
Synopsis Thursday, September 27

Basic facts and definitions

We have one one hand ideals I in the polynomial ring k[x1, . . . xn] and subsets
V of kn. There is a natural correspondence.

I V (I) = {(k1, k2, . . . kn) : f(k1, k2, . . . kn) = 0,∀f ∈ I}
V I(V ) = {f : f(k1, k2 . . . kn) = 0,∀(k1, k2 . . . kn) ∈ V }

Note that V ⊆ V (I(V ) and the inclusion can be strict. Thus not all V
occur as sets of zeroes of polynomials. We can think of V (I(V )) as the algebraic
closure of V and those algebraic sets are those with which we will be interested.

Furthermore we have likewise that I ⊆ I(V (I)) where the former can be a
proper subset.

Hilberts Nullstellensatz If k is algebraically closed (i.e. k = k̄) then if
f ∈ I(V (I)) then for some n we have fn ∈ I.

Given an ideal I we can associate the radical
√
I defined as the set of all

f such fn ∈ I for some n. It is easily seen that the radical is an ideal a swell.
Ideals equal to their own radicals we could call radical ideals, and then the point
of the Nullstellensatz is to set up a 1-1 correspondence between radical ideals
and algebraic sets.

Note: The proof of the Nullstellensatz is not easy, although for C there is a
quick short-cut.

The following facts are easily verified

I1 ⊆ I2 ⇒ V (I1) ⊇ V (I2)
V (I1 ∩ I2) = V (I1) ∪ V (I2)
V (I1 + I2) = V (I1) ∩ V (I2)

Thus in particular algebraic sets are closed under union and intersection.

To each ideal algebraic set V corresponding to I we can associate the ring of
regular functions R(V ) = k[x1, x2. . . . xn]/I. It can be thought of as the ring of
all polynomial functions on V . Conversely any ring homomorphism ψ : R → k
is determined by specifying xi 7→ Λi ∈ k. The restrictions on λi is given exactly
by specifying that (λ1, λ2, . . . /lambdan) ∈ V . The kernel of such maps are
maximal ideals and can thus be identified with points in V .

An algebraic set V is called reducible if it can be written in a non-trivial
way as the union V 1 ∪ V2 i.e. when none of the Vi is equal to V .

The following is relatively easy to verify

Noetherian rings The following conditions are equivalent
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i) Any ascending chain of ideals I1 ⊆ I2 . . . ⊆ Ik ⊆ . . . stabilizes, i.e. In = Ik
whenever n ≥ k for some k.

ii) Any ideal is finitely generated

Hint 1 Given an ideal I and choose a sequence of elements fi ∈ I such
that fi+1 does not belong to the ideal generated by f1, f2 . . . fi. This cannot
continue indefinitely. Conversely set I =

⋃
k Ik this is finitely generated, and

eventually all those generators are picked up in the sequence.

The crucial observation is given by the following

Hilbert It A is a Noetherian ring so is A[x]

Hint 2 The leading coefficients of the polynomials in I ⊂ A[x] make up an
ideal in A

As a field k is obviously Noetherian, any polynomial ring k[x1, x2, . . . xn] is
Noetherian.

In any Noetherian ring any set of ideals contain maximal members, in par-
ticular any ideal is contained in a maximal ideal. On the level of algebraic sets
we should simply replace maximal with minimal. Minimal algebraic sets are
obviously given by single points.

We can now state
Decomposition Any algebraic set is the union of irreducible sets
PROOF:Assume not. Let V be a minimal set which is not the union of

irreducible sets. Such a set cannot be irreducible, hence it is the union of two
strictly smaller sets, each of which by definition must be a union of irreducible
sets.

Definition: An ideal that corresponds to an irreducible set is called a prime
ideal. Prime ideals thus cannot be the intersection of two ideals which properly
contain it.

Prime ideals can also be defined as ideals P such that A/P does not have
any zero-divisors. Such rings are exactly those which can be embedded in fields
of fractions.

Definition. An irreducible algebraic set will be called a variety.
Note that to each variety V there is a function field K(V ), namely the fields

of fractions of its regular ring of functions. The transcendence degree over k is
defined as the dimension of the variety V .

Derivations Let D : K → K be a k-linear map, (where K is a field-
extension of k). We say that D is a k derivation if D(fg) = fDg + (Df)g.

It is easy to see that the derivations make up a vector-space over K simply
by multiplication by elements of K, also if f is algebraic over k then necessarily
Df = 0.

Hint 3 Show that D1 = 0 and hence that D vanishes on the constants. If
P is a polynomial, show that D(P (f)) = P ′(f)Df .
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Thus it should not be too much of a surprise to learn that the dimension
of the derivations is equal to the transcendence degree of K over k as for a
transcendental element f say we can choose Df with no restrictions.

The tangent space of a variety V (or more generally for any algebraic set)
can be defined externally as a sub-linear space cut out by all the gradients of
the polynomials in the associated ideal I. More specifically the tangent space
T (V )a at a = (a1, a2, . . . an) is given by

T (V )a = {(x1, x2, . . . xn) :
∑
i

∂f

∂xi
(a)(xi − ai) = 0 ∀f ∈ I(V )}

If the tangent space has higher dimension at a point than is given by the
dimension of the variety, we say that the point is singular.

Obviously the partial derivatives of a set of generators f the ideal I can
be put in a matrix, and the dimension the rows cut out will be in terms of
the rank of the matrix, which is given by sub-determinants, which are nothing
but polynomials in the derivatives. Thus the singular locus can be cut out by
polynomials and constitute an algebraic set.

Example 1 The gradient of xyz is given by (yz, xz, xy), thus where at least
two of the co-ordinates are non-zero, the hypersurface is non-singular. Describe
the singular locus of it!

Projective varieties

To each affine space kn we can associate its projective compactification Pn(k)(kPn).
We can define it as the space of all lines of kn+1 through the origin. Alterna-
tively we can see it as given by homogenous co-ordinates (x0, x1, x2, . . . xn) 6=
(0, 0, . . . 0) where we make the identification

(x0, x1, x2, . . . xn) ∼ (λx0, λx1, λx2, . . . λxn)

for λ ∈ k∗. If we have x0 6= 0 we can normalize the first co-ordinate to 1 by
multiplying with 1/x0 and consider (t1, t2, . . . tn) ∈ kn. If x0 = 0 then we can
consider (x1, x2, . . . xn) as homogenous co-ordinates for Pn−1. Thus we have
the basic inductive step

Pn+1(k) = kn+1 ∪ Pn(k)

We say that we compactify the affine space with a hyperplane at infinity

Example 2 (RP 1 =)P 1(R) = S1 where we one-point compactify the real
line. (Note that if we would compactify it with two points ±∞ we would not
get a manifold, but a manifold with boundary, in fact homeomorphic with a
closed interval.
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Example 3 (CP 1 =)P 1(C) = S2 This is the Riemann-sphere, the complex
plane compactified with ∞. If we have homogenus co-ordinates (Z0, Z1) we can
set z = Z1/Z0 and w = Z0/Z1 and then we have two copies of C one using the
complex co-ordinate z the other w. When z, w 6= 0 we have z = 1/w which
gives the glueing of the two complex planes along there common C∗. This is
usually the way the Riemann sphere is presented when you first encounter it.

Example 4 A linear map on the Riemann sphere is given by

(Z0, Z1) 7→ (cZ1 + dZ0, bZ0 + aZ1)

if we dehomogenize we get the broken linear transformation (1, z) 7→ (1, az+b
cz+d )

recognized as the classical Moebius transformations.

Example 5 (RP 2 =)P 2(R) is the real projective plane. It can be thought
of as the sphere S2 identifying antipodal points. It is an example of a non-
orientable surface. We can see it topologically by considering a small band
around the equator along with the two hemispheres on either side. One of them
is identified with the other, hence making up an ordinary disc, while the band
around the equator is turned into a Moebius strip. Thus we can think of RP 2 as
taking a Moebius strip and glueing a disc along its border, which is connected.
This is hard to accomplish in 3-space, but possible in 4-space. The Moebius
strip is the normal neighbourhood of the line at infinity. When you cross it,
you do not leave the projective plane, as you would have done if you had simply
compactified the open unit disc with its boundary, but you re-enter the plane
in the opposite direction.

We will now consider homogenous polynomial, i.e. polynomials in x0, x1, . . . xn
where all the monomials have the same degree. Thus a homogenous polynomial
F (x0, x1, x2 . . . xn) satisfies the homogeneity relation

F (λx0, λx1, λx2 . . . λxn) = λdF (x0, x1, x2 . . . xn)

where d is the degree of the polynomial. For a homogenous polynomial F the
zero-set F = 0 is well-defined, and more generally if we consider only sets of ho-
mogenous polynomials they define well-defined subsets, which we call projective
varieties.

We can mirror what we did before by considering the so called homogenous
polynomial ring k[x0, x1, . . . xn] and considering only homogenous ideals I which
split up as direct sums

⊕
Id where Id consists of homogenous polynomials of

degree d and Id ⊗ Ie ⊆ Id+e.
There is a simple way of going from a homogenous polynomial to a deho-

mogenized one, simply by setting x0 = 1 and conversely you can homogenize
any polynomial in f(x1, . . . xn) by considering F (x0, x1 . . . xn) = xd0f(x1, . . . xn)
where d is the degree of f (i.e. the highest degree of a monomial). We say that
V (F ) gives the closure of V (f) in Pn(k) while V (f) is the intersection of V (F )
in the finite open part kn of Pn(k).
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Example 6 In RP 2 any two parallel lines meet at a point at infinity.
Examples of two parallel lines are y = ax+b1 and y = ax+b2, there homogenous
forms will be given by y = ax+ b1z and y = ax+ b2z and those lines meet the
line at infinity z = 0 at the same point (1, a, 0)

The whole procedure can of course be done on the level of ideals by ho-
mogenizing everything in sight. The point of projective spaces is that they are
compact. This is interesting globally, but many notions such as tangentspace
and dimension is defined locally, and this will then automatically apply to pro-
jective spaces.

Segre The product Pn × Pm of any two projective spaces is a projective
space. In fact can be embedded in P (n+1)(m+1)−1

PROOF:If (xi] are homogenous co-ordinates for a point x ∈ Pn and yj for a
point y ∈ Pm we can consider the (n+1)(m+1)-tuple zij given by zij = xiyj as
representing the point z = (x, y) those will constitute homogenous co-ordinates
for an appropriate projective space, and the map is well-defined (if (xi) ∼ (x′i)
and (yj) ∼ (y′j) then (zij) ∼ (z′ij). Furthermore the co-ordinates for z satisfy
the quadratic relations zijzkl = zilzkj .

Example 7 The case of n = m = 1 gives a nice embedding of P 1×P 1 into
P 3 with the image a quadric. Over the complexes any non-singular quadric can
be put under the form XY − ZW and thus any non-singular complex quadric
has this product structure. Over the reals this is only possible if the index of
the quadratic form is zero, which corresponds to the one-sheeted hyperboloid.
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