correspondence

x X x + y + z Y
y X = 1 x + ρ2y + ρz Y = 1
z X = −1 x + ρy + ρ2z Y = −1

we can now check that the following correspondce follows

x + ρ2y + ρ2z X + Y = 0 x + ρy + ρz X − Y = 0
x + y + ρz X + Y = −1 x + ρ2y + z X − Y = 1
x + ρy + z X + Y = 1 x + y + ρ2z X − Y = −1
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The symmetry group of the flexes

We made the identification by chosing a line for the x-axis and a non-parallel line
for the y-axis. We also made an arbitrary choice of what should be the points
(0, 1) and (1, 0). There is hence a total of 12 × 9 × 4 = 2433 = 432 possibilities
of making the identification. Another way of putting it is to take a point as
the origin and chosing two independent vectors in F2

3. This gives a count of
9× 8× 6 = 432 as well, as the origin can be chosen as any point, for a non-zero
vector we have 9 − 1 = 8 choices and for the other vector independent of the
first 9 − 3 = 6. The projective transformations of F3 are given by PGL(3, F3.
This has a subgroup given by matrices





a11 a12 b1

a21 a22 b2

0 0 1





which preserves the affine plane given by (x, y, 1). An element of this sugroup
can be thought of as a translation followed by an element of G = GL(2, F3).
There are 9 translations and the group G has in general (p2−1)(p2−p) elemenst
which in our case translates into 48 as we have computed above. This group
is the automorphism group of the configuration, moving points and hence lines
preserving the incidence relation between the points and the lines.

The group can be denoted the affine group A(F3) where the translations T
is easily checked to be a normal subgroup (A−1(AX + t) = X + A−1t i.e. the
conjugate of a translation is a (different) translation) and we have a sequence.

0 → T → A(F) → GL(2, F) → 1

If we restrict to the normal subgroup SG = SL(2, F3) of matrices with
determinant 1 we cut down to 24 and are considering a group of 216 elements,
which we can refer to as the special affine group SA(F).

This group can actually be represented in PGL(3, C) in the following man-
ner.

To understand that we simply need to observe that any subgroup of PGL(3, C)
that preserve the flexes must permute the cubics in the Hessian pencil, as any
cubic that pass through the nine base-points must belong to the pencil. Con-
versely any element that preserves the pencil, i.e. permutes its members, must
preserve the basepoints.

Now it is easy because of the special form of the cubics in the pencil to write
down linear transformations which preserve them. First we have the group S3

of permutation of the variables, then we can add to those transformations of
type (x, y, z) 7→ (x, ρy, ρ2z). The latter are conjugated by the involutions, and
hence they commute with the cyclic permutations, and we conclude that they
form a normal subgroup, and generate along with the obvious permutations, a
group of order 18 containing a commutative subgroup Z2

3.
We can look at the latter more closely. First we note that it is generated by

the two linear transformations A(x, y, z) = (z, x, y) and B(x, y, z) = (x, ρy, ρ2z)
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and that those correspond to the translations (X,Y ) 7→ (X+1, Y ) and (X,Y ) 7→
(X,Y + 1) respectively.

Next we consider C(x, y, z) = (x, z, y) it will leave the configuration invariant
and fix the origin (0, 1,−1) and we have C(1, 0) = (−1, 0) and C(0, 1) = (0.−1)

and thus C is a representation of the element

(

−1 0
0 −1

)

.

Those are the only transformations that keep the cubics invariant, and it
can be described as the group generated by the translations and the center of
the group SL(2, F3). Another interesting linear transformation is D(x, y, z) =
(x, ρy, ρz) and we note that D(1, 0) = (1,−1) while D(0, 1) = (0, 1) thus D

represents

(

1 −1
0 1

)

. Now C belongs to the center and is of order two, while

D has order three. Together they generate a cyclic subgroup of order 6. Thus
note that while |SL(2, F3)| = 24 it cannot be the symmetric group S4 with 24
elements and permuting four letters, as the latter does not have any elements
of order 6.

The group D acts on the pencil by sending µ to ρ2µ, and thus permuting
the three singular fibers corresponding to µ = ρi. As the four singular fibers
should play symmeric roles we are looking for a transformation that maps the
fiber at ∞ given by xyz to any of the other three. This can be done in a number
of ways. Let us choose the map

x 7→ x + y + z
y 7→ x + ρy + ρ2z
z 7→ x + ρ2y + ρz

One checks that indeed it leaves (0, 0) invariant and sends (1, 0) to (0, 1) and

(0, 1) to (−1, 0) and thus corresponds to the matrix

(

0 −1
1 0

)

Summarizing our discussion we have a composition of SA(F3) as follows

0 → D18 → SA(F3)216 → PSL(2, F3)12 → 1

Where D18 is a kind of dihedral group, built on Z2
3 instead of on a cyclic

group, and by letting an involution ε act by x 7→ −x. Thus D18 is the semi-
direct product of Z2

3 with Z2. Furthermore PSL(2, F3)12 consists of the even
permutations of four elements (the four singular fibers) and becomes a subgroup
of PSL(2, C) permuting the members of the pencil. There is thus a natural

representation and it can be made explict as D is represented by

(

ρ2 0
0 1

)

(z 7→ ρ2z) and E by

(

1 2
1 −1

)

or z 7→ z+2
z−1 .

Thus each non-singular member has in general an orbit of 12 elements, the
singular members only 4 elements, meaning that their stabilizers are bigger, in
fact they are also invariant under conjugates of D (D itself stabilizes ∞). It
is all reminiscent of the symmetries of the tetrahedron, except the points ρi,∞
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are not regularly placed on the sphere, using the standard mapping of C via
projection from the north pole.

Now there are other values of µ for which the stablizers are bigger. To find
them we only need to look at the fixed points of D and E and their orbits.

The fix-points of D are clearly 0,∞ and the orbit of 0 should have four
points, and the others are −2 = E(0),−2ρ,−2ρ2. The standard example µ = 0
corresponds to the Fermat cubic. It enjoys D as well in its automorphism group
which is then a group of 54 elements and an extension of D18 with Z3.

Remark 1 The Fermat cubic has the property that we may find three
flexes such that the corresponding flexed tangents go through a point. Those
three flexes will then necessarily lie on a line. The Fermat cubic is characterized
by this property of three flexed tangents going through a point. In fact the
above property holds for all flexing lying on a line.

To see it look at the map P 2 → P 2 given by (x, y, z) 7→ (x3, y3, z3) this
is a 9 : 1 map but ramified 3 : 1 over the co-ordinate axi and totally ramified
1 : 1 over the vertices. Let L be a line in the target that intersect those in
points A,B,C and let a, b, c be the lines passing through the vertices and the
corresponding points see figure below, then each of the lines a, b, c split up into
three lines.

A
B

Cb

c

a

L

The inverse image of L will be a Fermat cubic, and
the split up lines will meet the cubic in three co-
inciding points each, hence become flexed tangents.
We can make this explicit by chosing L given by
x + y = z = 0. Then we are looking at the lines
x + y = 0, x + z = 0, y + z = 0 in the target space.
The pullbacks x3 + y3, x3 + z3, y3 + z3 split up as
(x + y)(x + ρy)(x + ρ2y) etc, which will be flexes as
we have (x + y)(x + ρy)(x + ρ2y) = −z3 etc.

We see that the nine flexes we have exhibited will lie on xyz but because of
the enhanced symmetries of the Fermat cubic, all the four triplets are equivalent.
The nine flexed tangents of a Fermat cubic will hence meet three and three in
twelve points. This is the dual of the configuration of flexes.

The fix-points of E are the orbits of µ = 1 + ±
√

3 which will make up
six-oints. This cubic will have an extra involution in its automorphism group
induced projectively.

Those are the only exceptions.
In general we can write down an explicit function j of µ which is constant

on the orbits of PSL(2, F3) namely

µ3(µ3 + 8)3)

(µ3 − 1)3

Note that for the critical values ∞, ρi it will have poles of order three and
thus correspond to j = ∞. Note that the special value µ = 0,−2ρi corresponds
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to j(µ) = 0

Group structure

A cubic curve is topologically a torus. A torus can be obtained by glueing
opposites sides of a rectangle, thus making all the four corners go to one point.
More elegantlys, we can think of it as R2 divided out by a lattice Λ. A lattice
is a module over Z generated by two linearly independent vectors ω1, ω2. They
span a parallelogram, which is called the period parallelogram, which is the
so called fundamental region of the action of Z2 on R2 given by (λ1, λ2)z =
z +λ1ω1 +λ2ω2. The orbits of this action intersect the parallelogram in exactly
one point (if we take care which edges to include) and taking the quotient is
the same thing as identifying opposite edges. Topologically we can reduce to
ω1 = (1, 0) and ω2 = (0, 1) and thus the canonical inclusion of Z2 into R2. The
quotient can be thought of as R/Z × R/Z = S1 × S1. Now as R2 is a group
under addition and Z2 a subgroup, the quotient is also a group. Thus a natural
question is whether there is a group structure on a cubic.

In fact there will be. And there is a natural way of defining it. We say that
three points add up to zero iff they are collinear. By this assumption the zero
has to be a flex.

Thus let us fix a flex O as zero. We now get to define P ⊕Q in the following
way. Join P and Q by a line and let R be the residual intersection. Then
R = −(P ⊕ Q) To get P ⊕ Q we take the line joining R with O and the
residual intersection will be −R hence our desired P ⊕Q. That this operation is
commutative is obvious, also that it has a neutral element. The inverse is also
easy to find by ’inversion’ in O so to speak. What about associativity? This is
a pain, but it is possible to prove geometrically. We will leave this aside.

Now the group structure on the torus has lots of so called torsion points.
Those are points p such that nP = 0. One finds easily n2 of such as given
by Λ/nΛ. The torsion points of order n form a subgroup of the torus, and the
structure of that group is Z/nZ×Z/nZ. Torsion groups on a torus are analogues
of torsion points on a circle, which are simoly the roots of unity. (In fact if we
classically divide the circle into 360o those will be the points associated to a
rational degree. The denominator of the rational number gives a clue to its
order.)

The simplest torsion elements are the 2-torsion. They will form the Klein
Viergruppe Z2

2. There will be O of course, and three primitive 2-torsion points.
Geometrically we are looking at points P such that the tangent to P pass
through O. That means 2P + 0 lie on a line. We know that there are four such
points, of which one is O itself, as it is a flex point. The other three are the
primitive. As the sum of the primitive is zero, then those must lie on a line.
That we already knew, as the polar at a clex point splits up into two line, one
the flexed tangent and the other the line joining the three primitive 2-torsion
points.

Elements of order 3 are given by the flexes. They form a subgroup isomorphic
to Z2

3 which explains a lot of what we have already studied. Translations by 3-
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torsion points can be induced by projective transformations. And also the map
z 7→ −z. Two cubic curves have extra symmetries, and hence also those operate
on the sub-groups of torsion points. We have already established non-general
isomorphisms on the group of flexes in those cases.

What about group-structures on singular cubics? The definition works fine
as long as we stay away from singular points. Note that if we take a line
through two non-singular points, it cannot hit the singular locus, unless the line
is a component of the cubic, as a line can only hit in three points.

Now a nodal cubic is P 1 minus two points. This is the same thing as C∗ (or
more generally k∗) which is a group under multiplication. While the cuspidal
cubic is simply C (k) which is a group under addition. So what you need to do is
to give appropriate parametrizations by nets of binary cubics letting the identity
be mapped onto a flex and such that the three solutions to any polynomial in
the net multiply to one or add to zero, depending on whether we are dealing
with nodal or cuspidal cubics.

In the case of the nodal cubic, we are looking for a polynomials such that
the contant term is −1 as that means that the product of the roots multiply to
one. One may remark that such polynomials are not closed under addition, but
this can easily be remedied. We are simply looking at cubics at3 + . . . − as3.
Those make up a net and a basis can easily be found by t3 − s3, t2s, ts2. Call
them X,Y,Z respectively. Among the ten monomials X3, Y 3, . . . we are looking
for a linear relation. It is easy to find the one, namely Y 3 −Z3 −XY Z = 0 (By
replacing Y with −Y we may put it in the more appealing form Y 3+Z3 = XY Z
parametrized by (t3−1,−t2, t). The singular point is (1, 0, 0) the common image
of t = 0,∞. The lines AY + BZ = 0 are the lines going through the nodes and
are not interesting. The other lines are of form X = AY +BZ and correspond to
t3 + At2 −Bt− 1 with the solutions t1, t2, t3 satisfying t1t2t3 = 1. In particular
we have the flex (t − 1)3 = t3 − 3t2 + 3t − 1 which correspond to the line
X +3Y −3Z = 0 flexed to the cubic at the point (0,−1, 1). Note that the other
two flexes correspond to primtive cube roots of unity and are hence not real.

In the picture above on the left, the flex is at infinity, and the flexed tangent
ought to be obvious. While on the right we have changed the perspective and
the flex is pointed out. The two branches of the curve correspond to t > 0 and
t, 0 respectively and they will asymptotically become horizontal corresponding
to the nodal tangent Y = 0, the other being the line at infinity (Z = 0).

The case of the flex is much simpler. A natural parametrization (t, t3) buts
the cusp at infinity, and a lex at the origin with flexed tangent y = 0 and clearly
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the roots of AX + BY + CZ = 0 are given by Bt3 + At + C = 0 and clearly
their sum is zero.

Weierstrass Normal form

The most common normal form is the Weierstrass normal form given by

y2 = 4x3 − g2x − g3

(The significance of the 4 will become apparent later). The salient feature is
y2 = p3(x) where p3 is a cubic polynomial in x. The curve is smooth iff p3

has no multiple roots. We also see that the line at infinity will be the flexed
tangent at the point (0, 1, 0) which means that the pencil of lines through it will
be given by the lines parallel to the y-axis. That flex will be the natural point
to choose as a zero. The obvious symmetry of the curve given by reflection
(x, y) 7→ (x − y) in the x-axis will then simply be the map X 7→ −X on the
group level. The intersection of the curve with the x-axis will then correspond
to the fix points of this involution, hence to the four torsion-points of order two,
one of which is at infinity, and the remaining primitive ones in the finite part.

It is easy to draw the real picture, and we get two different ones, depending
on whether the cubic has one or three real roots. The two cases are separated
by a multiple root of the cubic polynomial.

In the first case we have two components, one of which is an oval (convex
in fact why?) and subdivides the porjective plane in two parts and the other a
curve that does not. Notice on the right two prominent flexes.

Now this normal form has two parameters instead of one. And in fact if
we make the automorphism (x, y) 7→ (t2x, t3y) the cubic will be transformed to
y2 = 4x3 − t2g2 − t3g3 and be isomorphic. We can now concoct an invariant
which takes care of this, namely

J =
g3
2

g3
2 − 27g2

3

where ∆ = g3
2 − 27g2

3 is the discriminant of the binary cubic, and is non-zero
iff the (ternary) cubic is non-singular. It will turn out that two cubics are
isomorphic iff they have the same J-invariant.

Remark 2 The case for real cubics is a bit more complicated. To the
same j invariant there may be two different cubics, non-isomorphic over the
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reals, but isomoprhic over the complex numbers. To every cubic y2 = p3(x) we
may associate the dual cubic y = −p3(x) which will have the same J-invariant
(g3 7→ −g3 while g2 invariant), but which is different. The situation becomes
even more complicated if we consider k = Q and ask for isomorphisms defined
over the rationals.

The Explicit Group law

Give two points P = (x1, y1), Q = (x2, y2) how do we compute the co-ordinates
(x3, y3) of their sum? It is easy, just write down the equation of the line passing
through P,Q and determine its residual intersection. If we work it out we get
the following formulas in case P¬ ± Q

x3 = ( y2−y1

x2−x1

)2 − (x1 + x2)

y3 = − y2−y1

x2−x1

x3 − y1x2−y2x1

x2−x1

while if P = Q we have the duplication formula

x3 = ( y2−y1

x2−x1

)2 − (x1 + x2)

y3 = − y2−y1

x2−x1

x3 − y1x2−y2x1

x2−x1

Example 1 If g2, g3 are rational and we have a rational point, i.e. a
rational solution to the diophantine equation we can generate new ones.

Example 2 This works on finite groups too, although special care needs
to be taken for char 2, 3 where the Weierstrass form need to be modified.

Cubic Curves over Finite fields

Elliptic curves and Elliptic functions

A curve X is called elliptic iff it is of the form C/Λ where Λ is a lattice of rank
two over the reals. (That means Λ ⊗Z R = C(= R2)). A meromorphic function
on X can be thought of as meromorphic function E(z) on C which is doubly
periodic. That means E(z + ω) = E(z) ∀ω ∈ Λ, where ω is referred to as a
period. Or more specifically E(z + ω1) = E(z + ω2) = E(z) for a basis ω1, ω2 of
Λ, which explains the classical terminology of doubly periodic functions.

Remark 3 A parallelogram spanned by ω1, ω2 is a fundamental region for
the action of Z2 as explained above.

It is clear that the elliptic functions form a field, the function field oof the
elliptic curve X.

We have three basic facts about Elliptic functions.
I) An elliptic function without poles is constant.
II The sum of the residues of an elliptic function inside a fundamental par-

allelogram P (with no poles on its boundary ∂P ) is zero.
III If an elliptic function has zeroes and poles of order mi at ai then

∑

mi = 0
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IV If an elliptic functions have zeroes and poles at the points ai with mul-
tiplicity mi (mi > 0 means a zero mi < 0 means a pole) then

∑

miai =
0(|Lambda, or

∑

miai = 0 in the group structure of X.

For I) we simply note that such a function must be bounded (as it can be
thought of as a function on a compact set X) and then appeal to Liouvilles the-
orem that a bounded entire function is constant. Or note that any holomoprhic
function on a compact curve must be constant. (Its modulus will have global
max and minima).

For I) II) and III) we consider the residue theorem applied to the functions

E, 1
2π

E′

E
and 1

2π
z E′

E
respectively. The first functions are elliptic and thus the

integral of them around ∂P must be zero because of periodicity. On the other
hand those integrals are the sums of their residues. As to the third function, its
integral around the perimeter will be

∑

miai, while the integrals along opposite
sides will differ my a period, hence the total integral will be an element of Λ.
(This is also attributed to Liouville.)

II) Implies that an elliptic function cannot have a simple pole. Note that
any meromorphic function with a simple pole on a compact curve X would give
a birational function to CP 1 and thus establish a 1-1- correspondence between
the fields of meromoprhic functions on X and CP 1.

IV) implies that the dimension of elliptic functions of degree d is at most d.
By that I mean elliptic functions with a fixed pole of order d and holomoprhic
everywhere else. Note that two elliptic functions with the same zeroes and
poles (counted with multiplicities) differ my a multiplicative constant, as seen
by taking their quotient, which will be holomorphic and hence constant. Later
we will see that the dimension is in fact d. This will follow if we can show that
the necessary condition given by III) is also sufficient.

In order to show that the theory is not empty, we need to exhibit an explicit
non-constant elliptic function. A classical example is due to Weierstrass and
referred to as the Weierstrass p-function and denoted by ℘(z). Its definition is
given by

℘(z) =
1

z2
+

∑

ω∈Λ∗

[

(
1

(z − ω)2
− 1

ω2

]

For this to make sense, we need to show that the sum converges uniformly on
compact subsets away from the lattice of poles. This will follow easily from the
fact that

∑

ω∈Λ∗

1
|ω|λ

converges if λ > 2.

It is clear that ℘(z) is even, but it is not clear that it is periodic with respect
to the lattice. However its derivative ℘′(z) satisfies

℘′(z) = −2
∑

ω∈Λ∗

1

(z − ω)3

for which the convergence is easier to show and the form shows directly that ℘′

is odd and periodic. Thus we get that ℘(z + ωi) = ℘(z) + Ci for some constant

11



C. Putting z = −ωi

2 and using that the function is even, we conclude that
Ci = 0 and thus that the function is indeed periodic.

Let E(z) be an even elliptic function, then it has even order (most likely
zero) at the 2-torsion points. In fact if ω is a 2-torsion point then E(z + ω is
still even (and elliptic) with a zero at 0. This zero has hence to be of even order.
Now let the zeroes (poles) of E(z) be ui (inside a period parallelogram) with
multiplicities mi. Consider (℘(z) − ℘(ui))

m′

i where m′
i = mi unless 2ui = 0

in which case m′
i = mi/2. This will have the same zeroes and poles as E(z).

Hence every even elliptic function is a rational faunction of ℘(z). Now every
function can in a unique way be written as a sum of an odd and even function,
and those will be elliptic if the original function is

Remark 4 This follows from the standard decomposition f(t) = f(t)+f(−t)
2 +

f(t)−f(−t)
2

From this follows that every elliptic function can be written as rational
function of ℘(z) and ℘′(z) as every odd function becomes even when divided by
℘′(z). Now there must be a relation between ℘(z) and ℘′(z). In fact ℘′(z)2 is an
even function. It must vanish at the primitive 2-torsion points ωi (ω3 = 1

2 (ω1 +
ω2) as ℘′(z+ei) are odd functions. Set e1 = ℘(ω1/2), e2 = ℘(ω2/2), e3 = ℘((ω1+
ω2)/2) Hence we get that ℘′(z)2 is a multiple of (℘(z)−e1)(℘(z)−e2)(℘(z)−e3)
and looking at the pole at zero, the constant must be 4.

This relation can also be realized as follows. The Laurent expansion of ℘(z)
follows from the identity

1

(z − ω)2
− 1

ω2
=

∑

n≥0

1

ω2
((n + 1)

zn

ωn
− 1)

giving

℘(z) =
1

z2
+

∑

n>0

(2n + 1)(
∑

ω∈Λ∗

1

ω2n
)z2n

Let us define sn(Λ) =
∑

ω∈Λ∗

1
ω2n and write

℘(z) =
1

z2
+

∑

n>0

(2n + 1)sn(Λ)z2n

and then

℘′(z) = −2
1

z3
+

∑

n>0

(4n2 + 2n)sn(Λ)z2n−1

In particular the initial expansion of ℘3(z) is given by

1

z6
+

9s1

z2
+ 15s2 + . . .

while that of (℘′)2(z) is provided by

12



4

z6
− 24s1

z2
− 80s2 + . . .

from which follows that

(℘′)2(z) = 4℘(z) − 60s1℘ − 140s2

because the difference is a holomorphic elliptic function which vanishes at 0.

Remark 5 If we expand the above identiy and identify coefficients we note
that all the sk with k > 2 can be written as polynomials in s1, s2

Thus we see that given a cubic curve in Weierstrass normal form we can
parametrize it by doubly periodic functions (℘(z), ℘′(z), 1) provided we can
find a lattice Λ such that g2 = 60s1 and g3 = 140s2. This is in general not so
easy.

Isomorphism classes of Elliptic curves

The functions sn(Λ) are functions on lattices. It is obvious that sn(λΛ) =
λ2nsn(Λ). Furthermore λΛ and Λ give rise to isomorphic curves. In particular
we can chose a basis for Λ given by 1, τ where τ is an element of the upper
halfplane H = {z : ℑ(z) > 0}. However, τ is not uniquely determined. If γ is
any element of the Modular group Γ = PSL(2, Z) then τ and γτ correspond to

isomorphic elliptic curves. The reason is that if

(

a b
c d

)

has determinant ±1

then cτ + d, a + bτ is another basis. We can now divide by the first and get the
action τ → aτ+b

cτ+d
. To be sure that the quotient belongs to the upper halfplane

we need that the determinant is one (a positively oriented basis).
Now the quotient H/Γ parametrizes elliptic curves up to isomorphism. How-

ever the action of Γ on H is not properly discontinuous, there are points which
are fixed for some of the elements. This actually complicates life.

One can consider a subgroup Γ(2) of the modular group Γ. This is given as
the kernel of the reduction modulo two map onto PSL(2, Z/2Z). The elements
that give rise to trouble do not occur in this subgroup and we can easily take the
quotient. It turns out to be CP 1 minus three points, which can be normalized
to 0, 1,∞. We can think of it as elliptic curves with a labeling of the three
primitive 2-torsion points. In other words we keep track of the points 1

2 , τ
2 , 1+τ

2 .
The group PSL(2, Z/2Z) is isomorphic with S3 and acts as permutations on
the three 2-torsion points. Furthermore if λ ∈ H/Γ(2) then the action of S3 is
generated by the involutions 1 − λ, 1/λ

Example 3 If y2 = x(x− 1)(x − λ) then we have an elliptic curve wich is
a double cover of CP 1 ramified at four points 0, 1, λ and ∞ and with the three
primitive 2-torsion points given by 0, 1, λ.
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Special Lattices and Special Values

Theta functions

Rational functions are defined as quotients of polynomials. For those to be well-
defined on the Riemann sphere they need to have the same degree, i.e. belong
to the same linear system.

One may also define certain quasi-periodic entire functions which may be
thought of as sections of line-bundles on elliptic curves and express elliptic func-
tions as quotients of those, associated to the same quasi-periodic behaviour.

It turns out that it is very convenient to consider exponential factors and we
make the following formal definition.

A function Θ is called a theta-function with respect to the multiplier M =
(

2πia1 b1

2πia2 b2

)

if it exhibits the following quasi-periodic behaviour with respect

to a lattice Λ

Θ(z + ω1) = e2πia1+b1Θ(z)
Θ(z + ω2) = e2πia2+b2Θ(z)

If Θ is associated to the multiplier M and Ψ is associated to N then ΘΨ is
also a thetafunction and associated to M + N . However the sum of two theta
functions is not a thetafunction, unless the summands are associated to the same
multiplier. Those form a vectorspace and can be thought of as the sections of a
linebundles, their zeroes forming linearly equivalent divisors.

Now the numbers a1, a2 cannot be arbitrary but need to satisfy a condition.
In fact if we consider the integral

1

2πi

∫

∂P

Θ′

Θ

it becomes an integer, counting the number of zeroes of Θ in a fundamental
parallelogram. On the other hand we have

Θ′(z + ω1) = 2πie2πia1+b1Θ(z) + e2πia1+b1Θ′(z)
Θ′(z + ω2) = 2πie2πia21+b2Θ(z) + e2πia2+b2Θ′(z)

from which follows

Θ′(z + ω1)

Θ(z + ω1)
= 2πiai +

Θ′(z)

Θ(z)

and thus

N =
1

2πi

∫

∂P

Θ′

Θ
= a1ω2 + a2ω1

The integer N is called the order of the theta-function and is simply the
degree of the divisor of its zeroes.
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Example 4 Theta-functions of degree zero are given by e2πiQ(z) where Q
is a quadratic polynomial. They correspond to trivial line-bundles, and they will
be referred to as trivial theta functions. One easily computes their multipliers.
Those will have rows given by (2πi(2aωi)2πi(aω2

i +biωi) and indeed (2aω1)ω2−
(2aω2)ω1 = 0.

Remark 6 By multiplying with a suitable trivial theta function we can
always obtain periodicity with respect to one of the vectors. This is not always
suitable, but sometimes convenient. By normalizing the lattice to < 1, τ > we
can then achieve periodity with respect to z → z + 1 and hence expand the
theta-function in a Fourier series.

Riemann-Roch for Elliptic Curves
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