Exercises

Linear and Multilinear Algebra

September 4 2009

due September 18 2009

Starred exercises (*) are somewhat more involved

- 1 The map $x \mapsto ax$ defines for every a a permutation. Determine its cyclestructure.
 - **2** Let G be a group and the map

$$G \to Aut(G)$$

given by conjugation that is

 $a\mapsto (x\mapsto axa^{-1})$ also known as an inner automorphism

- a) Show that the map is a homomorphism
- b) Find its kernel
- c) Show that the image of G makes up a normal subgroup to Aut(G)

The quotient Aut(G)/G is usually known as the group of outer automorphisms

- **3** List all the conjugacy classes of S_6 and give the number of elements in each. Do the same for GL(2,5).
 - 4 Determine the automorphism groups for the following groups
 - a) A cyclic group Z_n
 - b) A dihedral group D_{2n} note the difference between n odd or even.
 - c) A non-commutative group $(Z_{p/q})$ of order pq, with p,q primes and p|q-1
- 5 Show that if $Z_{p/q}$ as above occurs as a subgroup in the symmetric group S_n then $n \geq q(>p)$. Is it sharp, i.e. can we find it inside S_q ?
- **6** Look at the group of invertertible 2×2 matrices. Give a simple condition on such a matrix A for it to be conjugate with his invers.
- 7 Let G be a group, Z contained in its center and assume that G/Z is cyclic. Show that G is abelian.
- 8 * Find all non-commutative groups of order p^3 where p is a prime. In particular investigate the case p=2 i.e. find all non-commutative groups of order

Hint: Show that for such a group, the center is identical with the commutator both being cyclic of order p and the quotient G/Z is isomorphic with $Z_p \oplus Z_p$