Synopsis for Tuesday, January 29

What everyone should know about Riemann sur-
faces

Topological classification

Given two compact real surfaces S; and Sy we can define the operation of
topological sum S;#S55, by removing from each surface a disc and glueing them
along the two disjoint discs (or if you prefer joining the holes with a hose, i.e.
a cylinder). It is trivial to see that e(S1#52) = e(S1) + e(S2) — 2. In this way
we make surfaces into a semi-group. The neutral element is given by S the
sphere, while the torus T generates the sub semigroup of orientable surfaces.
In particular if Ty = T#T' ... #T (g copies of T') we have that e(T,) =2 — 2¢g
and thus orientable surfaces are classified by their eulernumbers or equivalently
there genera (number of holes). In particular the genus of T is g. Adding a
torus to a surface is usually referred to as attaching a handle.

Remark 1 How many holes does one of those contraptions for
climbing have that you see at Childrens playgrounds? The easiest
thing is to compute the eulernumber and then get g.

In general we also have non-orientable surfaces, the real projective plane P
being the prime example. Attaching a projective plane is the same thing as to
removing a disc and then attaching a Moebius strip to its boundary (recall that
the projective plane is simply the union of a disc and a Moebius strip joined at
ttheir boundaries) which is the same thing as making a real blow up. We have
that P#P is the Klein-bottle but P# P#P we can reduce to T#P and thus we
get a complete classification, where there can be at most two P summands, and
where an empty summand refers to the sphere.

A Riemann surface is a real surface endowed with a complex structure. As
such it will be automatically orientable and hence we can concentrate on the
Ty

Remark 2 If we have z and w two complex co-ordinates we can
write z = u(z,y) + iv(z,y) (where z = u + iv,w = x + iy is the
decomposition into real and imaginary parts). The Jacobian matrix
of the real co-ordinate change will hence be given by

Ou  du
ox oy
ov  Ov
ox Oy

Now z being a holomorphic function of w means that the matrix

would be of the form < “

b ) which preserves angles, from which



we immediately get the Cauchy-Riemann equations. In particular
the determinant is given by a? + b2 > 0

We can thus state that Riemann surfaces are classified by their genus. In general
(i.e. with the exception of the Riemann sphere) there will be many complex
structures on a given surface. Those vary continuously by so called moduli, and
we can even write down spaces M, parametrizing curves of genus g, so called
Modulispaces.

Rough classification of curves

Curves come in three types - rational, elliptic and the rest, depending on the
degree of the canonical divisor being negative, zero or positive.

Remark 3 This trichtomy is a general theme in mathematics. We
see it already in the classification of conics into ellipsis, parabolas
and hyperbolas, refering to defects, equality and excess. The ter-
minology is transfered to the classical theory of partial differential
equations with the three very different kinds of elliptic, parabolic
and hyperbolic equations. Also the more general case of classifica-
tion of varieties hinges on the canonical divisor, as being negative,
essentially trivial, or positive, although we are not able to provide
as precise informations as in the 1-dimensional case.

Let us present the following table

genus | structure | moduli | automorphismgroup | vectorfields | 1-forms
g=0 [ S?=CP! 0 PGL(2,C) 3-dim none
g=1 C/A 1 E plus finite 1-dim trivial
g>2 Uu/r 3g—3 finite none plenty

We should note that there are three simply connected 1-dimensional complex
manifolds, namely the Riemann sphere CP', the complex plane C and the unit
disc U, thus the universal cover of any compact Riemann surface has to be one of
those three types which complies beautifully with the other basis for distinction.

Remark 4 In the case of U one usually endows that with the
hyperbolic metric of constant curvature —1 (which means that the
angular sum of a triangle is less than 7 the defect being given by the
area of the triangle). There are many interesting groups I" which can
operate on that space, each giving rise to fascinating tesselations. In
the case of C we endow it with the flat matric, i.e. constant curvature
equal to zero (the Euclidean plane), while in the case of the sphere
we have the constant curvature 1 with angular sum being in excess
of m the amount of excess being equal to the area of the triangle.

As to groups, the first one is well-known, it is the group of Moebius trans-
formations, which operates triply transitive, meaning that any three distinct



points can be mapped to any other three distinct points (usually normalized
as 0,1,00. It is also initimately associated to the complex vector fields on the
Riemann sphere.

On an elliptic curve we always have the automorphism given by translation,
thus parametrized by the points of F and isomorphic to it as a group. In
addition to that we have the involution z — —z. For two special elliptic curves,
the finite part can be extended to Z, and Zg respectively.

Finally for curves of general type (meaning the rest) the automorphism group
is always finite (and typically trivial), and its order can be shown to be bounded
linearly in g (in fact 84(g — 1) the so called Hurwitz bound).

Review of Linear Systems

Let us for simplicity reduce to the case of curves, although most of what is being
said has general validity.

Recall that we have the notions of line-bundles and divisors. A divisor is
simply a formal sum of points Y., npP on a curve X'. And we say that the
divisor is effective if np > 0.

Remark 5 In the case of curves we can easily talk about the degree
of a divisor Y pnpP as simply > ,np. Every rational function 1
gives rise to a divisor (¢) by simply counting its zeroes and poles
with appropriate multiplicities. It is a fundamental fact that the
degree of any divisor associated to a rational function is zero, this

follows from a residue calculation of the intergal [ $,((ZZ)) dz. Thus in
particular linearly equivalent divisors have the same degree.

While a line-bundle is formally a locally trivial fibration of lines C over a
curve X. We write m : L — X. To describe a line-bundle we need to have an
open covering U; over which 7=1(U;) = U; x C is trivial. To describe the twisting
we are given transition functions 6;; : U; N U; — C* subjected to ¢ij6ji = 1 on
Ui N Uj and Gijﬁjkﬁki =1on Ul N Uj N Uk.

Remark 6 One may extend the notion of a line-bundle to that of a
vector-bundle, by letting the transition functions become invertible
matrices. If those can be diagonalized, we say that the vector-bundle
splits into a direct sum of line-bundles.

The important thing is that a line-bundle is determined by the data given
by the transition functions, and that data behaves well under natural transfor-
mations, such as pull-backs (in particular restrictions) while this is not the case
of divisors.

n general we need to replace points P by subvarities of codimension one, those are in
general harder to come up with and get an overview of, this is why the situation for curves is
so simple and elementary.



Now every divisor gives rise to a line-bundle and every line-bundle gives rise
to divisors.

As to the latter, we need the notion of a section of a line-bundle. By that
is meant a holomorphic map s : X — L such that ws = idx, in other words for
each fiber we pick an element, and this has to be done in a holomorphic way.
Note that every line-bundle has a trivial section, namely the zero-section. More
generally a holomorphic section is given by holomorphic functions s; such that
s; = 0;;5;. Note that unless the line-bundle is trivial, a holomorphic section is
not a function on X. On a compact complex manifold the only holomorphic
functions are the constants, but a line-bundle may have non-constant sections.

Now every holomorphic section s gives rise to an effective divisor (s) defined
as the formal sum of its zeroes. Note that because 6;; # 0 a zero of s; is
automatically a zero of s; and vice-versa, and the multiplicities are the same.

Remark 7 We can also talk about meromorphic sections, by con-
sidering meromorphic functions s; instead of holomorphic. The as-
sociated divisors will no longer be effective in general.

The sections of a line-bundle L make up a linear vector space which we
will denote by either I'(L) or H°(L) the associated divisors will all be linearly
equivalent, because if you have two sections s,t then the quotient ¢ = s/t will
become a meromorphic function on X and thus for the associated divisors D
and D; will we have D; = D; + (¢). Those divisors form a projective space,
called the linear system |L| and we have a canonical map ©y, : X — |L|* defined
by ©r(x) = {D : x € D} or less canonically, we chose a basis ¢y, . .. ¢, of H°(L)
and consider the map O = (¢o(), ... dn(x) into PHO(L). 1 this way we have
an abstract curve X and a map into projective space, such that the divisors D
correspond to hyperplane sections of the image.

Conversely a divisor D gives rise to a line bundle. Simply chose a covering
of open sets U; such that the divisor is given by local equations ¢;. Then
whenever U; NU; # 0 we define 6;; = ¢;/¢;. Those will be non-zero functions
and satisfy the critera to qualify as transition functions, and hence define a line-
bundle, where the ¢; define a section, whose divisor is just D. This is pretty
tautologous.

Remark 8 In the case of curves we can chose for each P appearing
in the divisor a small neighbourhood Up containing no other point,
and the open set U given by X minus the points of the divisor (i.e.
the complement of its support). On Up we set ¢pp = 2™ and on
U we set ¢ = 1. This will give rise to transition functions defined
on the punctured neighbourhood Uy given by 2”7, note that those
transistion functions are indeed holomorphic even if np < 0 because
the poles are excluded in the punctured neighbourhood.

We can now side-step the reference to the linebundle and for every divisor D
define the linear system | D| simply by all the divisors D+ (¢)) > 0. The rational
functions v that occur form a vector-space. In fact all the rational functions 1



which have zeroes at least of order —n,, for the pole-part of the divisor D and
poles at most of the order mp for the zero-part of the divisor. Note that the
sum of two functions having a zero of order m at a point P has a zero at P at
least of order m, while if they have poles of order n the sum will have a pole at
most of that order.

The Riemann Sphere

Given a divisor D of degree zero we can easily write down a rational function

¥ such that (1) = D, namely

the condition ) pn, = >, mq ensuring that the degrees of the numerator and
denominator agree and hence that the expression defines a function.

This means that for the Riemann Sphere CP! it is also sufficient for two
divisors to be linearly equivalent that they have the same degree.

The divisors of CP! are hence classified up to linear equivalnce by their
degrees, and we can normalize the line bundles to be given by the transition
functions 2"(= i—i”) on the two open sets U given by (zg,1) and V given by
(17 Zl)

Remark 9 The line-bundles are represented by n0, chose V' and
z" as defining it, while U is the complement of its support. The
transition function will hence be z" on the annulus U NV

Only if n > 0 can there be effective divisors, and the linear spaces H°(n0)
non-trivial. One may take in that case as sections the polynomials of degree n
those have dimensions n + 1.

We can then state Riemann-Roch for the Riemann Sphere as

dim H(D) =degD +1 degD >0
dim H°(D) =0 deg D <0

Furthermore for each n > 0 we get a map of CP! into P". The case of n =1 is
just the identity (in the sense of being a biholomorphic map), while the case of
n = 2 is its representation in the projective plane as a conic. Any line intersects
it in two points and every two points on it define a line. Thus incidentally the
set of unordered pairs of points on CP! (i.e. effective divisors of degree two) is
parametrized by CP2. For n = 3 we get the twisted cubic in P? and for n = 4
a smooth rational curve of degree four in P* etc.



Elliptic Curves

One may define linebundles on elliptic curves by coverings, but it is more con-
venient to use the structure of an elliptic curve E as C/A. Any linebundle
L then lifts up to C and becomes trivial. Its sections thus will be bonafide
entire functions with quasi-periodic behaviour. (Note that an entire function
which is doubly periodic becomes bounded and hence by Liouville constant, or
equivalently descends to a holomoprhic function on compact E and hence has
local maxima and minima.) Those quasi-periodic functions can be normalized
in many ways, classically it is done in a specific way and referred to as theta-
functions. We have already doe that in detail in previous sections, so it will
suffice to point out the salient features of this procedure.

a) The linebundles are implicitly defined by their linear spaces of sections, so
called theta-functions. Those are subjected to certain quasi-periodic behaviour,
encoded by non-zero multipliers, which can be used to define the line-bundles
on an elliptic curve instead of via transition functions.

b) We may normalize the theory to one particular theta-function 6(z) which
is an entire function with simple zeroes at the lattice A and no other zeroes.
Out of this function other theta-functions can be constructed, in particular by
translation.

There will now be an analogue to the representation of a rational function

namely
[[p0(z— P)""
[To0( - Q)

But in order for the numerator and denominator to live in the same vector
space, i.e. having identical multipliers, it is not sufficient that Ep n, = ZQ my
we also need that > n,P =35 mQ in terms of the group addition.

Thus for elliptic curves we have an elegant criteria for linear equivalence for
divisors, in addition that the degrees are the same we also need to require that
the formal sums interpreted as real sums in the sense of addition on the curve,
must agree as well.

We can then state Riemann-Roch for elliptic curves as follows

dim H°(D) = deg D degD >0
dim H°(D) = 1 D~0
dim H°(D) =0 D A0
dim H°(D) = 0 deg D < 0

As to projective maps, we note that for each d > 1 there is a map given by
D with deg D = d to P41,

If d = 2 we get a double cover onto P'. Such a double cover must be ramified
at exactly four points. Three of those points can be normalized to 0, 1, co while
the fourth is determined by this normalization and denoted by X # 0, 1, cc.

Remark 10 This illustrates the case that elliptic curves depend
on one continuous parameter, its so called moduli. Different A can



give rise to the same elliptic curve, because we can chose the nor-
malization differently. In fact any permutation of Sj3 is represented
by a suitable Moebius transformation effecting this permutation on
the points 0, 1, co. Explicitly by z, %, 11—z, Zgl, = 1;. One may
write down a rational function that is invariant under those trans-
formations, namely

(A2 = X+1)3

0= T

the so called j-invariant that classifies elliptic curves.

Note also that the four ramification points are also the 2-torsion
points on the elliptic curve. As such they make up a 2-dimensional
vector space over Zs fixing an ordered basis for that, corresponds
to a specific normalization, and then \ classifies elliptic curves with
that additional structure.

If deg D = 3 we get a map of E as a cubic in P2. A natural way to do so for
an elliptic curve is to fix D = 30, the zero is then mapped onto a flexed point
and all the flexes correspond to points P such that D = 3P. In this case the
divisor D is characterized by having sum zero.

If deg D = 4 we get a map of E as a curve of degree four in P3. What curve?
let us choose sections ¢y, ...¢3 and consider the ten monomials of degree two
in those. They are sections of 2D and as deg2D = 8 only eight of those are
linearly independant, hence we have a linear space of quadratic relations, in fact
a pencil of quadrics in P? and its baselocus, the intersection of two quadrics
is an elliptic curve. In fact it becomes a curve of bidegree (2,2) on a quadric,
which clearly has genus one.

Remark 11 We all know how to represent the addition geometri-
cally on a cubic, but what about a quartic elliptic? We can assume
that D = 40, then points P such that D = 4P will play the role of
flex points in the cubic case. They will correspond to points in which
the hyperplane intersects in just one point, and hence with multiplic-
ity four. (We can always find planes that intersect in three coinciding
points, so called osculating planes or kissing planes). Those points
will be sixteen in number and correspond to the 4—torsion points.

Now given Two points P, () and consider the plane through O, P, @
which will intersect in a fourth residual point R. We will have P+Q+
R = 0. To get the involution X +— —X on the quartic we consider
the tangent line L to O and the pencil of planes passing through L,
it will intersect in residual points P, Q) such that 20 + P+ Q =0

If we split up D as D = Dy + Dy where deg D; = 2 each of those give maps
onto P! and together they effect a map into P! x P! (a quadric).



Riemann-Roch
The general form of Riemann-Roch for Riemann surfaces X is given by
dim H°(D) = deg D + 1 — g + dim H'(D)

where g is the genus of the curve, and H!(D) is a vector space, whose dimen-
sion gives a positive fudge term. Now one may show that H!(D) is canonically
isomorphic to H°(K — D) where K is the canonical divisor of X.

We say that a divisor D is special if it is part of the canonical divisor,
meaning that one can find C effective such that K = D + C, or equivalently,
there are holomorphic 1-forms which vanish on D.

For non-special divisors we have

dim H*(D) =degD+1—g

The case ¢ = 0 shows that every effective divisor is non-special, hence
dim H°(D) = deg D + 1. In particular if deg D = 1 we get a 1 — 1 map to P!.
Thus every complex structure on the sphere is actually the Riemann sphere, a
fact which would be non-trivial to properly formulate and prove from scratch.

In fact P! is characterized among curves of having a divisor of degree one of
projective dimension one. In particular on a non-rational curve, no two distinct
points (considered as divisors) are linearly equivalent.

In the case of g = 1 there is just one special divisor, namely K itself, or
equivalently the trivial divisor, which needs special consideration.

The divisors of degree zero always make up a group for a curve X but if the
genus is one, we can by a choice of special point O (the zero), identify those with
X itself, and hence endow X with a group structure. Namely for each divisor D
of degree zero we can consider D 4 O which is of degree one. By Riemann-Roch
we can thus represent this by a unique point P, thus every divisor of degree zero
can be written in a unique way as O — P. We may then define P @ ) simply by

O-P)+(0-Q)=0—-(PaQ)

which turns out to be quite useful.

Applying Riemann-Roch to a divisor of degree three, we see that the complex
structur of any curve of genus one, is indeed that induced by a smooth cubic
in P2. Now for higher genera, the analysis of the behavior of divisors becomes
more involved as there will be more special divisors, and we will concentrate on
two special cases g =2 and g = 3.



Genus two curves

For non-special divisors D we get (setting h?(*) to denote dim H(*) according
to a well-established convention).

(D) = degD — 1

In particular the only divisor of degree two that gives a pencil is the only special
divisor of degree two, namely the canonical divisior.

Every genus-two curve has a canonical involution defined by p+p = K. To
be careful. As the linear system |K | moves in a pencil (meaning it is paramtrized
by P!) for any p there is a divisor D linearly equivalent to K such that D = p+gq
and that ¢ is uniquely determined as D — p is of degree one. That unique g will
be the image of the involution. The quotient of the involution will of course be
PL. Conversely given any involution 7 such that X/7 = P! it has to be the
canonical involution, because the fibers make up linear equivalent divisors of
degree two.

Remark 12 There could of course be other involutions. A double
cover of an elliptic curve branched at two points will be a genus two
curve.

Now a genus two curve being a double cover of P! has to be branched at six
points. Three of those can be normalized, which shows that there are three free
parameters, hence the moduli My has dimension three.

Remark 13 The actual description of Ms is more complicated,
as in the case of elliptic curves, there will be group actions on the
three parameters depending on the normalizations.

Note that if ® is an automorphism of a genus-two curve (or any curve for
that matter) then ®*(K) of the canonical divisor is still the canonical divisor
(this is in the notion of ’canonical’). Note that this is not true in general,
for non-rational curves any two distinct points are not equivalent. This has
as a consequence that any automorphism of a genus-two curve descends to P!
leaving the set of the six branch-points invariant. The six ramification points
upstairs are important, they are exactly the six points p such that K = 2p,
and are called Weierstrass points. Any automorphism must permute them, and
any automorphism that fixes them, must either be the identity or the canonical
involution.

Remark 14 Note that in this way we get a crude upper estimate
for the order of the automorphism group, namely 2 x 720, and any
group of automorphisms must modulo an involution be a subgroup of
Se. In particular there cannot be any automorphism of order seven,
which incidentally shows that the Hurwitz bound above cannot be
sharp in the case of g = 2.



Another approach to studying the automorphism group is to look
at X/G which will have to be another curve of lower genus. Its
eulernumber can be computed provided you have full knowledge of
its stabilizers.

It is easy to give example of genus-two curves with nice automor-
phism, but it should be clear that a generic choice of the six points
on P! will yield no automorphisms save the trivial and canonical.

Example 1 Chose the six points to be 0, e* %" with k = 0,...,4. This will
allow a automorphism group of order ten. Taking the quotient by an element
of order five, fixing one of the six Weierstrass points and permuting the others,

will give a quotient of eulernumber two (why? there must be other fixed points,
find them!).

Remark 15 As there is a complete classification of finite groups
acting on P! we can use that to get a handle of what groups can
occur for a genus two curve. We see in particular that we cannot
lift the icosahedral group, because all its orbits have more than six
elements. While the octahedral group has an orbit of order six,
namely 0, £1, 44, oo which gives an automorphism group of order 48
upstairs. We cannot do better, as any cyclic or dihedral group with
an orbit of six elements, can at most have twelve elements.

If deg D = 3 the divisor has to be non-special (K — D has negative degree), it
thus gives 3 : 1 mappings onto P'. How many such mappings are there? Or how
many divisors up to linear equivalence are there of degree three. If we disregard
linear equivalence there is obviously a 3-dimensional family, linear equivalence
cuts it down by one, thus a 2-dimensional family. In particular the generic
divisor of degree three cannot be written on the form 3p because such divisors
obviously make up a 1-dimensional family. So generically every genus two curve
can be exhibited as a triple cover of P! without any total ramification, thus
an euler-count shows that there will be eight ramification points. The obvious
count 8 — 3 — 2 = 3 gives another proof of the three moduli.

Example 2 A genus two curve can be represented as a curve of bidegree
(3,2) on a quadric. The canonical class is cut out by the fibration that hits the
curve twice, and the projection onto that factor gives the canonical involution.
On the other hand the projection onto the other factor gives one of those triple
covers onto P'. Thus there is a 2-dimensional number of ways we can represent
a genus-two curve as a smooth curve in a quadric. A count of the number of
bi-homogenous forms of type (3,2) gives (3 4+ 1)(2 + 1) = 12. The group of
automorphisms of a quadric has order 3 + 3 = 6 (each automorphisms induces
one the projections). And once again we get 3 = (12 —1) — 2 — 6.

Remark 16 This representation of genus two curves gives a han-
dle to the question, can you find a genus two curve with a totally
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ramified triple cover over P'? In that case there must be exactly
four ramification points —2 = 3 x 2 — 2 x 4. It is easy to see that
a binary cubic Ax® + Bx?y + Cxy? + Dy? is the cube of a linear
form iff B> — 3AC = C? —3BD = 0. In our case A, B,C, D are
binary quadrics, and hence there can at most be four such complete
ramification points. It is a non-trivial exercise to find such explicit
cases.

Now a divisor D of degree four gives a map into P? and thus a genus two
curve can be realized as a quartic in P2, but not as a smooth one, as smooth
quartics have genus three. In fact by hindsight we know that we need a cusp
or a node (and nothing worse) to get a genus two curve. Assume that D # 2K
then D — k # K and hence the linear system is 0-dimensional (projectively),
this means that there are unique points p,q such that D — K ~ p + ¢, thus
if we look at the divisors D in the system that contains K they are all of the
type K + p + ¢ (conversely if they contain p, ¢ they contain a K'). This means
that the two points p, ¢ map to the same point in the plane (if they happen to
coincide we get a cusp, otherwise a node). Furthermore the canonical involution
is given by the pencil of lines that pass through the double-point cutting out
two residual intersections, which make up the canonical divisors.

Remark 17 What happens if D = 2K7? Then it is not too hard to
show that the map is 2 : 1 to a conic (the canonical involution again).
In fact if ¢g, 1 make up a basis of the sections of K we will get
®3, po¢1,d7 linearly independent sections of 2K, as the dimension
of the latter is just three, they make up all of them.

If deg D = 5 we get likewise a map into P3. Playing the same trick as above,
the ten monomials of degree two from a basis of four sections are sections of a
divisor 2D of degree ten, and the dimension is nine of such a line-bundle. Hence
the curve lies on a unique quadric and we have already identified it.

Remark 18 If we fix a point p on the curve, and look at the
subsystem of D passing through p this is equivalent of looking at the
linear system D — p of degree four. Geometrically we are projecting
from the curve of degree five of bidegree (3,2) (note 3+ 2 = 5) onto
the plane. There is a unique tri-secant through p namely the line
in the quadric ruling going through p intersecting the curve in two
residual points, hence the projection will have a node. Note that
those two points can make up the canonical divisor.

Note also that by blowing up a point on P! x P! and blowing down
the two exceptional divisors stemming from the two lines of the two
fibrations, we get P2.

Finally we can consider divisors of degree zero. If D is a non-trivial divisor
of degree zero, then K 4+ D has degree two and is not special, hence there are
unique points p, ¢ such that K +D = p+q. Now chose K =p+por K = q+q.

11



this gives D = ¢ —p or D = p — ¢q. Thus any such divisor can be written
under the form p — ¢, and this representation is unique up to the involution I
given by p — ¢ — q@ — p. This gives a representation of all divisors of degree
zero by X x X/I with the diagonal blown down to a point. This is a compact
2-dimensional variety with an addition, a so called abelian variety.

Remark 19 An abelian variety has torsion points. If its dimension
is n, points of torsion m make up a subgroup of order m?". In
particular if n = m = 2 we expect a group of order 16. And in fact
if 2p = 2q then by necessity p, ¢ are Weierstrass points. There being
6 of them there are 15 distinct pairs (p, ¢) such that (p —q) has order
two. (The 16th point of order two is of course any non-trivial divisor

of degree zero).

12



