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PREFACE

The following are the notes I wrote down for a course in Projective Geometry at
Chalmers in the fall of 1989.

The course was intended to start more or less from scratch, and from one small
corner of the Algebraic Geometrical Universe expand gradually the horizon of the
students.

Thus I eschewed all ambitions of setting up a nice machinery from which the
results could then follow nicely and smoothly. It is in fact my conviction that the
presentation of a more or less formidable machinery may be good in hindsight but
that it postpones motivation and ultimate gratification.

I have hence worked rather intuitivly, and I have not been ashamed of waving
my hands, especially at the end. The idea being that the students should first be
confronted with the problem before they start to develop the concepts to formulate
and attack it. To this effect I have included a fair amount of exercises. Many of
those are routine and many are computational, some fill in gaps in proofs, while
others are pure digressions, of which there are endless opportunities. One learns by
doing and a prospective reader is very much encouraged to try his or her hand at
most of them, or at least those that catches her or his fancy.

On the other hand I have become aware of the frustrations such an approach
may entail as well, and I regret many of the repetitions of standard arguments
that I have employed over and over again. Nevertheless I think that the attempt is
worthwhile.

As to the choice of topics. I have decided to concentrate on conics, as they are
quite elementary and provide a bridge between linear algebra and algebraic geom-
etry. In particular I have treated linear systems of conics, which are all more or
less classified throughout the course of the lectures. The final section on nets is a
bit sketchy and ought to be expanded in a revised version, in particular the strat-
ification of all singular nets (following C.T.C Wall) should be presented in detail.I
have also digressed on quadrics in P3, a topic which one cannot pass over easily,
and also perhaps less of a necessity on cubics and elliptic curves, where I have pre-
sented a particularly hefty collection of exercises. This choice was motivated by the
geometry of a non-singular net which is intimately connected with the discriminant
cubic, although I have presented far more than is strictly necessary. This is also
yet another indulgence.

One has to confine oneself, yet I feel that many topics are missing and ought to be
included in a revision. E.g. higher dimensional quadrics, in particular a thorough
discussion of the quadric line complex. Pencils of quadric surfaces may also be
included, as to further justify the lengthy digression on elliptic curves. The cubic
hypersurface is another topic which is always very tempting to include. It is also
a shame not to have included anything on metrics on projective planes as compact
manifolds. The geometry of Möbius transformations is discussed in some detail,
but little on the geometry of PGL(3,C). Elementary toplogy is hinted at in the
exercises, especially the Euler characteristics, but this being rather fundamental, it
ought to be lifted out more in the open. In general one may discuss whether not
many of the exercises would not deserve a fuller treatment in the text.

As to arithmetic applications there are some in the text, or mainly in the ex-
ercises. One could include a little bit more on finite geometries, most of it is in
the exercises; and also be more systematic on elementary diophantine discussions
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(almost all of what there is is to be found in the exercises), in particular it may not
be amiss to prove the Hasse principle for Quadrics, although it may be too much of
a digression. Finally connecting with the lengthy section on cubic curves, one may
discuss quadratic equations, lattices, SL(2,C) and orders, as yet another aspect of
quadrics.

The big omission in this version is of course the pictures. I have not yet been able
to produce nice pictures of what I want, nor have I figured out how to insert those
in the text. When this has been done another version will appear. I have never seen
a net of conics, and I definitely intend to include such pictures in the future (hoping
not to be disappointed). It is also my opinion that only nice graphics, which to my
knowledge is not so much available in classical geometry, would justify yet another
elementary text.

But basically this has been a self-indulgence, and it may just remain so. Any
suggestions are of course welcome, and advice well-taken if not always followed.

Göteborg
December 20, 1989
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Preface to the extended version

To the notes of the fall 1989 I have added (in November 1990) three chapters
, on Quadrics in general, the Quadratic Line complex and finally on pencils of
Quadric surfaces. Yet the work is not complete, the chapter on the Quadratic line
complex can easily be expanded. And there should be a chapter on nets of quadric
surfaces, Whether to include a chapter on the cubic hypersurface is open, but as
the intersection of two quadrics in P4 would be natural, the temptation is great.
The chapter on the Quadratic Line complex easily lends itself to a discussion of
quadratic complexes and Kummer surfaces, thus K-3 surfaces, Abelina surfaces and
Jacobians of genus two curves naturally come into play. Those may be added at
some later date.

Still there is no discussion of metric properties of projective spaces, nor any
continued discussion of PGL(3, C) and higher groups. This may also be included.

And the illustrations are still missing (except for the title page!)

Göteborg
February 27,1991
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Introduction

Projective Geometry deals with properties that are invariant under projections.
Hence angles and distances are not preserved, but collinearity is. In many ways
it is more fundamental than Euclidean Geometry, and also simpler in terms of
its axiomatic presentation. Projective Geometry is also ”global” in a sense that
Euclidean Geometry is not. In Euclidean Geometry lines may or may not meet, if
not, this is an indication that something is ”missing”. In Projective Geometry two
lines always meet, and thus there is perfect duality between the concepts of points
and lines.

Synthetic Projective Geometry was a timehonored subject in Secondary Schools
in the past, and its ancestry goes back to the Old Greeks (Pappus and Appolonius),
with a renewed interest during the Renaissance. It was not however systematically
developed until the 17th- and 18th- century (Desargues, Poncelet and Monge) and
reached its apogee during the last century. Although we will only peripherally touch
upon the axiomatic and synthetic aspects, the general notions of projective spaces
constitute the basic setting for Algebraic Geometry.

As for the axiomatic and synthetic aspects of Projective Geometry there exist
a host of classical references. The most elegant and least involved is probably
Hartshorne : Projective Geometry (Benjamin); while works by e,g, Coxeter ( with
predictable titles) go into more detail. We will however not be overly concerned
with those aspects.

The Projective Plane

As is wellknown two lines may or may not meet. If not they are said to be
parallel. The notion of parallel is easily seen to be an equivalence relation among
lines. We may then ”force” two lines always to meet by ”postulating” a missing
point at ”infinity”. Infinity will consists formally of the equivalence classes of lines
(with respect to parallelity) and each line will be augmented by its equivalence
class. And in addition we will consider infinity as a line. In this way we have
formally forced every pair of lines to meet, and still through two points there will
be a unique line. The ensuing construct will be called the projective plane.

Such a construct is of course quite unsatisfactory. It appears forced and unnatu-
ral and very contrived, although from a formal point of view it may be impeccable.
However it is not very geometric and it assigns to the missing points (”the line at
infinity”) a special status, that it does not deserve. A more geometric presentation
is to consider the task of say a Renaissance artist using perspective to represent
three dimensional reality onto a flat canvas.

We may consider him standing on a floor (F), ideally extending indefinitely,
painting on an equally vast canvas (C). If his eye is represented by the point O (for
simplicity we may think of him as cyklop) then to every point P on the floor we may
associate the point P’ on the canvas which is given by the intersection of the line
OP with C. This sets up a correspondence between the points on F and its pictorial
representation on C. (Of course the image on the canvas is not limited by what
is on the plane floor, but to every point P (except O of course) we may associate
P’ as above. In this case to each point on the canvas corresponds an entire ray
in space). However a moments reflection reveals that not all points on the canvas
corresponds to points on the floor. If we consider the plane through O parallel to
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F, its intersection H with C will constitute a line corresponding to the ”missing”
points of F. H is of course the horizion, and the images of parallel lines on F will all
be lines meeting at H. H is hence the natural ”compactification” of the plane F, the
line at infinity. Conversely, not all points on F will be represented on C, the line
M on F given by the intersection with a plane through O parallel to C, will have
no image on C. And lines on F meeting on M will be mapped onto parallel lines
on C. (One may observe that in a real picture the horizon bisects the canvas, and
only what is in front of the artist will be depicted, while what is behind is ignored,
and its image is usurped by say the sky above. The consistent application of this
method of projection would bisect any object lying across the line M, with the part
behind the artist (center of projection) shown upside down!).

It should now be clear how to give a formal and yet natural definition of the
projective plane.

Consider a 3-dimensional real vectorspace V, with distinguished point 0 (the
origin O), and identify two non-zero vectors v and v′ iff v = λv′ for some λ 6= 0.
(They lie on the same ray, and hence have the same ”image”).

If we choose coordinates on V then the coordinates (X0, X1, X2) of a point p in
the projective plane P(V ) will be called homogenous coordinates. And two sets of
coordinates (X0, X1, X2) and (X ′

0, X
′
1, X

′
2) represent the same point iff there is a λ

different from zero such that

X0 = λX ′
0

X1 = λX ′
1

X2 = λX ′
2

(note that we must exclude (0, 0, 0))
Homogenous coordinates (apparently of as recent origin as Klein) have implicitly

popped up in elementary linear algebra. Any line in the plane is given by an
equation of the form

AX + BY + C = 0

where the triple (A,B,C) is only defined up to a multiple. However this only defines
a line if either A or B is nonzero. (if A = 0 then the line is parallel to the x-axis,
if B = 0 it is parallel to the y-axis). The case A = B = 0 does not make sense in
the plane, however it does in the projective plane. The nonsense equation C = 0
represents the line at infinity!

To make less nonsense out of this we will homogenize and set X = X1/X0, Y =
X2/X0 and clearing denominators we end up with

AX1 + BX2 + CX0 = 0

with X0 = 0 to be the line at infinity.
A line (rearranging the letters) is given by a linear form

AX0 + BX1 + CX2 = 0

in homogenous coordinates. Which on the level of R3 could be thought of the plane

AX0 + BX1 + CX2 = 0
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through the origin.

A line is a projective space on its own, the projective line, and maybe thought
of as a circle. The line completed at infinity.

From now on we will, for reasons to become consistent later, denote the projective
plane by RP 2 and refer to it as the real projective plane. While the lines are denoted
by RP 2

The topology of RP 2

Consider the quotient map

R3 \ 0 → RP 2

by simply considering the coordinates (X0, X1, X2) as the homogenous coordinates
for the points on the projective plane. The fibers of this maps are given by the rays
R∗.

One way of looking at this is to say that RP 2 parametrizes all lines through the
origin. Now to each line there are two directions. After all R∗ splits up into two
connected components (the positive and the negative numbers). All directions are
parametrised by the sphere. (Spherical coordinates; whose ”ugliness” is due to the
clumsy effort of trying to represent the sphere as a rectangle!). Antipodal points
on the sphere correspond to opposite directions, but to the same line. Thus the
projective plane is formed by identifying antipodal points on a sphere.

More formally, if S denotes the unit sphere x2 + y2 + z2 = 1 then the fiber of
the qoutient map consists of the two points (x, y, z) and (−x,−y,−z). (We are
normalizing the homogenous coordinates in the vain hope of finding a canonical
representative).

In fancier language we are considering an action of the group Z2 on the sphere
defined by e(x, y, z) = −(x, y, z) for e the generator of the group. The qoutient
S/Z2 is identified with RP 2 and the fibers are the orbits (pairs of points).

This is an example of a double (unramified) covering. To each point of the
projective plane do we correspond two points. Those will make up a sphere. This
covering is non-trivial. i.e. we cannot keep track of the two covering points by
say labeling one blue and the other green in a continous fashion. (Of course we
could do it by brute force, but then the colors of the points would have to change
drastically -see exercise 5.).

This is further an example of a universal covering. The sphere S is simply
connected, and the qoutient S/Z2 is not, but has fundamental group equal to Z2.
Each closed path on RP 2 lifts to S, if it still is closed the path can be contracted,
if not it provides a nontrivial loop in the fundamental group.

Lifting a loop on RP 2 means chosing a point in the fiber in a continous way.
If this can be done consistently, the loop can be contracted; if not, then the lifted
path does not close upon itself and we have an illustration of the phenomena of
monodromy.

A line in RP 2 gives an example of a loop that cannot be contracted. In fact the
inverse images of lines are given by great circles on the sphere. The identification
of antipodal points on a circle will still yield a circle (cf exercise 8.) Just taking
half of a great circle, i.e. one of the arcs that joins two antipodal points, the image
will be a line and the arc a non-connected lifting. (We see how we have continously
changed one point to its antipodal)
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It is hard to visualize RP 2. If we disconnect S by removing say the equator, we
may take either hemisphere as a representative for RP 2 \ line at infinity. This is
just topologically identifying the plane R2 with the disc. The hard part is to sew
on the equator back. If we fatten it into a circular band we see that the quotient by
antipodes gives us a Möbius strip. The boundary of a Möbius strip is a connected,
in fact a circle, and if we glue it to the boundary of a disc we have the desired plane.
This operation is however impossible to do inside R3 unless one is willing (and able)
to let the surface intersect itself. (Such models can be made, but are not particularly
illuminating -see e.g. Hilbert,Cohn-Vossen Anschauliche Geometrie).

RP 2 is an example of a so called non-orientable surface. To see this consider a
line (if you so want the line at infinity). Give it an orientation (i.e let us trace it in
one of two possible directions) and assume that the surface is orientable, i.e. we are
able to choose a direction making a positively oriented set of directions with the
direction of the line. This means that we can keep track of which side is left and
right. But this is impossible, as you can see tracing along the centerline say of a
Möbius strip. When we come back to our starting point left and right has switched
places!

Projective Spaces in General

The definition of RP 2 as P(V ) for V a 3-dimensional real vectorspace has the
advantage that it formally generalizes directly.

We may take for V any vectorspace of any (finite) dimension and over any field,
in fact over any skewfield.

We define P(V ) simply as the quotient of V ∗ (= V \0) by the equivalence relation
v ≡ v′ iff v = λv′ for λ 6= 0.

If the (skew)field is denoted by K and dimKV = n + 1 we may also write KPn

for P(V ). This is the n-dimensional projective space over K.
Homogenous coordinates are simply given by coordinates on V and all the formal

manipulations go through. Two lines may of course no longer meet, if dimension
is at least three, as they may now be skew. But the right generalization to higher
dimensions is given by the following.

Proposition. If V and W are two linear subspaces of dimension m and p of a
projective space Pn then the dimension of their intersection is at least m + p − n.
In particular they are bound to meet if m + p ≥ n. Furthermore through any p + 1
points not lying on a subspace of dimension p − 1 there is a unique subspace of
dimension p containing them.

Proof:. Lift everything to the corresponding vectorspaces one dimension higher.
As they all have at least one point in common (0) we just apply the wellknown
lower bound (m + 1) + (p + 1) − (n + 1) and subtract one dimension during the
projectivization. The second statement is just elementary linear algebra.

Yet in the deeper properties of projective spaces the dependence on the base field
is very important. We will now consider a few typical cases, with the first case,
that of the complex numbers, being the most important.

The Riemannsphere and Complex Projective Spaces

Recall the definition of the Riemannsphere. The sphere S is bisected by a plane
P through the equator. It is projected onto P from the Northpole (n) and Southpole
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(s) respectively. This gives identifications of P with S\n and S\s respectively. If we
identify P with the complex plane C in the first projection and with the conjugate
C̄ in the other. (We look at C from above and below) then if z and z′ denote the
images of a point p on the sphere distinct from the poles then by using similar
triangles we see that

z =
1

z′

In this way we have given S a complex structure, using the two charts S\n and S\s
and the above transition function.

This we may compare with the construction of CP 1 given by homogenous coor-
dinates (z0, z1). Let us denote by n (0, 1) and by s the point (1, 0); and let z = z1/z0

be the complex coordinate on CP 1\n (=C) and z′ = z0/z1 the coordinate on CP 1\s
(=C). We then obviously have

z =
1

z′

as well. Thus we see that the two constructions are isomorphic.
Using homogenous coordinates on the Riemannsphere illuminates the linear char-

acter of the Möbius transformations (broken linear transformations). Indeed a pro-
jective transformation of CP 1 is given by

(z0, z1) 7→ (dz0 + cz1, bz0 + az1)

Setting z = z1/z0 we obtain the more familiar form

z 7→ az + b

cz + d

Möbius transformations are given by matrices
(

a b

c d

)

which are elements of GL(2,C)

with the proviso that two matrices which are multiples of each other define the same
transformation. (”Homogenous matrices” in analogy with homogenous coordinates)
This can also be expressed by A = λA′ for two matrices, where λ can be identified
by the scalar matrices λI with I the identity, i.e. the center of GL(2,C). The
corresponding quotientgroup will be denoted by PGL(2,C).

In analogy with the covering of RP 2 by the sphere, the complex projective spaces
may be covered by spheres. Indeed inside Cn+1\0 consider the sphere S2n+1 defined
by

|z0| + . . . |zn| = 1

Now the point λ(z0, . . . , zn) will lie on the sphere iff |λ| = 1, thus the fibers of
the projection map will be circles (1-dimensional circles) not just two points (0-
dimensional circles!). We have now a S1 action (not just a Z2 action) on the
spheres, and the projection will hence define a fibration with S1 fibers. This is
called the Hopf fibration, and is of particular interest for the case n=1, when we
present S3 as a fibration over S2 by S1. (see exercise 15)

What can be said about the topology of complex projective spaces? One obvious
and very important fact is that they are compact. This follows from the fact that
they are quotients of compact spaces (spheres).

Less obvious is that they unlike real projective spaces are simply connected. This
has been checked for n=1 and the general fact can be checked heuristically (with
some hand waving) as follows.
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Given CPn we remove a hyperplane (a CPn−1) the complement is Cn hence
simply connected (in fact contractible). Now a hyperplane has real codimension
two, hence we may ”wiggle” a loop so as to avoid it, as it then will sit inside
something simply connected we are done.

Axiomatics and Finite Geometries

The notion of a projective plane (and of course higher dimensional projective
spaces as well) may be axiomatized. One may introduce the primitive concepts of
lines and points, and the primitive relation of incidence. Thus a point incident with
a line simply means that the ”point lies on the line”. We may then write down
various axioms.
A1) Given two distinct points there is a line incident to both
A2) Given two distinct lines there is a point incident to both
A3) Given two lines there is a point incident to none of them

Note the symmetry (duality) between the first two axioms. The third is thrown
in just to exclude a trivial possibility.

One may think that the axioms are too simple to have any interesting conse-
quences. Yet one may state the following assuming that the plane is finite

Proposition. Any two lines of a finite projective plane contain the same number
of points (q + 1) and any such plane contains q2 + q + 1 points.

Proof:. Given the two lines L and L’ choose a point p not incident to either (which
is possible due to A3)). This point sets up a 1-1 correspondence between the two
lines through ”projection”. Namely to each point r on L consider the ”intersection”
r’ (the unique point incident to) of the line <r,p> (the unique line through r and
p) and L’. Denote the number by q + 1. Now any point in the plane except p lies
on a unique line through p. The lines are parametrised by L (or L’ or any line not
through p) thus there are (q + 1) of them, each containing q points (removing p)
then adding p at the end giving q(q + 1) + 1 = q2 + q + 1

But it is not so trivial to construct finite projective planes. It is equivalent to
finding a collection of subsets each with (q + 1) elements of a set with q2 + q + 1
elements such that any two distinct subsets have exactly one element in common,
and for any two distinct elements there is exactly one subset in the collection
containing them both.

However if q = pn this can be solved. In fact let us recall the basic facts about
finite fields.

The basic fields are the prime fields. There is one for each prime p, namely
the fields Z/pZ with p elements (also denoted by Fp). (And of course Q in case
of characteristic 0). Any finite field F is an extension of its prime field, thus a
vectorspace over it of finite dimension n. Thus the cardinality is given by pn.
Furthermore F∗ (the invertible elements of F, i.e all non- zero elements) is a group
under multiplication, as its order is q − 1, we get that

xq − 1 = 1 if x 6= 0

thus xq = x for all elements in F. This shows that F is the splitting field of the
equation xq = x over the primefield Fp thus they are all isomorphic up to the
number of elements q, and maybe denoted by Fq.
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If we now take the field K to be Fq and V a vectorspace of dimension 3 we
obtain a projective plane with (q3−1)/(q−1) elements. This is of course q2 +q+1.
Furthermore each line will contain q + 1 elements. (The field plus the element at
”infinity”)

As far as I know, no finite projective planes have been constructed other than
those above.

The simplest projective plane correspond to q = 2 and correspond to 7 points,
which in homogenous coordinates maybe listed as

(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)and(1, 1, 1)

(One may think of a triangle with its vertices and its ”medians” intersecting in a
point (1,1,1). The three midpoints (1,1,0),(1,0,1) and (0,1,1) do not usually lie on
a line, but they do exactly if the characteristics is equal to two!)

In many ways it is a bit absurd to talk about geometries in the finite setting, yet
the general methods are as relevant here as in the classical cases; and although the
problems may always be stated in elementary combinatorical fashions, in order to
solve them one need to fit them into the general geometric scheme.

Furthermore many diophantine geometrical problems can be reduced modulo p
and stated in finite terms where they can be solved.

This section would be incomplete without mentioning two classical theorems.
The first is

Desargues Theorem. If two triangles ABC and A’B’C’ are in perspective, i.e.
the lines AA’,BB’ and CC’ all go through a point O, then the three pairwise inter-
sections (AB)(A’B’) (AC)(A’C’) and (BC)(B’C’) lie on a line.

Proof:. If the two triangles do not lie in a plane, this is easy as the three intersection
points must lie on the intersection of the two planes spanned by the two triangles.
If the projective plane can be embedded in a three dimensional projective space (as
all the planes we have so far encountered) the degenerate case can be reduced to
this. (see exercise 24)

One may construct projective planes which are not Desarguian; those planes
are by necessity rather contrived, thus Desargues theorem is usually added to the
axioms.

The second is

Pappus theorem. If two triplets of points A,B,C and A’,B’,C’ lie on two lines,
then the three pairwise intersections (AB’)(A’B), (AC’)(A’C) and (BC’)(B’C) lie
on a line.

In fact Pappus theorem is true for a projective plane of type P(V ) over a skewfield
K iff K is commutative.

Duality and Conics

Given a projective plane there is complete duality between points and lines. Two
lines determine a point and two points determine a line. The Axioms A1) and A2)
are dual to each other, while the dual of A3) is ” given any two distinct points
there is a line incident to none of them”. One may reinterpret lines as ”points” and
points as ”lines” and the notion of incidence being ”selfdual” the new model would
be another projective plane.
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The notion of duality enables one to state a dual version to each theorem and
even dualizing each proof, thus cutting down the work to half. (Except that of
course some theorems may be selfdual).

On the less axiomatic level, we have already encountered duality. Given a plane
then each line maybe written in the form

Y0X0 + Y1X1 + Y2X2 = 0

where (Y0, Y1, Y2) form the homogenous coordinates for the lines.
Thus the dual projective space of P(V ) is given by P(V ∗) where V ∗ is the dual

vectorspace of V .
Geometrically a point p in P(V ) determines a line p̌ in P(V ∗) by considering all

the lines (”points” of P(V ∗)) through p.
And of course a line l determines a point ľ in the dual plane, the lines through

which corresponds to the points of l.
There is however no canonical duality between a projective plane (or more gen-

erally space) and its dual, no more than there is a canonical identification between
a vectorspace and its dual.

To give such an identification is equivalent to give a nondegenerate bilinear form

B(X0, X1, X2;Y0, Y1, Y2)

Explicitly each point (Y0, Y1, Y2) determines the linear form B(∗;Y0, Y1, Y2).
We say that the line p̌ corresponding to the point p is the polar of p. Now we

may look at the locus of all points p such that p ∈ p̌. This is given by the vanishing
of the quadratic form B(X,X) = 0 the points which form a conic. Conversely
given a conic we may not determine the bilinearform uniquely, unless we insist that
B(X,Y ) should be symmetric. Geometrically this means that if p ∈ q̌ then q ∈ p̌.

There is, provided that the characteristics of the field is different from two, a one-
to-one correspondence between symmetric bilinear forms B(X,Y ) and quadratic
forms Q(X) given by

Q(X) = B(X,X)

and

B(X,Y ) =
1

2
(Q(X + Y ) − Q(X) − Q(Y ))

Geometrically we may proceed as follows. Given a conic C and a point p on C, then
p̌ passes through p and may cut the conic in some other point q. As q ∈ p̌ we have
that p ∈ q̌, as both p̌ and q̌ pass through p and q two distinct points, we have that
the two lines are equal, hence p = q; thus we see that p̌ is tangent to the conic.

Let L be a line then L intersects C in two points (which may coincide) this can
be seen as follows. A line can be parametrised by

s(A0, A1, A2) + t(B0, B1, B2)

plugging this into the conic Q(X) we obtain a binary quadric

q0(A,B)s2 + q1(A,B)st + q2(A,B)t2

which (over the complex numbers) has two roots corresponding to the two inter-
sectionpoints.
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Let the two points be p1 and p2, as they both belong to L their polars contain
the polar to L, which is hence formed as the intersection of the the two tangents.

Conversely we have shown that given any point p, there will be two tangents
through p to the conic. (This can also be seen directly see exercise 28) the corre-
sponding tangency points determine a line the polar p̌.

The tangents to a conic form a curve in the dual projective space which intersects
each line in two points, and in fact constitute a conic.(cf exercise 29) The dual conic,
which establishes the isomorphism between the dual plane and its dual (which is
canonically isomorphic with the original plane)

In the real case a line may of course not meet a conic, nor need there be two
tangents from a point. In fact we may abstractly define the outside and the inside
of a conic as follows.

A point p is inside a conic C iff no tangents to C pass through p it is outside iff
two tangents pass through it and of course it is on C iff there is only one tangent
through it.

Any real conic may of course be considered as a conic in complex projective
space. (The real structure will be canonical as the complex structure will be given
by tensoring with C cf exercise 13) We may then consider all the complex points
that lie on it. Those points will be invariant under complex conjugation and those
fixed will of course be the real points that we see. If the real point happens to be
inside the conic then the two complex tangents are conjugate (If a line is a tangent
so is its conjugate) and their tangency points likewise. Thus the line joining them
is real (and can be seen). In the same vein if the real line lies outside the conic,
the corresponding complex line will intersect it in two conjugate points, whose
corresponding tangents are of course conjugate, and hence meet in a real point.
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Exercises

1 Given R3 and let z = 0 denote the floor (F) and x = 0 the canvas (C) and let
(1,1,1) (O) be the position of the artists (seeing) eye.
a) Find the horizon
b) find the equations on the canvas corresponding to the tiling given by x = n, y =
m n,m ∈ Z

c) find the image (on C) of a general line ax+by=c (on F)
d) find the images of the parabola y = x2 and the circle of radius 2 centered at
(1,1)

2 (Same as above) We can identify the floor with the canvas by letting p =
(x, y, 0) 7→ (0, x, y) = p′. Joining the points p and p′ we get lines how can you
characterize those?

3 (As above) By the identification of F with C as in exercise 2 any point P in
R3 defines a projective transformation of say C via projection from P. In fact to
each p’ associate the intersection p” of the line Pp with C. Such transformations
are called perspectives.
a) how should P be chosen to get the identity transformation?
b) what happens if P lies on either C or F?

4 (As Above) Let (0, x, y) have the homogenous coordinates (−1, x − 1, y − 1)
a) Write down the projective transformation corresponding to projection from the
point (a, b, c) according to the convention of exercise 3 in (homogenous) matrix
form.
b) Give an example of a projective transformation of the projective plane that is
not gotten in this form ( i.e not a perspective).
c) Give an example of two perspectives whose composition is not.
d) Give an example of a projective transformation which is not the composition of
two perspectives.
e) Is every projective transformation a composition of three perspectives?

5 Observe that the sphere cannot be decomposed into two disjoint compact
subsets; use this fact to show that the double covering of RP 2 by the sphere cannot
be trivial.

6 Would it be possible to subdivide the earth (the sphere) into land and water,
such that each hemisphere contains equal amount of both?

7 The universal covering of a circle S1 is given by the real line R with fundamental
group Z. Thus R/Z = S1.

In fact show that the map R → S1 given by θ 7→ e2πiθ exhibits the covering with
the action of Z given additively by θ 7→ θ + 2n

Naively chosing an angle means making a choice up to an additive multiple of
2π. If one wants to do this consistently and continously one will end up with a
discrepancy for the angle at the initial and the final point. The discrepancy tells
us how many times we have ”looped” around.

8 Show that the map S1 → S1 given by z 7→ z2 identifies antipodal points and
hence exhibits RP 1 as a circle. Write down this map on the level of the universal
covers R → R

9 If you remove a line from RP 2 the complement is still connected. Why?
Thus show that Jordans theorem does not hold on the real projective plane. A
simple closed curve does not disconnect the plane in an outside and an inside. Give
examples of similar phenomenas say on a torus.
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10 If we draw three lines in the plane, not passing all through a point, we
disconnect it into seven connected components. What happens if we do it in the
projective plane instead?

11 If we have a polyhedron without holes, say a Platonic Solid, then it is well-
known that #(Faces)-#(Edges)+#(Vertices) = 2. This is due to Euler. In general
the lefthand side is called the Eulercharacteristic of the polyhedron.

Consider now a regular octahedron and identify antipodal points. (Vertices
will correspond to vertices and edges to edges etc) We will then get a welldefined
polyhedron, which is however a bit difficult to visualize and which will constitute a
triangulation of the projective plane. Use this to compute the Eulercharacteristic
of RP 2.

12 Let V and W be two linear subspaces of dimension m and p in a projective
space of dimension n. Let Z be the span of V and W, i.e. the smallest linear
subspace that contains them both. Give the dimension of Z in terms of m,p,n and
the dimension of the intersection of V and W.

13 By a real structure on a complex vectorspace V is meant a real subvectorspace
VR such that VR ⊗ C = V. E.g. If V=Cn then the natural real structure is Rn,
and all real structures are obtained in this way, i,e by imposing coordinates on V.
With respect to a real structure we may define complex conjugation on V, the fixed
locus of which will be the space VR. This notion of conjugation descends of course
down to projective space. A real point of a complex projective space will hence be
a point that can be given by real coordinates.

Show that two conjugate lines intersect in a real point and the line through two
conjugate points maybe defined by real coefficients.

14 Consider C2 as R4 via (x + iy, z + iv) = (x, y, z, v). A real plane is defined
by two linear equations which of course are not uniquely determined. Anyway try
to formulate some condition on the equations which is equivalent with the plane
being a complex line. I.e. being defined by one complex equation. (Hint: If we
write down the 6 2x2 minors of a 4x2 matrix formed by two equations, those will
then up to a uniform scalar multiple depend only on the plane. They are so called
Plücker coor dinates.)

15 As above, consider S3 projected onto R3 (v = 0) from the northpole (0, 0, 0, 1).
The circular fibers of the Hopf fibration will then become ellipses in R3 except the
fiber through the northpole which will become a straight line. By slight abuse we
will refer to those as the Hopf fibers in R3.
a) Find the equation for the Hopf fiber which is a straight line
b) Show that no two Hopf fibers intersect
c) Show that the Hopf fibers lie on planes and that their centers coincide with the
origin
d) Does every plane through the origin contain a Hopf fiber?
e) The planes through the origin are parametrized by RP 2, the Hopf fibers by S2.
Is it possible that each plane supports two Hopf fibers?
f) Are the Hopf fibers linked?

16 Let H denote the (Hamiltonian) quaternions. Any element can be written
under the form α = a + ib + jc + kd with

i2 = j2 = k2 = ijk = −1

The realsubspace ImH is formed by those for which a = 0 (purely imaginary) and
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we have conjugation

a + ib + jc + kd 7→ a − ib − jc − kd

denoted by α∗. Letting |α| = αα∗ be the norm we may consider the quaternions
of norm 1, they form a subgroup of H∗ and define a groupstructure on S3. They
operate on ImH via x 7→ αxα∗ and define special orthogonal transformations (i,e
orthogonal with determinant 1 the group denoted by SO(3)).
a) Show that we get a covering S3 7→ SO(3) which in fact is a double covering.
RP 3 is in fact SO(3) !
b) In fact the map is a homomorphism of groups and find its kernel.
c) Show that SO(3) naturally covers RP 2 (all lines through the origin) with fibers
S1

d) Fit a) and c) into a commutative square with the missing arrows provided by
the Hopf fibration and the double cover of RP 2 by S2

17 Show that any point P in QP 2 can be written uniquely up to sign with
integral homogenous coordinates with no common factor. Denote by h(P) the
largest absolute value of those, and refer to it as the height of P. The higher the
height the more complicated the point).
a) Compute the number of points with height equal to one
b) Compute the number of points with height at most equal to h
c) If L is a line whose height (as a point in the dual space) is at most h, give an
upper bound for the height of the point with smallest height on it. (Lines which
are not complicated should contain points which are not complicated)
d) If L and L’ are two lines of height at most h, give an upper bound for the height
of the intersection point. (”Simple” lines should intersect in simple ”points”)

18 Show that any line in a projective space contains at least three points.
19 Is it possible to find a projective plane with q = 6? Compute the number of

different collections of subsets of a set with 41 elements that has to be checked.
20 Find the equations of the seven lines of the simplest projective plane, and list

them by making a matrix with 7x7 entries (and no diagonal), each entry defined
by two points.

21 Let V be a vectorspace of dimension n over a finite field Fq with q = pn

elements.
a) Compute the number of elements of V
b) compute the number of one dimensional subspaces of V
c) Compute in general the number of k-dimensional subspaces of V
d) Assume that n ≥ 3 compute the number of lines that meet two given skewlines.
e) State and prove corresponding claims for projective spaces over Fq

22 Consider the finite groups PGL(2,Fq) which operate on the projective lines
FqP

1 (with q + 1) elements.
a) compute their orders
b) identify those groups for q=2,3 and 5
c) An element of PGL(2,Fq) acts as a permutation of q + 1 elements through its
canonical action on the corresponidng projective lines. Give a condition (in terms
of the determinant) of an element to be an even or odd permutation. (Hint: You
need to know about the concept of quadratic residues. Furthermore it may be helpful
to realize that a Möbius transformation can be split up into translations z 7→ z + 1,
homotheties z 7→ az and inversions z 7→ 1/z)
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23 Let A be a nxn matrix with entries in a finite field Fq, compute the number
of matrices B which commute with A. (Hint: You need to do some linear algebra
here, A has to be diagonalized if possible or at least put in Jordan canonical form.
The answer will obviously depend on its canonical form. To do so you will need to
look at some extension of Fq solve the problem over this new field and then go back
somehow. It may be wise to treat the case n = 2 first)

24 Prove Desargues theorem in case the projective plane can be embedded in a 3-
dimensional projective space, by refering the degenerate case to the general. (Hint:
Construct two triangles in perspective whose projection gives the given perspective
in the plane)

25 Prove Pappus theorem by brute force. Use homogenous coordinates to nor-
malize as much as possible (e.g the two lines can be given by x = 0 and y = 0, the
line AA’ by z = 0 the point B by (1, 1, 1)) and then compute. Use this setup also
to give a counterexample to Pappus over a skewfield.

26 Prove that the dual of A3) follows from the three axioms
27 State the dual versions of Desargues and Pappus theorems
28 Show directly that through each point not on a conic we may draw two

tangents. (Hint: Let the point be (A0, A1, A2) with A2 6= 0 and parametrize the
lines through it by their intersections (B0, B1, 0) with the line X2 = 0. Plug it into
a quadric and get a binary form whose coefficients depend on B, then consider the
discriminant)

29 Let (X0, X1, X2) be homogenous coordinates on the projective plane and
(Y0, Y1, Y2) coordinates for its dual, thus corresponding to the line

Y0X0 + Y1X1 + Y2X2 = 0

. Given the conic

X0X1 + X2
2 = 0

find the equation for the dual conic (in terms of (Y0, Y1, Y2) ). Try to do this in
general.

30 Let S be the unit sphere in R3, then to each great circle we can associate the
orthogonal line through the center. In this way we get an isomorphism between
RP 2 and its dual. What is the corresponding conic?

31 Let C be the unit circle in R2, and let p be a point at distance r from the
center. Show that the polar of p with respect to C is the line perpendicular to the
line joining p with the origin at a distance 1/r.

Using this show how we can transform a conic to another conic by the above
inversion of its tangent lines. In particular show that any conic containing the unit
circle is mapped inside the circle; and parabolas are characterized by their images
going through the center.

Furthermore write down explicitly how the equations of the conics change.
32 Given the dual conic in real projective space, the conic can be recaptured as

the boundary of the union of all the tangentlines. If the line at infinity does not
cut it, then it is convex (obvious). In fact note that this works for the boundary of
any smooth convex region.

33 If a line in real projective space does not meet a conic, show directly from
the definition that all of its points are outside (Note: This is of course obvious, but
not true in general for other fields!)
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34 Consider the double covering S2 → RP 2. Show that the inverse image of a
conic splits up into two components, as does the inverse image of the inside. What
happens to the inverse image of the outside?
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Crossratio

The group PGL(2,C) of Möbius transformations act on the Riemann sphere, it
is then customary to talk about the ”natural” conventions regarding ∞ . But if we
simply consider the sphere as CP1 and∞ given by (0,1) we need not allude to any
ad-hoc treatment of the point at infinity.

As is wellknown, the group of Möbius transformations, acts triply transitive.
In fact given any three distinct points z0, z∞ and z1 there is a unique Möbius
transformation sending them to 0,∞ and 1 respectively. Namely

z 7→ (z − z0)(z1 − z∞)

(z − z∞)(z1 − z0)

(Note that this works over any field, not just C, see exercise 35)
This is a more precise statement than to say that PGL(2,C) is three-dimensional.

We do not expect PGL(2,C) to act transitively on four elements, and thus we may
ask when can we map a fourtuples (z0, z∞, z1, z) onto the fourtuple (w0, w∞, w1, w)?
respecting the order?
Clearly if we map the points z0, w0 to 0 and z1, w1 to 1 etc . . . it is necessary and
sufficient that z and w are mapped to the same point, i. e.

(z − z0)(z1 − z∞)

(z − z∞)(z1 − z0)
=

(w − w0)(w1 − w∞)

(w − w∞)(w1 − w0)

Thus it is convenient to introduce the symbol (z0, z∞; z1, z) to denote the value of
z under the Möbius transformation that sends z0 to 0, z1 to 1 etc . . . This is called
the crossratio of the four points.(Note that the order is crucial. It is also strictly
speaking an element of CP1, but if the four points are distinct we need not worry
about the value ∞ nor 0 and 1 for that matter). If we change the order of the
points, this has the effect of composing the Möbius transformation by some other
Möbius transformation, and in particular changing the value of the crossratio by
some element of PGL(2,C). In this way we get a representation of the symmetric
group of four elements S4 into PGL(2,C). Now this representation is not faithful.
The crossratio is easily seen to be invariant under the three permutations

(0,∞)(1, z), (0, z)(1,∞) and (0, 1)(z,∞)

they together with the identity form a subgroup H isomorphic with the Klein vier-
gruppe. On the other hand if we fix z and only permute 0, 1 and ∞ then we get a
faithful representation of S3 into PGL(2,C). In fact we can write down the following
useful table
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permutation value of crossratio element of PGL(2,C)

z

(

1 0
0 1

)

(0,∞) 1/z

(

0 1
1 0

)

(0, 1) 1 − z

(

−1 1
0 1

)

(1,∞) z/z − 1

(

1 0
1 −1

)

(0,∞, 1) 1/1 − z

(

0 1
−1 1

)

(0, 1,∞) z − 1/z

(

1 −1
1 0

)

In fact we have implicitly shown that there is a remarkable surjection S4 → S3

with kernel H. (As anyone familiar with elementary group theory knows S4 is in
fact the semidirect product of H (= Z2×Z2 ) with S3 with H identified as the group
of automorphisms of S3) We will return to this fact in another context further on.

the  -invariant

The problem of determining when two fourtuples of four distinct points can be
mapped onto each other, with no respect of their internal order, is a harder problem.
As we can see it boils down to the problem of deciding when two elements belong
to the same order under the representation of the group S3 defined above.

It may in this context be useful to compute a few special orbits, in fact orbits
that do not contain the full set of six elements that one does expect in general. To
get those we equate any two ”values” in the middle column. A moments reflection
reveals to us that it sufficient to assume that one of those is always z hence we have
five cases. z = 1/z, z = 1− z, . . . . The patient reader who performs the check will
then be rewarded by the following list of three ”exceptional” orbits.

(0, 1,∞), (−1, 2, 1/2) and (−ρ,−ρ2) ρ3 = 1, ρ 6= 1
The first orbit only occurs if the four elements are not distinct(cf remark after

definition of the crossratio), while the two others are of more concern to us. Let us
from now on refer to them as the harmonic and the anharmonic orbit

There is now a remarkable rational function (z) given by

(z) =
(z2 − z + 1)3

z2(z − 1)2

which is invariant under the orbits and in addition separates them.
To check this property we need only to observe two things. a) the function is

invariant under the two involutions z 7→ 1/z and z 7→ 1 − z b) the level sets of
the function contain at most six elements. The first observation requires admit-
tedly some computation and the realization that S3 is generated by any two of its
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involutions; the second only involves checking the maximum of the degree of the
numerator of (z) and 1 + the degree of the denominator.( see exercise 38)

The  function as it is commonly called has deeper connections than is apparent,
some of which we will explore further on. Let us just remark at this stage that
three of its values are ”exceptional”, namely 0, 1 and ∞ corresponding to the three
orbits above (in reverse order)

Harmonic Division

The value -1 of the crossratio is special as we saw above. We say that two
points A and B are (harmonic) conjugate with respect to C and D iff the crossratio
(C,D;A,B)=-1. Using the invariance of the crossratio we see that it only depends on
the pairs (A,B) and (C,D) without regards to their internal order, in fact it depends
only on pairs of pairs, without any reference to orders. We say then that two pairs
are in harmonic division iff one pair is conjugate with respect to the other.

One may also of course talk about (equi) anharmonic divison related to the other
exceptional orbit, but due to different symmetries this is not so natural.

Harmonic divisons occur in many context some of which we will discuss below,
a somewhat metaphysical reason for their ubiquity is the fact that over the field
F3 any four points necessarily are harmonically conjugate (in fact in whatever way
see exercise 37) so that any universal construction that makes sense over that puny
field will necessarily be restricted1.

Given three points A,B and C on a line L; one may construct the conjugate D
of C with respect to A and B by ruler in the following way.

Construction: Choose a point O outside the line L and draw the lines AO and
BO, then choose an arbritary line (not coinciding with any previously drawn line)
M through C intersecting AO and BO in A’ and B’ respectively. Join the lines AA’
and BB’ intersecting in P. Draw the line OP and let D be its intersection with L.

(For a straightforward albeit tedious verification see exercise 44.)
The harmonic conjugate also appears in connection with polarities of conics. In

fact,
Proposition: Let C be a conic associated to a non- degenerate quadratic form,

let P be a point not on C and P̂ its polar. Let L be an arbitrary line through
P which is not a tangent to C, it will meet C in two points Q and Q’. Then the
conjugate of P with respect to Q and Q’ is given by the intersection P’ with P̂.

Proof: Let the tangents to C through P be given by X = 0 and Y = 0 and the
polar P̂ by Z = 0, then the quadric must be of the form XY + λZ2. Now consider
an arbitrary line through P, it may be parametrised by s(0, 0, 1) + t(µ, ν, 0) where
P corresponds to (1, 0) and P’ to (0, 1) and Q and Q’ to points (s, t) such that
(s/t)2 = µν/λ.

(the reader who is not convinced, or is puzzled by the case of F2 may consult
exercise 45 and 46 )

Involutions

The fixed points of a Möbius transformation z 7→ az+b
cz+d

are given by the zeroes of

the quadratic cz2 +(d−a)z−b. This may have two distinct roots or two coinciding.
In the latter case it is called parabolic, in the former we may distinguish between

1I emphasize that this reason should not be taken too literally
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elliptic and hyperbolic, although the general such transformation is neither, but
may be written as a product of an elliptic with a hyperbolic (see Ahlfors Complex
Analysis (page 86) or see exercise 47)

If we normalize the fixed points to 0 and ∞ then the Möbius transformation
is given by z 7→ λz where λ can be intrinsically characterized as the crossratio
(0,∞; z, Tz) or equivalently the quotient between its two eigenvalues. (Note how-
ever that λ is only determined up to λ, 1/λ see exercise 50)

An involution is a non-trivial transformation T such that T 2 is the identity (the
trivial transformation). This means that for each element p, p and Tp constitute a
pair which is interchanged. (p and Tp may of course coincide, we then say that T
is ramified at p) We have already encountered involutions in the context of double
coverings, and they will pop up in many other contexts in the future. It is now
natural to determine when a Möbius transformation is an involution. We have the
following proposition
Proposition: The following conditions are equivalent for Möbius trans
formations
a) T is an involution
b) T has trace zero
c) for any z not a fixed point the pair (z, Tz) is conjugate with respect to the two
fixed points
d) there is a point z such that Tz 6= z but T 2z = z
Proof: Let w = (az + b)/(cz + d) then czw + dw − az − b = 0 thus z and w play
symmetrical roles ( as they should do in the case of an involution) iff a = −d i.e.
Tr(T )=0. This shows a) ⇔ b). The transformation z 7→ λz is an involution iff
λ = −1 this shows a) ⇔ c) in fact the conclusion is valid if we only assume that
z = λ2z for a single z 6= 0, thus we can replace c) by d).

For an involution T we call the points z and Tz homologous and we observe
that an involution never can be parabolic (see exercise 51), and we see by c) that
homologous points are conjugate with respect to the fixed points of the involution.
And in fact conversely if z and Tz are conjugate with respect to the two fixed points
for some z, then T has to be an involution.

The above discussion has tacitly been performed over C as the terminology
Möbius transformation should strictly speaking refer to the elements of PGL(2,C).
For modifications over other fields see exercises 54 and 55.

Automorphisms of the line can also be viewed externally. More specifically let L
and M be two lines meeting in A, and let O be a point outside the lines. Then O
sets up a 1-1 correspondence between L and M in the usual way (a perspectivity),
i. e. l and m on L and M respectively are associated if l,m and O are collinear. Now
using any point P outside L and M and distinct from O, P defines an automorphism
on L (or analogous on M) by associating to each l on L the point l’ which is the
intersection of L with the line formed by P and m (where m on M is associated to
l via the above perspectivity). Such a transformation has two distinct fix points
given by A and B respectively where B is on L collinear with O and P. Conversely
we see that any automorphism with one or two fixpoints on L can be represented in
this way by choosing the line M and the points O and P judiciously. ( see exercise
56)
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Exercises

35. Using the triple transitivity show directly that PGL(2,F2) is isomorphic
with S3 and that PGL(2,F3) is isomorphic with S4. Furthermore show that
PGL(2,F4) is isomorphic with A5, and somewhat more surprising that PGL(2,F5)
is isomorphic with S5. (Hint: Consider pairs of complementray triplets among six
elements)

36. Find the stabilizers of the harmonic and anharmonic orbits respectively
37. For small fields there is not much elbow room. In the case of F2 there is only

one orbit, in fact one may not ever find four distinct points! Show the following for
finite fields
a) The harmonic orbit always exists except when char(F) = 2 and it contains three
distinct elements except when q = 3
b) the anharmonic orbit exists iff q ≡ 1 (mod 3) and it contains two distinct
elements
c) Write down the smallest prime p such that there are exactly one orbit of each
kind, including the generic orbit.

38. There is of course a slight gap in the reasoning that the  function indeed
separates orbits. A priori two small orbits maybe coalesced, prove that this indeed
does not happen without having to resort to an actual check by computing the
values of the  function.

39. What happens if we simply add all the elements of an orbit under S3, or
multiply them? Assuming of course that we avoid the ”bad” orbit (0, 1, and ∞)
More generally what are the symmetric functions of the orbits?

40. Show that the two points α and β are conjugate to each other with respect
to 0 and ∞ iff α = −β.

41. Given A and B and ∞ how do you construct the “midpoint” C of A and B?
(Hint: what is the relationship with harmonic conjugates? )

42. Given four points on a sphere making up a regular tetrahedron what is its
-invariant?

43. Show that the crossratio of four points is real iff the four points lie on a circle
or a straight line ( a circle through ∞) when projected onto the complex plane.

Furthermore if z and z∗ are two points such that (z0, z1, z2, z) = (z0, z1, z2, z∗)
they are said to be symmetric with respect to the circle (or straight line) C through
z0, z1 and z2. Show that in the case of a bona fide circle C, z∗ lies on the polar
of z, with C considered as a conic in RP2, and that the line joining z and z∗ is
perpendicular to the polar.

44. Refering to the construction of the harmonic conjugate, choose coordinates
such that L is given by X0 = 0, A by (0, 0, 1), B by (0, 1, 0) and C by (0, 1, 1) say
and let O be (1, 0, λ) and let M be the line given by µX0 + X1 − X2 construct the
point D and in particular show that it does not depend on the choices of λ and µ.
What happens to the above construction in PF2 ? Or more generally over a field
of characteristics two?

45. Show that any quadric Q(X,Y, Z) may be written uniquely in the form

XL(X,Y, Z) + q(Y,Z)

where L is a linear form and q a binary quadric. Furthermore X = 0 is a tangent
iff q is a square . Use this to show the normal form of the quadric stated in the
proof of the proposition.
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46. In the case of F2 a line has only three points, hence any line through P has
to be a tangent! This is in fact true for any field of characteristic two as can be
verified e. g. by checking that any line X − αY is tangent to XY + λZ2.

47. Show that any Möbius transformation T with fixed points a and b may be
written

w − a

w − b
= λ

z − a

z − b

with w = Tz. If λ is positive T is called hyperbolic and if |λ| = 1 T is called elliptic.
Show that any transformation T with fixed points a and b can be written uniquely
as a product of a hyperbolic and an elliptic with the same fixed points.

48. Is it true that any two Möbius transformations with the same fix points com-
mute? In fact determine the commutator to each Möbius transformation. (Hint:
next exercise)

49. Observe that a parabolic transformation is non- diagonalizable, while the
non-parabolic constitute the diagonalizable. How does hyperbolic and elliptic fit
into this point of view ?

50. Show that the function f(λ) = (λ2+1)
λ

is invariant under λ 7→ 1/λ and that
it separates its orbits. (cf the -function ). Furthermore show that for each diag-
onalizable Möbius transformation T, Tr(T )2/Nm(T ) is an invariant among those
with given fix points. How does this invariant relate to quotients of eigenvalues?

51. Show that if T is not the identity then T is parabolic iff Tr(T )2 = 4Nm(T ),
in particular show that an involution can never be parabolic. Furthermore show
that two distinct involutions never commute, or do they?. Finally show that any
two involutions are conjugate (in the group theoretical sense) (see however exercise
55)

52. Consider the notion of symmetric points as in exercise 43, show that the
map z 7→ z∗ is an involution. Is it a Möbius transformation? Is it an element of
PGL(3,R)?

53. Show that the involutions form a two-dimensional submanifold of the group
PGL(2,C), in fact we may identify it with CP2 \ (a conic). Show that there
is a natural unramified double covering of the involutions by associating to each
involution its two fixed points. Show that this covering is not trivial and try and
determine it!

54. If a field K is not algebraically closed, the two fixed points of a transforma-
tion may not be defined over K but only over a quadratic extension.
a) Show that the fixed point of a parabolic transformation is always defined over
K and hence that it is conjugate to a translation. (i. e. ∞ as the fixed point).
b) Show that any fixed point free involution of PGL(2,R) can be written in the
form z 7→ − 1

z

c) Show that any transformation is conjugate to a transformation of type z 7→ a+ b
z

and that such transformations are involutions iff a = 0 .
d) Show that any transformation is the product of two involutions. Is this repre-
sentation unique?

55. Show that over a field of characteristics two, parabolic transformations and
involutions coincide! In particular show that any involution has a fixed point. Is it
still true that any two involutions are conjugate?

56. Recalling the notation of the construction.
a) If O and P should switch positions, what happens to the automorphism? Same
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question for L and M?
b) How should O and P be situated to get a parabolic transformation?
c) Let C denote the intersection of the line OP with M. Is it true that the crossratios
(B,C;O,P) and (A,B;l,l’) are the same, or belong to the same orbit under the action
of S3? In particular if l and l’ are conjugate with respect to A and B ( the case of
an involution) is the same true for P and O with respect to B and C?
d) If L,M and O are fixed, show that different positions of P correspond to different
automorphisms of L. In fact show that they constitute a subgroup of (Möbius)
transformations and determine this subgroup.
e) Show that the locus of points P such that the corresponding transformation is
an involution forms a line. Determine that line!
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Non-singular Quadrics

Recall that a quadric C is given by the zeroes of a Quadratic form Q. This means
the set { (X,Y, Z) : Q(X,Y, Z) = 0} (Note that the fact that Q is homogenous (i.e.
all the monomials have the same degree (=2)) makes this a welldefined subset of
CP2) The zeroes may be non-existant, as in the case of

X2 + Y 2 + Z2

over the reals. Thus to get a faithful picture we need to consider zeroes not just over
the field the form happens to be defined over (the field generated by the coefficients)
but over the algebraic closure.

We have then the following very special case of Hilberts Nullstellensatz

Theorem. Let k = k̄ be an algebraically closed field (e.g.C), and let Q be a qua-
dratic form that vanishes on the zeroes of the quadratic form Q’, then Q and Q’
only differ by a scalar

Furthermore we say that C a conic is non-singular iff the corresponding Quadratic
form Q is associated to a non-degenerate symmetric bilinear form.

This does not work so well in characteristic 2 as the standard correspondence
between symmetric bilinear forms and quadratic forms completly breaks down (see
exercise 57)

We may however consider the alternate correspondence that to each quadratic
form Q associates the bilinear form given by

(*)

2
∑

i=0

∂Q

∂Xi

Yi

(Note: We have the Euler identity

2Q(X0, X1, X2) =

2
∑

i=0

∂Q

∂Xi

Xi

which is trivial to prove, thus this bilinear form (∗) is not exactly the standard
bilinear form associated to Q but differs from it by a factor 2.)

We see then in particular that if p = (X0, X1, X2) is a point on C the tangent to
C at p is given by (∗). Thus we may reformulate the notion of non-singularity to
say that C is non- singular iff it has a well-defined tangent at each of its points. (i.
e. the gradient of Q (∇Q) never vanishes on Q). We may also note that if char 6= 2
then by the Euleridentity any point where ∇Q = 0 must lie on C.(for peculiarities
in the case of char 2 see exercise 58)

If p is a singular point of a conic C, then any line L through p meets the conic C
”doubly” at that point. I. e. if we restrict Q to L we get a binary quadric which is a
”square” with its zero at p. Thus in particular if C has another point q, the Q must
vanish identically on the line < qp >. If this line is given by a linear form L1 we can
write Q = L1L2. Over an algebraically closed field every singular conic is the union
of two lines, if the field K is not, the lines may only be defined over some quadratic
extension of K (see exercise 59). Conversly if Q splits as the product of two linear
forms (in the algebraic closure if necessary) L1L2 then as ∇Q = L1∇L2 + L2∇L1

the gradient will vanish at the intersection of L1 and L2.( Which will be a point
defined over the original field see exercise 61)

We are now ready to determine the internal ”structure” of a non-singular conic
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Proposition. If C is a non-singular conic defined over some field K and with a
point p = (x0, x1, x2) likewise defined over K then the points of C can be paramet-
rised by three linearly independent binary quadrics

(p0(x, y), p1(x, y), p2(x, y))

defined over K. Conversely given three linearly independent binary quadrics (p0(x, y), p1(x, y), p2(x, y))
defined over K there is a quadratic form Q defined over K such that Q(p0, p1, p2) ≡
0

Proof. The first part is geometric. The lines through a point ( a pencil) are
parametrised by any line not going through the point as we have seen before. If
the point p happens to lie on our conic this sets up a 1-1 correspondence between
the pencil of lines through p and the points on the conic by associating to each
line (or its intersection with the parametrising line if you so prefer) the residual
intersection of the line with the conic. (Note that if p is defined over K then so is
the residual intersection, and it coincides with p iff in the case of the tangentline
at p). That the parametrizing binary forms are quadric follows in any number of
ways (see exercise 62 or the example below). The second part is pure linear algebra.
Consider the monomials pi(x, y)pj(x, y) 0 ≤ i ≤ j ≤ 2 they constitute six binary
quartic forms. However the vectorspace of binary quartics is spanned by the basis
x4, x3y, . . . y4 of five elements, hence there must be a linear relation

∑

i,j

Aijpipj = 0

which clearly defines the quadratic form Q.

(Note: one may use this later idea to give an ad hoc proof of the Nullstellensatz
for quadrics)

It may be instructive to see this in practice
Example: Consider the conic given by

(C) x2 + y2 = z2

and the point p = (0, 1, 1) on it. The pencil of lines through it is parametrised by
the line at infinity say. Thus any point (λ, µ, 0) defines the line

(l) s(0, 1, 1) − t(λ, µ, 0)

If we plug in (tλ, s − tµ, s) into (C) we obtain the binary quadric

(b) t(λ2t − 2sµ + tµ2)

Observe that t = 0 is always a root of (b) corresponding to the point (0, 1, 1) = p
(of course); while the residual intersection is given by t = 2sµ

λ2+µ2 or by exploiting

the convenience of homogenous coordinates (s, t) = (λ2 + µ2, 2µ) which when we
plug it into (l) yields the well-known parametrisation

(2λµ, λ2 − µ2, λ2 + µ2)
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This parametrisation maybe exploited in many ways.
One may consider it over R in which case we get a rational parametrisation of the

circle x2 + y2 = 1 given by x = 2t
1+t2

y = 1−t2

1+t2
which we can use to simplify an

indefinite integral
∫

R(x,
√

1 − x2)dx

by the substitution x = 2t
1+t2

yielding

2

∫

R(
2t

1 + t2
,
1 − t2

1 + t2
)

1 − t2

(1 + t2)2
dt

One may also note that the parametrisation is defined over Q thus it gives in fact
a complete solution to the diophantine equation

x2 + y2 = z2

yielding all Pythagorean triples by substituting integral values for the parameters
of (b).(Note that in the projective setting, as we have remarked before (ex.17), there
is no difference between integral solutions and rational solutions)

The discussion of the example above obviously applies to any quadratic. In
particular we see that the solution of a diophantine problem Q(x0, x1, x2) = 0 over
say Q reduces to finding just one solution defined over Q (A so called Q-rational
point). Sometimes a solution can be guessed (as in the example), or be (naturally)
given; but in general it is hard to find.

There are however a few methods to exclude rational solutions. As solutions can
be be assumed to be integral as well as the coefficients of the quadrics; we can,
as one says, reduce MOD p for various p. This means simply that we consider
”everything” modulo p. Let us consider the following simple example.

Example Consider the conic

3x2 − y2 − z2 = 0

assuming an integral solution (x, y, z) with no common factors we may consider the
residues x̄ ȳ z̄ of x, y, z mod 3 yielding

ȳ2 + z̄2 = 0

but this is clearly impossible unless ȳ = z̄ = 0 which would imply that x̄ = 0 as
well, which contradicts the assumption that x, y, z have no common factor.

One may fear that for a given equation one may have to run it through an infinite
number of test. But the following proposition shows that in fact one only needs to
check a finite number of primes

Proposition. . Any conic over a finite field Fq has a point /Fq (defined over Fq)

Proof. We will assume for simplicity that q is odd. Furthermore we may assume
that the point (0,0,1) does not lie on the conic (otherwise we would be done!) Then
by completing squares we may write the quadric as z2 − λx2 − µy2 and look at
points (1, y, z) (if necessary we may interchange x and y). Looking at the set of
values z2 and λ+µy2 for z and y ∈ Fq we see that they both contain q+1

2 elements

( in F∗
q exactly half of the elements are squares as the map x 7→ x2 has exactly two

elements in its fiber ) hence there must be a non-empty intersetion.

One ought to remark that this is a special case of Chevalleys theorem
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Theorem(Chevalley-Waring). Every homogenous form of degree n in m variables
has a non-trivial solution over a finite field if m > n

(For a proof see Serre Cours d’Arithmétique page 13)
For an elabouration of the proposition see exercise 65 and 66

In this context one should mention the so called Hasse principle ( a proof of
which can also be found in Serre’s book, on page 73ff)

Theorem(Hasse). If a quadratic form has solutions over each p-adic field Qp and
over R then it has a solution over Q

Remark The conditions are obviously necessary, the remarkable thing is that
they are sufficient. (This fails for higher degrees). One may also remark that R is
in a natural way the same as Q∞ (There are many excellent references for p-adic
numbers, one is the book by Serre cited above). Finally although there is a priori
an infinite number of tests we have to apply, all but a finite number of them are
automatically satisfied.(see exercise 67)

We are now ready to look at the classification of conics over some suitable fields
C the Complex numbers. In this case the quadratic forms ( and the conics ) split

into three cases depending on their rank
rank 3 (the non-singular case)

x2 + y2 + z2 = 0

rank 2 (the ”generic” singular case)

x2 + y2 = 0

rank 1 (the ”super”singular case)

x2 = 0

(This all follows from completing squares)
R the Real numbers). In this case we need to know the signature (the # of

positive squares - # of negative squares) in addition to the rank (Sylvesters law of
inertia) for the case of quadratic forms, and the signature up to sign in the case of
conics

rank 3 |sign| = 3 (the invisible case)

x2 + y2 + z2 = 0

rank 3 |sign| = 1 (the visible case)

x2 + y2 − z2 = 0

rank 2 |sign| = 2 (the ”point”-case)

x2 + y2 = 0

rank 2 |sign| = 0 (the ”line”case)

x2 − y2 = 0
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rank 1 |sign| = 1 (the double line case)

x2 = 0

and finally
Fq (the finite field case). In this case the quadrics depend on rank and discriminant
( an element of F∗

q/F
∗2
q - the Legendre symbol), while in the non- singular case, the

classification of conics do not depend on the latter
rank 3 (the non-singular case)

xy + z2 = 0

rank 2 (the ”line”case)

x2 − y2 = 0

rank 2
(

λ
p

)

= −1(the ”point”case)

x2 − λy2 = 0

rank 1 (the double line case)

x2 = 0

(As this is less standard we might supply an argument. As every conic over a finite
field Fq has a point it has two (in fact many = q + 1) we may then design two of
its tangents with x and y and the line joining them by z. The equation has now
been normalized to xy + λz2, where λ is the discrimiant. The coordinate change
x′ = λx, y′ = y and z′ = λz changes the form by a scalar multiple λ which does
not change the conic)

Involutions and Non-singular Conics

As we have seen that conics are parametrisable by projective lines, the Möbius
transformations may have some nice representations on them. One example is given
by the projection from points outside the conic. In fact

Proposition(Fregier). Given a point P outside a conic C, then for every point O
on C the residual intersection O’ of C with OP defines an involution on C. And
conversely every involution occurs in this way

proof. That P does define an involution is clear. (The only mote point is to show
that this involution is indeed a Möbius transformtaion). Conversely given two
homologous points of some involution I on C, they define two lines meeting in a
point P. The involution defined by P coincide with I on four points, hence it has to
be identical with I.

We call the point P the Fregier point of the involution. (Note that this explains
exercise 53)

The two fix points of an involution now have a nice geometric interpretation.
They simply correspond to the two tangency points of the two tangents to C through
its Fregier point P

We can then state the following corollary



27

corollary. The two points of intersection of a conic with a line through a point P
are conjugate with respect to the two tangency points of the two tangents to C from
P

All of this has to be suitably modified in the case of char 2. (see exercise 71)
Given two involutions S and T then they have exactly one homologous pair in

common. This common pair is nothing but the two fix points of their product.(see
exercise 72). Geometrically we get it by intersecting C with the line joining the
corresponding Fregier points. This also gives a geometric way of factoring an ar-
bitrary Möbius transformation into a product of two involutions, In fact a Möbius
transformation A is determined by its two fixed points and a pair (z,Az). The fix
points may or may not be defined over the field, but the line F joining them is.
Now we may choose any point S on F as the Fregier point of one of the factors, the
other factor T is constructed accordingly: Join S with z, and let z′ be the residual
intersection. Now form the line z′Az and let T be its intersection with F.
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Exercises

57 Show that for a field K2with char(K)=2 we have for each symmetric bilinear
form A that

A(x, x) = L2(x) where L is a linear form

and conversely that

B(x, y) = Q(x + y) − Q(x) − Q(y)

is symmetric for any quadratic form Q and any x, y. But for any Q of form A(x, x)
we have that B = 0 and for any A of form B(x, y) we have that L = 0

58 Let Q be a quadratic form over a field K with char(K)=2
a) Show that there is a point x ∈ KP2 such that ∇Q(x) = 0.(Hint: In char=2, a
symmetric form is always skewsymmetric! and the latter have always even rank)
b) Show that if C is non-singular there is a unique such point x and that x lies on
any tangent to C!

59 Assume that (0, 0, 1) is a singular point of the quadric Q show that

Q(ta, tb, s) = t2q(a, b)

for some binary quadric q and conclude that Q splits into two linear forms iff q does
i. e. q has a zero in the field

60 Show the following Taylor formula for a quadratic form Q

Q(x + hx′) = Q(x) + 2hA(x, x′) + h2 . . .

Where A is the associated symmetric bilinear form. What happens in char 2?
61 If Q is defined over a field K and splits as L1L2 then show that if the

coefficients of Li are not in K then they belong to a quadratic extension K̂ of K
and the forms are conjugate (under the action of the Galoisgroup Gal(K̂:K) (=Z2))
and in particular that the intersection of L1 and L2 is defined over K.

62 If the conic C is parametrised by

(*) (p0(x, y), p1(x, y), p2(x, y))

and L is the line A0X0 + A1X1 + A2X2 show that the intersection of L with C is
given by (∗) for the values of (x, y) given by the zeroes of

A0p0(x, y) + A1p1(x, y) + A2p2(x, y)

in particular deduce that
a) The pi’s are of degree two
If X2 = 0 is the line at infinity then
b) C is a parabola iff p2 is a square
c) C is a hyperbola iff p2 splits into linear factors
d) C is a circle iff p2 is proportional to x2 + y2

2We actually need to assume that any element of the field is a square to show the first case. This

will be automatic in the case of an algebraically closed field, or for a finite field of characteristic 2
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63 In the proof of the parametrisation of non-singular conics we tacitly assumed
(as we indeed could) that the conic did not contain a line as a component. What
would have happened it it had? And we had projected from a non-singular (singu-
lar) point. Furthermore if the binary quadrics are linearly dependent what can we
say about the quadric that we construct?

64 In the inhomogenous case there is of course a big difference between integral
solutions and merely rational. Compare the integral solutions with the rational
solutions in the case of
a) x2 + y2 = 1
b) x2 − y2 = 1

65 Assume that we have found a nontrivial solution (x0, x1, x2) such that

Q(x0, x1, x2) ≡ 0 mod pn

(i. e. a solution in the ring Zpn NOT in the field Fq) for a non-singular quadric.
Show that by a suitable modification (x0, x1, x2) + pn(x′

0, x
′
1, x

′
2) we may write

Q(x̌0, x̌1, x̌2) ≡ 0 mod pn+1. (Hint:see exercise 60 and use the fact that A(x, ∗) is
a non-degenerate linear form). Note this is a special case of Hensels lemma

66 Show that the quadric x2 + y2 + z2 = 0 has solutions over all p-adic fields
Qp for p odd, what about Q2? Try and find a quadric ax2 + by2 + cz2 = 0 with
a, b and c positive integers which has solutions for all p-adic fields Qp

67 Show that if p is an odd prime and p does not divide any of the coefficients
of Q then Q(x0, x1, x2) = 0 has a solution in Qp. Give a counterexample for p = 2

68 The quadric 5x2 + 3y2 − 2z2 = 0 satisfies the Hasse principle, Try and find a
rational solution!

69 Recall the notion of height in exercise 17.
a) Defining the height of a parametrisation in an obvious way (the maximum height
of any coefficient, assuming that they do not contain a common factor) give an upper
bound on the height of a parametrisation in terms of the height of the conic and
that of the point of projection on it.
b) Given a parametrization of a conic give an upper bound on the number of rational
points with bounded height in terms of the height of the parametrization.
c) For a given conic with rational points, consider the minimal height of any of its
points. Obviously arbitrarily complicated conics may have points with very small
height. But is the reverse true, does the height of a conic in an effective way
bound the minimal height of a rational point? In other words in order to look for a
rational point by trial and error we do have a finite search. (Note for a given height
there is only a finite number of conics, the minimal heights of their rational points
must then have a maximum; effectivness means that we can a priori compute this,
not just a posteriori)

70 Show that the Fregier point is outside a conic iff it has two real fix points
and inside iff the fix points are not real (then necessarily complex conjugate)

71 Show that in case of char 2, any point outside the conic and the ”singular”
point through which all tangents pass, still defines an involution. This involution
has, as we know and expect, just one fix point. Conclude also that each point,
except one, lies on exactly one tangent

72 Show that if S and T are two involutions then the following are equivalent
a) z is a fix point of ST
b) Sz = Tz
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73 Give an algebraic factorization of a Möbius transformation into two involu-
tions (Hint: see exercise 54)

74 Show that two involutions may commute even if they have different fix points.
(Note that the fix points determine the involution) (cf.exercise 51)

75 Let C be the conic xy − z2 = 0 parametrised by (s2, t2, st)
a) Determine the involution I ( in terms of s, t ) defined by the Fregier point (0, 0, 1)
and find its two fix points
b) Determine in the same way the involution S defined by the Fregier point (1, 1, 0)
c) Factor I into two involutions by choosing one to be S and find the other one T
(cf.the previous exercise)

76 Let C be a conic and P a point outside. Show that the locus of the points Q
such that the involution of Q commutes with that of P forms the polar of P with
respect to Q
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Ellipses, Hyperbolas, Parabolas

and circular points at ∞

As we have seen (over C) all non-singular conics look the same in the projective
setting. In order to get the finer classical classification of the ancients, we need to
provide the projective plane with somewhat more structure.

The first thing to do is to single out one particular line L∞ and honor it with
the distinction of being the line at infinity. P2 \ L∞ is affine space, described by
affine coordiantes.(Dehomogenizing homogenous coordinates by L∞. We can now
distinguish between parabolas and other conics, as the former are those tangent to
the line at infinity. In the complex setting we still cannot see the difference between
an ellipse and a hyperbola, although in the real setting ( when the line L∞ should
be real) the latter can be distinguished by whether they meet or not meet the line
at infinity. One should also note that the two asymptotes of a (real) hyperbola are
the two tangents at its intersection with the line at infinity

Still we cannot single out circles among ellipses. To get a clue we consider the
equation of a circle

(x − a)2 + (y − b)2 = R2

as we are used to from childhood. Letting z = 0 be the line at infinity and homog-
enize

(x − az)2 + (y − bz)2 = R2z2

and then putting z = 0 (i.e. intersecting at the line at infinity) we get

x2 + y2 = 0

the solution of which (1,±i, 0) is independent of the particular circle. We see that a
circle can be characterized by being a conic passing through two particular points.
The circular points at infinity . Conversely we can postulate two points (which
we will single out as the circular points,(conjugate over the reals to make it more
interesting and relevant) and define the line at infinity to be the line through the
two points and a circle to be a conic through the circular points. In this way we can
define, on the sly, the metric notions without having to resort to some cumbersome
apparatus.

The first notion we can define is orthogonality

Definition(Perpendicularity). Two lines L and M are said to be perpendicular
iff their intersections with the line at infinity are conjugate with respect to the two
circular points

We may define the foci of a (real) conic as follows

Definition(Foci). . The two foci of a conic are constructed as follows: From each
of the two circular points we draw the two tangents to the conic. Those tangents
are pairwise complex conjugate and hence they intersect in four points two of which
are real (the two foci) and two of which are complex conjugate

The line joining the two foci will be called the major axis, while the line joining
the two conjugate points will be called the minor axis. Note that in the case of a
circle, the four tangents coalesce to two, one at each point, and their intersection
will be the center of the cirle.(The coincidence of the two foci) In the case of a
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parabola one of the foci has coalesced with the tangency point, the major axis
is clearly the line joining the remaining focus and the intersection at infinity, the
minor axis may be, if one so wishes, the line at infinity

There is clearly no absolute scale, we would need to specify a unit circle to
calibrate distances; but we may of course define angles between two lines L and M
(note the order) by specifying the crossratio of their intersection with respect to
the circular points( note that we need to order those as well).(see exercise 83)

The Space of Conics

A general conic can be written in the form

A0,0X0,0 + A1,1X1,1 + A2,2X2,2 + A0,1X0,1 + A0,2X0,2 + A1,2X1,2 = 0

Thus it is determined by the sixtuple (A0,0, A0,1, A0,2, A1,1, A1,2, A2,2) (which is
determined up to a scalar multiple). Thus the space of conics form in a natural
way a projective space P5. (One may compare this to the dual projective plane,
where each point corresponds to a line, here each point corresponds to a conic)

A more ”functorial way” would be to do the following; To each (3-dimensional)
vector space V we can associate S2V the vectorspace of symmetric bilinear forms
on V. The space of conics associated to P(V ) is then simply P(S2V ). Choosing a
basis for V means that S2V consists of all symmetric (3x3) matrices.Note that in
char 2, we have to be a bit more careful.

That the dimension of the space of conics is five we can use to prove the following
handy fact

Proposition. Through any five points there is a conic passing through them

Proof. We need only to solve five linear equations

∑

ij

Aijx
(ν)
i x

(ν)
j = 0

with ν ranging from 1 . . . 5 corresponding to the five points

(x
(ν)
0 , x

(ν0
1 , x

(ν)
2 )

. Note sometimes we may have more than one solution if the linear equations
happen to be dependent (see exercise 88)

In the following we will assume tacitly that we are working over an algebraically
closed field (e.g. C the field par excellence although much of this goes over for any
field, the discrepancies will be discuseed at the end and in the exercises)

The singular conics form a hypersurface, in fact they are characterized by the
determinantal condition

det

∣

∣

∣

∣

∣

∣

2A0,0 A0,1 A0,2

A0,1 2A1,1 A1,2

A0,2 A1,2 2A2,2

∣

∣

∣

∣

∣

∣

= 0

thus they define a cubic hypersurface.
(This can also be seen geometrically)
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And the double lines (”supersingular” conics) are characterized by matrices hav-
ing rank 1, hence they are given by the vanishing of the six 2x2 minors.(In the
symmetric case we can obviously throw out 3 of the nine minors as redundancies)

4A1,1A2,2 − A2
1,2, 2A0,1A2,2 − A0,2A1,2...

all of which we do not bother to write down. (see exercise 90)
The dimension (4) and the degree (3) of the determinental hypersurface is easy

to determine. The corresponding questions for the locus of ”super-singular” conics
is tougher, but can be answered in an elementary but ad hoc way in our case

We have not yet defined the notion of dimension in a strict formal way ( and
may very well never come around to doing it) but the intuitive notion should be
clear. Dimension is simply the number of ”independent” parameters to describe
an object. Clearly Pn has dimension n in particular P5 has dimension 5. To
give one ”condition” (i.e. an equation) means to cut down the dimension by one.
Naively we are ”solving” one parameter in terms of the other. More precisely given
a polynomial equation F (z1, z2 . . . zn+1) = 0 we write it as a polynomial in say zn+1

with ”variable” coefficients

f0(z1, . . . zn)zk
n+1 + f1(z1, . . . zn)zk−1

n+1 . . . fk(z1, . . . zn) = 0

the solution (which we can of course not write down explicitly for high k) will
then depend (”independently”) on the remaining variables. Not also that it is very
important that we work over an algebraically closed field (C as the examples of
sums of squares illustrates over R. The discriminating Calculus student recognises
this of course as a special case of the implicit function theorem. This theorem
informs us that in a small neighbourhood of a non-singular point the zeroes of a
hypersurface are given as the graph of a function. (We need to choose the dependent
parameter zn+1 with care in fact we need ∂f/∂zn+1). In particular it informs us
that the zeroset forms a (complex) manifold at the non-singular points.

Now this discussion is not confined to just the case of one equation, but works
with any number of equations, but for simplicity we will concentrate on the easiest
case.
Thus we have defined dimension ”locally” and with transcendental methods, as the
diemnsion of the small neighbourhoods of a manifold. Such an approach is of course
stillborn when it comes to finite fields, and hence algebraically one needs a more
global ( and necessarily less intuitive ) definition, to which we may retrun later.

In the digression above we touched upon the notion of ”non-singularity which
boiled down to beaing able to choose a good direction. In other words that (in
the case of hypersurfaces) the gradient does not vanish. This is a purely algebraic
concept, which we have already encountered in our discussion of conics. We say . . .

Definition (of non-singularity). A point p on a hypersurface F = 0 is said to be
non-singular iff ∇F|p 6= 0

To emphasize the algebraic and above all geometric aspect of non-singularity we
prove the following proposition

Proposition. Let p be a point on a hypersurface F = 0 and let L (λp + µq for
some q 6= p) be a line through p. The restriction F|L of F to L will be a binary form
that vanishes at p (λ = 0). We say that q lies on the tangentplane Π or that L is a
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tangent to F = 0 at p iff F|L has a double zero at p (divisible by λ2). Furthermore
we say that p is a singular point of F = 0 if F|L has a double zero at p regardless
of L i.e. that the tangentplane ”degenerates” to filling up the whole space.
The tangentplane of F = 0 at p is given by the linear form (∇F|p and p is non-
singular iff this linear form does not ”degenerate” (i.e. the gradient of F does not
vanish at p)

Proof. This all follows from the Taylor formula

F (λx0 + µy0, . . . , λxn + µyn) = µnF (y0, . . . yn) + µn−1λ
n

∑

i=0

∂F

∂xi

yi + . . .

which the reader should have little trouble establishing

(Note: We may talk about the multiplicity of a singularity as the minimum
multiplicity of a line at the point, see exercise 93). We may also talk about the
multiplicity of a line L at a point p, or its order of tangency, as the multiplicity
of the zero at p. Thus at a non-singular point p the lines tangent at p trace out a
hyperplane, the tangentplane, while at a singular point p we may talk about the
tangent cone, as the totaility of lines with higher order contact than the multiplicity
of p ,see also exercise 93)

We are now ready to look at our stratification of P5 (the space of conics) in
more detail. First we may determine the singular locus of the determinental cubic
hypersurface of singular conics. We have the following little lemma

Lemma. . Let |(Xij)| be the determinant of a square matrix whose entries should
be thought of as independent variables, then its gradient is given by the correspond-
ing (ij) minors Mij

in particular

Corollary. In the space Pn2−1 of nxn matrices, the singular ones form a hyper-
surface of degree n and its singular locus consists of matrices of rank at most n− 2

Proof. We need only observe that if we collect all monomials in the determinental
expression containing a certain Xij it can be written as XijMij (with the appro-
priate sign on Mij .

(For a slight modification for symmetric matrices that we actually need, see
exercise 95)

We can now state in fact

Proposition. . The singular locus of the hypersurface of singular conics consists
of ”supersingular” conics

A geometric interpretation of this will follow in the next section
As we discussed above, the notion of dimension is an intuitive one, made some-

what more precise by the notion of locally solving for the appropriate number of
parameters. This can however be made global (!) in our case. We can parametrise
the determinental hypersurface by the product P2 × P2 as follows
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For each pair of points (x0, x1, x2) and (y0, y1, y2) in the dual projective space, we
associate the product

(x0y0, x1y1, x2y2, x0y1 + x1y0, x0y2 + x2y2, x1y2 + x2y1)

of linear forms considered as a quadratic form.
It is now easy to see that this gives a surjection onto the determinental hypersurface.
(D) (Over C any singular quadric splits into two linear forms) and that it is 2:1
except on the diagonal where it is 1:1. Furthermore the singular locus (S) is exactly
the image of the diagonal (a ”supersingular” conic is the product of two identical
linear forms)

Thus we have another verification that our hypersurface of singular conics is
in fact 4-dimensional (it depends (globally even) on four independent parameters,
pairs of lines in P2) But also the much less obvious fact that the singular locus is
2-dimensional. (It is parametrised by lines)

A finer invariant of a ”variety” (i.e. anything defined by equations) than its
dimension is given by its degree. The degree of a hypersurface is simply given by
the degree of the equation. This definition does not work for the subtler cases of
many equations, thus we need a geometrical reformulation of degree, which is given
below

Lemma. A hypersurface F = 0 is of degree n iff each line intersects it in n points
counting multiplicities

This maybe too obvious to merit a formal argument, simply restrict the equation
to a line. (Note that this show how crucial it is to work over C when the number
of zeroes actually determines the degree of the polynomial (and their positions
incidentally the polynomial itself). This leads to the following definition.

Definition(of degree). Let V be a variety (i.e. defined by equations in some
projective space). Then the degree of V is given by the number of intersections with
a linear variety (i.e. defined by linear equations) of complementary dimension

Comment: If V is living in Pn and of dimension d then the complementary
dimension is n−d. This definition has two weaknesses. First it may not be so easy
to count points because points maybe multiple. In the hypersurface case this is not
so hard as the points are coded by the restriction of the hypersurface (i.e. by a
binary form) and their multiplicities may be read off from the polynomial. Second
it is not so clear that this number actually is independent of the position of the
linear space. Those difficulties we will postpone and use this definition provisonally
for the moment.

Returning to the parametrization of the singular locus S we see that it is given
explicitly by

(x0, x1, x2) 7→ (x2
0, x

2
1, x

2
2, 2x0x1, 2x0x2, 2x1x2)

in particular we see that the six components are given by a basis of monomials for
the quadratic forms in three variables (cf exercise 102 and 62). If we now take a
hyperplane

∑

ij

CijAij = 0
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its intersection with S will be on one hand a curve in P5 on the other hand it will
correspond to points (x0, x1, x2) in p2 such that

C00x
2
0 + C11x

2
1 + C22x

2
2 + 2(C01x0x1 + C02x0x2 + C12x1x2) = 0

that is points on a quadric. (Note: Each hyperplane of P5 reconstructs our conic
by its intersection with S). Now if we take two hyperplane, they will intersect in
a linear space of complementary dimension (unless they are dependent of course)
and the intersection with S will correspond to the intersection of two conics in P2.
We now need the following lemma

Lemma. Two conics intersect in four points (counted with the appropriate multi-
plicities)

Proof. Let C be one conic parametrised by binary quadrics

(p0(x, y), p1(x, y), p2(x, y))

plugging in the parametrization into the quadratic equation of the other conic C’
we get a binary quartic whose four roots correspond to the intersection points.

Note:If C is singular, the lemma is even easier, as C splits up into two lines.
One should observe that this is a very special case of Bezouts theorem that gives
the number of intersection points for any two curves in the plane. The ad hoc proof
given here does not work so well in general as it is hard to parametrise a curve

From the above lemma we conclude that the degree of S is indeed four. (Some-
thing that would have been hard to see just from the equations).

In the real case (or in the finite case for that matter) one observes that the
smooth points of the determinantal hypersurface D splits up into two components
corresponding to those singular quadrics that split over the field and those who split
over a quadratic extension. This splitting into components is not ”algebraic” in the
sense that it does in no way correspond to a splitting of the determinental equation
into two factors (see exercise 103). Furthermore in the real case the non-singular
conics come in two types, and the determinental hypersurface actually separates
them (see exercise 104)
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Exercises

77 A circle has two given points on it ( the circular points ). Show that two
points on the circle are conjugate with respect to the two circular points ( after all
the circle is a P1) iff the line joing them goes through the center. (A diameter-
such points are of course refered to as anti-podal)

78 Show that the diameter of a circle is always perpendicular to a tangent at
any of its two intersection points with the circle

79 Show that the polar of a point p with respect to a circle is always perpendic-
ular to the diameter through p

80 Show that the center of a circle is always inside (see Duality and Conics)
81 If p and q are two antipodal points on a circle and r a third point, show that

the two lines pr and qr are perpendicular
82 Show that the two axi of an ellipse (or a hyperbola) are perpendicular
83 Show that the cross ratio between the circular points (1,±i) at infinity and

the pair (cos t, sin t) and (cosu, sin u) only depends on (u − t) hence justifying the
definition of angle. Also give the expression for the crossratio in terms of tan(u −
t)(Note it is only in the perpendicular case we need not to specify orderings)

84 Consider the two points (cos t, sin t) and (cosu, sin u) on a circle, compute
the crossratio with respect to the two circular points using some identification of
the circle with P1. Does it change? Does it only depend on (u- t)?

85 Using exercise 83 define the notion of a bisector and use this to prove the
following optical property of conics
Any ray emenating from one focus of a conic is reflected to the other focus. In
particular the rays parallell to the major axis of a parabola all are reflected through
its focus

86 The polar to a focus of a conic is called the directrix of the focus. Find the
equation of the directrix of the focus in the left halfplane of the ellipse

x2

a2
+

y2

b2
= 1where a ≥ b ≥ 0

and for a point on the ellipse compare the distance to the focus and its directrix
87 Show that the space of all binary quadrics form a P2. Furthermore show that

the discriminant hypersurface of singular quadrics is now given by a conic. If we
identify the conic with P1 show that there is a natural 1:1 correspondence between
pairs of points on the conic and lines in P2, or using the conic again, between points
of P2 and binary forms ( pairs of points ) on the conic. In particular show how we
can identify the conic with the double points on the conic. This is nothing but an
orgy in tautologies that however maybe amusing and even instructive

88 Show that if at least four points of the five lie on a line there is an infinitude
of conics passing through the five points. (All incidentally singular) On the other
hand if at most three points lie on a line there is a unique conic through the five
points

89 Show that through any three points there is a circle passing through. Defining
and using the notion of ”midpoint” normal to two points, construct the center of
the circle

90 Show that the six quadratic forms that consititute the different 2x2 minors of
a 3x3 symmetric matrix are linearly independent. However what can be said about
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their gradients as linear forms (in six homogenous ) variables for fixed values (i.e.
fixed conics).(Does this depend on whether the conic is singular or ”supersingular”?)

91 Is it possible to find 4x2 matrix of linear forms such that its six 2x2 minors
are identical with those for a symmetric 3x3 matrix?

92 Prove the Euler identity

nF =
∑

i

∂F/∂xi

for a homogenous form of degree n. In particular show that if the gradient vanishes
at a point p then p necessarily lies on the hypersurface F = 0 except in finite
characteristics when we have to exclude a few primes p, depending on n (Hint:
prove the formula for monomials)

93 Let F(x,y,z) be a homogenous form of degree n in three variables; show that
we can write F as follows

f0(x, y)zn + f1(x, y)zn−1 + . . . fn(x, y)

where fk(x, y) is a binary form of degree k
In other words we have written the dehomogenous form F(x,y,1) as a sum of ho-
mogenous forms
a) Show that the point (0, 0, 1) satisfies F = 0 iff f0 = 0
b) Assuming a) show that (0, 0, 1) is a singular point of F = 0 iff f1 = 0
c) Show that the point (0, 0, 1) is a point of multiplicity ≥ m iff fk = 0 for k ≤ m
d) write down the equation of the tangent cone for a point of multiplicity m

94 Given a homogenous form F (x, y, z, w) of degree n in four variables and
assume that p = (0, 0, 0, 1) is a point on the corresponding hypersurface such that
z = 0 is a tangentplane. Show that F can be written on the form

zwn−1 + f2(x, y, z)wn−2 + . . .

Conclude that p is a singular point on the intersection of F = 0 with its tangentplane
at p

95 Compute the gradient of the determinant of a symmetric matrix (Hint: the
chainrule)

96 For each (n-1)x(n-1) minor of a nxn matrix (Xij) compute its gradient. For
a fixed ( but arbitrary ) matrix those can be considered as linear forms on an
appropriate projective space. Compute its rank (i.e. number of linearly independent
forms) and observe under what circumstances it will drop.
You may profitably restrict this analysis to n=4 (or even to n=3)

97 The quadratic form

3x2 + 5xy − 7xz + 2y2 − 5yz + 2z2

is singular, write it as a factor of two linear forms
98 Given a singular quadratic form over R how can you determine whether it

splits into two linear forms each defined over R or merely splits into two complex
conjugate forms?

99 The quadratic form

x2 − xy + 3xz + y2 + yz + z2
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splits over F5 find the corresponding linear forms (over F25 if necessary)(Does it
split over any other prime?)

100 Given a singular quadratic form over Fq how can you determine whether it
splits over Fq or merely over a quadratic extension Fq2?

101 Is it possible to find a quadratic form that splits into two linear forms only
for the primes 3 and 5 say? if so give an explicit example of such a form!

102 Show that a basis for the binary quadrics gives a map of P1 into P2 ( cf
exercises 87 and 62)

103 If a cubic equation splits into factors, one factor needs to be linear. Give
an example of six singular (non- splittable over R) conics that do not lie on a
hyperplane; and similarly for six singular splittable conics

104 Show that only one component of D is parametrised by RP2xRP2. Show
that this component meets every hyperplane, while the other component may miss
real hyperplanes.Where in this picture does the invisible conics fit?

105 Compute the number of non-singular conics over a field Fq.(Hint: Compute
the number of points on P5 and subtract the number of points on D which can be
computed on each component separately)
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Pencils of Conics

Definition. By a pencil of conics is meant a line in the space P(S2(C3)) of conics

Thus a pencil of conics are given by the conics

λQ0(X,Y, Z) + µQ1(X,Y, Z)

We note that the (four, according to the lemma of the previous chapter) intersec-
tion points of the conics Q0 and Q1 are common to all the conics in the pencil.
Conversely any point lying on all conics must be an intersection point of any two
distinct members of the pencil. Those points are called the base points of the pencil.
Conversely

Lemma. Any four points determine a pencil of conics

In fact four points impose four linear conditions and hence determine a line in
the five-dimensional space of conics.

Given a pencil of conics, then to every point outside the base points, there is a
unique conic of the pencil passing through the point. Thus the entire projective
plane is sweeped out by the elements of the pencil. Thus except for the base points,
one may think of the elements of a pencil as level curves of a function. (A rational
function given by the quotient of two quadratic polynomials) In the real case this
can sometimes be the exact case. See below. The generic pencil has four distinct
base points. Let us denote them by p0 p1 p2 and p3. To those four points there
are three singular members associated, namely to each partition of the four base
points into two disjoint pairs. Those three singular members corresponds to the
intersection of the line with the discriminental hypersurface, which we have seen is
in fact of degree three.

Given a conic C in a generic pencil we have two sets of four points on P1. Namely
on one hand we have C (isomorphic to P1) together with the four base points of the
pencil, on the other hand we have the pencil itself with the three singular members
and C (now considered as a point on the parameterspace (P1) ). It is now a natural
question whether those four points determine the same -invariant. In fact this is
so and we can explicitly determine a map from the conic C to the parameter space
P1 which carries one set of four points onto the other.

Construction. . For each point P on the conic C we associate the conic ϕ(P) of
the pencil which is tangent to the line Pp0 at p0. In this way the three base points
p1 p2 and p3 correspond to the three singular members, while ϕ(p0) corresponds to
C.(see exercise 108)

The association of three points (the singular members, or if you prefer the singu-
lar points of the singular members as points in the plane) to any four points is yet
another instance of the remarkable surjection between S4 and S3. In fact any per-
mutation of the four points induces a permtation of the three points. Algebraically
this is related to the fact that a fourth degree equation can be reduced to a cubic
equation. (This can also be illustrated geometrically,see exercise 109)

Now two conics may intersect not transversally but be tangent, this means that
they have three base points of which one is counted with multiplicity two. Through
three points we may only draw two singular conics, thus the pencil intersetcs the
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discriminant hypersurface in only two points, one which has to be counted with
multiplicity two, geometrically corresponding to a point of tangency. If the three
points are given by 2p0 p1 p2 and the two singular members by (p0p1)(p0p2) and
(p1p2)T0 (where T0 is the common tangent to all the conics in the pencil) one of
those has to correspond to the double zero. Which one can be seen by a simple
geometrical argument, which is actually more visual than rigorous as we have not
introduced any metric, if we let p0 split up into two very close points p′0 p0 then
we will have three singular members, two of which are very close, and which “in
the limit” converge to (p0p1)(p0p2).(see exercise 111)

A further degeneration occurs if the two conics in the pencil are flexed. Then
we have only two intersection points 3p0 and p1 and only one singular member
T0p1 (with T0 the common tangent at p0 of the conics in the pencil). This singular
member is of course a triple root of the discriminant cubic; and geometrically the
pencil is “flexed” to the discriminant hypersurface.(see exercise 113 and 114)

Now two conics maybe bitangent. That means that they intersect in the points
2p0 2p1. We have now two singular fibers 2(p0p1) which is a double line and T0T1

where Ti is the common tangent at pi of the conics in the pencil. Now geometrically
the pencil intersects the singular locus of the discriminant hypersurface, the double
root now corresponds to the double line.

Finally two conics maybe what one calls “hyperflexed”, they then intersect in a
single point 4p0 and there is only one singular fiber 2T0 which occurs with multi-
plicity three in the discriminant. Geometrically the pencil is tangent to the singular
locus. (see exercise 115)

We have now presented the classification (over C) of all pencils of conics with
the generic member smooth. There are five cases, all classified by the intersection
behaviour with the discriminant hypersurface, or by the multiplicities of their base
points. We note that any two pencils of the same type are projectively equivalent.
(see exercise 116)

describtion basepoints discriminant normal forms

I generic (1, 1, 1, 1) (1, 1, 1) < x2 − y2, xy − z2 >
II tangent (2, 1, 1) (2, 1) < x2 − z2, xy − z2 >
III flexed (3, 1) (3) < x(z + y) − z2, xy − z2 >
IV bitangent (2, 2) (2∗, 1) < xy + z2, xy − z2 >
V hyperflexed (4) (3∗) < x(x + y) − z2, xy − z2 >

To this list we ought to add those pencils which only contain singular members
(see exercise 117)

Over the reals the cases I,II . . . V splits into several subcases. let us consider
those one by one

I)

We have three subcases

a) All four base points are real

This gives a faithful picture of the complex case. All the singular fibers are
defined over the reals, as well as their components. They are so to speak visible.

b) Two base points are real the other two complex conjugate
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Two of the singular fibers are complex conjugate, the remaining is real and
visible. Of the three associated points one is real the other two complex conjuagete

c) No base points are real, they come in two complex conjugate pairs. All of the
three singular fibers are real, but only one is visible, in the case of the other two
only the singular points are real

II

We have two subcases

a) All base points are real

The two singular fibers are both real and visible as well

b) The tangency point is real, the other two points are complex conjugate

The two singular fibers are both real, the simple fiber is visible while the double
is invisible. (All what we can see is the tangency point)

III

Everything is real. The base points and the one singular fiber, which of course
is visible

IV

We have two subcases

a) All base points are real

Everything is real, the singular fibers are real and visible

b) The two base points are complex conjugate

The two singular fibers are real, but only one - the double line, is visible

We will now comment on case Ic) then the conics of the pencil corresponds to the
levelcurves of a welldefined real rational function on RP2 taking values in RP1. The
two invisible singular fibers will disconnect the circle (RP1) into two components,
the one component containing the visible singular fiber will be singled out. This
component corresponds to the visible conics of the pencil, or alternatively to the
values of the rationalfunction (given as the quotient of two conics of the pencil).
Thus one singular point of an invisible singular fiber corresponds to the “minimum”
value and the other to the “maximum” value. The visible singular fiber corresponds
to a “critical” value. (for further comments see exercises 118-126)

Given a line L that does not pass through any base points, the intersections of
the members of a pencil form a pencil of binary quadrics on L. Such a pencil will in
general have two singular members (double points)(the discriminant hypersurface
is in this case a conic in P2) these will correspond to members of the pencil which
are tangent to L. A pencil of binary quadrics having only one singular member is
necessarily one with a fixed point, this will occur iff L passes through one of the
base points.
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Exercises

106 Given the two conics x2 + y2 − 2z2 and xy − 2x2 + yz find the conic in the
pencil spanned by them that
a) passes through the point (2, 1, 1)
b) is tangent to the line x − 2y + z at the base point (1, 1, 1)

107 Given the five points (1, 0, 2), (1, 1, 3), (1, 8, 2), (0, 4, 3) and (5, 1, 2)find the
conic passing through them.(Hint: Take four of the points, find two singular mem-
bers passing through them, consider the pencil spanned by them, and force a member
of it to pass through the fifth point)

108 Given an explicit conic C x2 + y2 = z2 and an explicit pencil generated by
C and C’ (xy) write down the correspondence between a point (t2 − s2, 2st, t2 + s2)
on the conic and the pencil λC + µC ′

109 Let t4 + pt2 + qt+r = 0 be a a quartic equation.(Any quartic can easily be
reduced to one missing the t3 term by the traditional trick). Consider the conic C
XZ − Y 2 parametrised by (1, t, t2)
a) Show that the basepoints of the pencil spanned by the conics C and C’ Z2+pY 2+
qY Z + rX2 are given by the quartic above.(Hint: Plugging in the parametrisation
of C into the equation of C’)
b) Show that the singular elements of the pencil C+λC’ correspond to a cubic
equation in λ. Write down this cubic equation explicitly!

110 Given two non-singular conics C and C’; determine when they can be trans-
formed (by projective transformations) into each other, preserving their four base
points

111 The two conics C XY −Z2 and C’ X2 +2XY −Z2 are tangent at the point
(0, 1, 0). Find the two other intersection points and determine the two singular
members. Finally proceed as in exercise 109 and verify which singular member
corresponds to the double root of the cubic

112 If two smooth conics C and C’ are tangent, show that there is always a
projective transformation that carries one into the other preserving their three
intersection points

113 Verify that the two conics C XY − Z2 and C’ X2 + XZ − Z2 are flexed.
Find the singular fiber and verify that it is indeed a triple root of the discriminant

114 Given a (smooth) hypersurface F(x,y,z,w) in P3. Normalizing such that p
(0, 0, 0, 1) lies on the surface and z = 0 is the tangentplane (cf exercise 94). The
tangent lines through p are then given parametrically p + t(x, y, 0, w) Show that
such a line has “contact” three at p iff (preserving the notation of exercise 94)
f2(x, y) = 0. Generalize this to hypersurfaces in higher dimensions!

115 Show that the two conics XY − Z2 and X2 + XY − Z2 are hyperflexed at
the point (0, 1, 0). The one singular fiber is given by X2. Verify directly that the
pencil spanned by them is tangent to the singular locus at the “point” X2.(Hint: cf
exercise 90, compute the gradients of the six minors and show that they all contain
the pencil)

116 Show that there exist a unique projective transformation that carries a
given set of four distinct points into another set of four distinct points. (preserving
the ordering of the points) (PGL(3,C) acts four-tuply transitive). Conclude that
any generic pencil can be carried into any other generic pencil. This is however not
unique, show that it becomes so if we insist on a given ordering of the three singular
members. Generalize this to any set of four points (not necessarily distinct)
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117 Show that if a pencil contains two double lines x2 and y2 say then every
member of the pencil is singular. Show that this corresponds geometrically that any
secant of the singular locus of the discriminant hypersurface lies in the discriminant.
(It fails to fill up the whole space P5 as one would expect for dimension reasons).
Finally show that this is the only type of singular pencil with isolated base points;
show that all the oethers have one component in common.

118 Show that a real pencil with some real base point can never contain any
invisible conics. Is the converse true? If every conic of the pencil is visible then
there has to be real base points? (How does this relate to exercise 104?)

119 Given a real pencil with four real base points. Then every point outside
defines a conic in the pencil. Some of those will correspond to ellipses others two
hyperbolas, and provided none of the base points lie at the line at infinity; some
will correspond to parabolas.
How does that partition correspond to the four base points?

120 Given a real pencil and a real line L not passing through any of the base
points. Is it always possible to find an element of the pencil that does not intersect
L?(Hint: Look at pencil of binary quadrics, do they always contain positive definite
quadrics?)

121 Given two members Q0 and Q1 of a pencil, and look at the function

Q1

Q0
: R2 −→ R

locally. Compute the Jacobian of this map and determine when it is zero and the
corresponding values for the function. How do these correspond to the singular
members of the pencil spanned by Q0 and Q1?

122 Show that if two members of a pencil are circles, so are all members (except
of course the singular)

123 Let C0 and C1 denote two disjoint circles not enclosed in each other. The
pencil they span corresponds to Ic). What is the relationship between the two
singular points and the one component of the visible singular fiber which is not the
line at infinity? How can the associated function be interpreted?

124 Concentric circles correspond to a pencil of type IVb) where the singular
point of the invisible singular fiber corresponds to the common center. If two circles
are not concentric there will be a real line (not the line at infinity and hence visible
to us) associated. If they intersect, the line is obvious, if not less so. How can the
line be constructed?

125 If two ellipses meet in two points, there are two lines associated (the com-
ponents of the visible singular fiber) one is obvious, what about the other? Find
this line explicitly if the two conics are x2 + y2 − z2 and 4x2 − 12yz + 12y2 − 5z2

126 If we have a pencil of type IVb) the rational function given by the quotient
of any two of its members will be welldefined. There will however be just one
critical point (the singular point of the invisible singular member). What possible
values can this function assume?

127 Given two disjoint real conics, not enclosed in each other, and let L be a line
outside them both. Those two conics split up the parameter space RP1 into two
components; show that each component contains a member tangent to L! Visualize
this by expanding levelcurves!
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128 Find the two conics passing through the four points (1,0),(0,1)(-1,0) and
(0,-1) and tangent to the line x + y + z = 0 (Hint: find the pencil passing through
the four points and restrict it to the line)

129 Find the circle flexed to the ellipse

x2

a2
+

y2

b2
= 1

at the point (a cos t, b sin t) and determine its center. For what points on the ellipse
are the flexed circles actually hyperflexed?

130 Preserve the setting of the previous exercise. At each point P on the ellipse
we can correspond the residual intersection point with the circle flexed at P. (Actu-
ally the circle of curvature at P) .This defines a map from P1 to itself. Determine
this by making a rational parametrisation of the ellipse. (Given the trigonometric
parametrisation, what is the map?)

131 Find the circle tangent to the unit circle at the point (1/
√

2, 1/
√

2) and
passing through the point (2,4)

132 Find the conic hyperflexed to the unit circle at the point (0,1) and passing
through the point (0,-2)

133 Consider two conics defined over the rationals but with no rational inter-
section points. The three associated singular fibers may not be defined over Q bt
will they be defined over some quadratic extension of Q?

134 Compute the number of lines in FqP
5 over a finite field with q elements.

This number corresponds to the number of different pencils of conics. Partition
this number into those corresponding to types I,II ...V.(Hint: Those types splits up
into many subtypes over a finite field)
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Quadric Surfaces

By a quadric surface is meant a quadratic hypersurface in P3. As in the case
of conics we may to each point p associate the polar to p given by the gradient
at p. If p lies on the quadric the polar gives the tangentplane and the quadric is
non-singular iff the gradient never vanishes. (for more details see exercises 135-137)

Over C the quadrics are classified by the dimension of their singular locus (which
is always a linear subspace) or equivalently by the rank of the associated bilinear
form. Thus
equation rank description

x2 + y2 + z2 + w2 4 non-singular
x2 + y2 + z2 3 cone over non-singular quadric
x2 + y2 2 two planes
x2 1 double plane

Note that all singular quadrics are cones, the more singular the lower the dimen-
sion of the quadric over which it is a cone

In the real case we get a slightly more involved classification as we need the
absolute value of the index as an additional invariant. (Sylvesters law of inertia).
We can then present the following table

equation rank index geometric description

x2 + y2 + z2 + w2 4 4 invisible
x2 + y2 + z2 − w2 4 2 ”ellipsoid”
x2 + y2 − z2 − w2 4 0 ”one-sheeted hyperboloid”
x2 + y2 + z2 3 3 ”point”
x2 + y2 − z2 3 1 ”cone”
x2 + y2 2 2 ”line”
x2 − y2 2 0 two planes
x2 1 1 double plane

The real classification can be refined if we introduce the analogy of circular points
and the ensuing plane at infinity

We will speak about the circle as an invisible conic defined over the reals.The
plane defined by it will be denoted the plane at infinity, and we will define a sphere
to be a quadric intersecting the plane at infinity along the circle .

The case (4,2) will then split up into three cases depending on whether
the quadric intersects the plane at infinity
two-sheeted hyperboloid
the quadric is tangent to the plane at infinity
(then necessarily (see below) intersecting in just one point)
paraboloid
the quadric is disjoint from the plane at infinity
ellipsoid

While the case (4,0) will split up into two
the quadric is tangent to the plane at infinity
(the necessarily the intersection consists of two lines)
the hyperbolic paraboloid ?
the quadric is not tangent
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one-sheeted hyperboloid

We will now present the following important lemma

Lemma. Let S be a hypersurface and let T be the tangentplane at a (non-singular)
point p then the intersection of S with T is singular at p

This implies the following over C for a quadric

Corollary. Through each point p on a non-singular quadric we may find two dis-
tinct lines!

Proof. Letting p=(1,0,0, . . . ) and letting x1=0 be the equation of the tangentplane
at p we may write the hypersurface as follows

x1x
n−1
0 + f2(x1, . . . )x

n−2
0 + f3(x1, . . . )x

n−3
0 . . .

Setting x1=0 we see that the restriction has no linear terms when dehomogenized
at p, which is equivalent to being singular

For the corollary we need only spell this out

Proof.
xy + f2(y, z, w)

and observe that the binary quadric f2(y, z, w) is a perfect square iff the quadric is
singular

Note that the two lines (in the notation above) through p are given by y=0 and
f2(0, z, w)=0
Now there is “no monodromy” there are actually two families of lines on a non-
singular quadric

This can be seen as follows. Fix a point p0 and denote the two lines on the
quadric Q through p by L1 and L2 and let Π be the plane spanned by them (the
tangentplane to Q at p0). For each point p a line L through p will intersect Π in one
point, this point cannot be p0 (see exercise 138)if it would be we both lines through
p would intersect one of the lines Li and hence we would have three lines in a plane
which is impossible on a quadric, thus exactly one of the lines through p intersects
L1 and the other intersects L2, this gives the desired decomposition of the lines on a
quadric into two families. Furthermore we observe that lines in the same family are
always mutually skew, while two lines from different families always intersect. The
first statement is clear, as lines in one family are characterized by meeting a given
line, and intersection would imply three coplanar lines, for the second statement
we consider the intersection of the two planes spanned by Li and the respective
intersecting line; these planes intersect in a line that intersects the quadric in two
points, one is p0 the other must be the sought for intersection point!

We have in fact proved the following proposition

Proposition. Every non-singular quadric over C is given by a product P1 × P1

T. o each point p we can associate two lines intersecting L1 and L2 in p1 and p2

respectively, conversely given a pair (p1,p2) on L1×L2 we choose the residual lines
L’ (at p1 to L1) and L” (at p2 to L2) they intersect in a point p.
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A normal form for non-singular quadrics which makes the existence of lines
particularly obvious is given by

XY − ZW

And the two families of lines will be given by

α0X = α1Z α1Y = α0W

and

α0X = α1W α1Y = α0Z

The form XY − ZW is determinental i.e. given by the determinant

∣

∣

∣

∣

X Z
Y W

∣

∣

∣

∣

Thus if we consider the projective space P(M2,2) of non-zero 2×2 matrices, the
determinental condition gives all singular matrices M to which we may uniquely
associate the pair (kerM,ImM) of one-dimensional subspaces, and conversely to a
pair (K,I) of one-dimensional subspaces we may associate a unique matrix (up to
homotie) M with K=kerM and I=ImM. A pair of one-dimensional subspaces of a
two-dimensional space is of course just a point of P1 ×P1. This gives another proof
of the above proposition.

Finally we may consider the Segre embedding. A point (x0, x1; y0, y1) of P1 ×P1

maybe considered as given by “bi-homogenous” coordinates. More precisley we say
that

(x0, x1; y0, y1) ∽ (x′
0, x

′
1; y

′
0, y

′
1)

iff there are λ and µ non-zero such that

x0 = λx′
0

x1 = λx′
1

y0 = µy′
0

y1 = µy′
1

With this convention the following map P1 × P1 → P3 given by

(x0, x1; y0, y1) 7→ (x0y0, x0y1, x1y0, x1y1)

is welldefined. Note also that the image satisfies

(x0y0)(x1y1) = (x0y1)(x1y0)

i.e. XW = Y Z with the obvious notational convention.

In the real case a tangent plane may or may not intersect the quadric in two
real lines. This does not depend on the point but on the quadric (see exercise 140).
The quadrics of type (4,0) will in fact be the real quadrics which maybe identified
with RP1×RP1, while the quadrics of type (4,2) will have no real lines, the tangent
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planes then intersect the quadrics in just one point (the visible singular points of
an “invisible” singular conic).

Quadrics as double coverings

Given a quadric P1×P1 we have a natural involution given by (x, y) 7→ (y, x) and
with the diagonal as fixed point locus. The natural question is what is the quotient
of P1 × P1 by this involution. To explain this it is natural to look at a conic in
the plane. Pairs of ordered points on the conic form of course a P1 × P1, while the
quotient consists of pairs of unordered points. But to each ordered pair of points we
can associate an un-ordered, simply by considering the line through the two points.
The lines form a dual P̂2, which may howevere be canonically identified with P2 via
the conic itself. Thus we have identified the quotient to be the projective plane.(cf
exercise 149)

Conversely a double covering of P2 branched along a conic is a quadric. The
geometry of a quadric can also be gleaned from this picture. The inverse images
of lines will be conics, and those conics will split up into pair of lines exactly when
the lines are tangent to the conic. Algebraically we are considering an equation

w2 = q(x, y, z)

with q a ternary quadric defining the branch locus, conversely any representation
of a quadric as above defines a double covering onto the plane w=0 by projection
from the point (0,0,0,1). Given a line (x(s,t),y(s,t).z(s,t)) with x,y and z considered
as linear forms in s and t, the inverse image is then a conic given by w2 = r(s, t)
The line is tangent iff the binary quadric r becomes a perfect square (i.e. has a
double root) u2 say in which case the conic w2 = u2 splits into two lines

This point of view is illuminating in the rational case. Viewing a quadric means
that we look at it from some vantage point p and see it projected. The image
will then have a contour (the ramification locus) and this contour will embrace the
extent of the quadric, one part of which is visible, while the other part is hidden.

Considering the real equation

w2 = q(x, y, z)

the form q(x, y, z) defines a conic (the contour), in the real plane a conic disconnects
the plane in an inside and an outside. (The inside is incidentally topologically a
disc, while the outside is a Möbius strip cf exercise 34) On the other hand the
covering is only defined where q is positive, this may be either on the inside or the
outside. If it is positive on the outside the covering is defined over the tangents and
we get a real quadric of type (4,0) all of whose lines (or rather half of each line)
we can see as the tangents of the contour, topologically this is of course a torus
(S1 × S1); on the other hand if it is positive on the inside there are no lines, and
topologically we are looking at a sphere (S2)



50

Hyperplanesections and Möbius transformations

An intersection of a non-singular quadric surface Q and a plane H (a hyperplane
section) is obviously a conic and the conic is smooth iff the plane is not tangent to
the quadric. In particular iff the plane is the polar of a point outside the quadric.
If we use the structure of the quadric as a product of two lines as exhibited by the
Segre embedding above, we can be more specific. Then every smooth hyperplane
section defines a correspondence between two intersecting lines (say L and L’) as
follows. To each point p on L consider the unique line M skew to L’ passing
through p. M intersects the plane H in a unique point q and through q we may
find a unique line M’ on Q skew to L. M’ will then intersect L’ in a point p’. If we
choose a distinguished hyperplane ∆ we will then define the ’diagonal’ and identify
L and L’. Then we can identify each hyperplane with a Möbius transformation, and
conversely each Möbius transformation considered as a graph on P1 × P1 defines a
hyperplane as follows

If Γ is the graph in P1 × P1 it is given in terms of bihomogenous co-ordinates
(x0, x1; y0, y1) as

y1

y0
=

ax1 + bx0

cx1 + dx0

or as the zeroes of the bihomogenous form

bx0y0 + ax1y0 − dx0y1 − cx1y1

of bidegree (1,1)(i.e. by considering the form in terms of x and y respectively it will
be homogenous in both cases of degree 1; or simply speaking it will be bilinear!).
The space of bilinear forms is spanned by the four mixed monomials xiyj which
also form the basis X,Y,Z and W of the Segre embedding. Thus the bilinear form
is nothing but the restriction of the hyperplane

bX − dY + aZ − cW = 0

to the quadric XW − Y Z = 0 Thus we see that the complement of a non-
singular quadric is a homogenous space for the group PGL(2,C) and by chosing a
distinguished point δ we get an identification (see exercise 154)

Furthermore the number of fixed points of a Möbius transformation is then
geometrically given by the intersection of the quadric with the hyperplanes ∆ and
H (defined by the transformation). The intersection of the two planes is a line which
will intersect the quadric in two points, which may coincide of course. Looking at
it on ∆ we see a conic C (the intersection of ∆ with Q) and H is given by a line,
thus the hyperbolic H corresponds to planes intersecting ∆ along a tangent to C
(cf exercise 155)

Line correspondences

Given two skewlines L and L’ and an isomorphism φ : L → L’ we may to each
pair of points (p, φ(p)) associate the line M(p) passing through the two points, as
p runs through L, the lines M(p) trace out a surface S(φ). This surface turns out
to be a non-singular quadric surface.(Cf exercise 159)

Geometrically this can be seen heuristically as follows. Let Π be a plane con-
taining one of the lines L, then the intersection of S(φ) with Π consists of L and
another line spanned by the pair (p, φ(p)) where p is the intersection of L’ and Π,



51

thus of degree 2. The weakness of such an argument is that either of the lines may
have hidden multiplicities which would yank up the degree.

Algebraically we may choose co-ordinates such that L is given parametrically by
(x, y, 0, 0) and L’ by (0, 0, z, w) and φ(x, y) by z = ax + by and w = cx + dy. Then
we consider lines parametrically given as

(sx, sy, atx + bty, ctx + dty)

thus
aX + bY

cX + dY
=

Z

W

giving the quadratic relation

aXZ + bY Z − cXW − dY W = 0

Given two skewlines L and L’ then to any point p outside the two lines there is a
unique line M through p and intersecting both L and L’. To constrcut this line we
simply take the intersections of the two planes spanned jointly by p and L and L’
respectively.(see exercise 160). Thus given a third skewline L” it defines a so called
correspondence between L and L’ by to each point p” on L” associating the line
through p” and L and L’. Those lines will, as we saw above, sweep out a smooth
quadric. Thus we have proved that through any three skew lines there is a unique
smooth quadric containing them

Conic correspondences

Given two conics and an isomorphism φ between them one may ask when the
lines 〈p, φ(p)〉 trace out a quadric. Now the two conics may not be arbitrary, any
conic on a quadric is given by a hyperplane section and thus any two conics on
the same quadric will intersect in two points. Furthermore the lines on a quadric
always make up one of the rulings on the product P1 × P1 thus the isomorphism
φ cannot be arbitrary but must respect the two intersection points and fix those.
Thus we have only one “freedom” left and it is natural to state and prove the
following proposition

Proposition. . Given two conics C and C’ intersecting in two points p1 and p2 and
a transformation φ:C → C’ respecting p1 and p2 and mapping p0 to q0, then there
is a unique quadric Q containing C and C’ and the line M=〈p0, q0〉. Furthermore
the quadric Q is swept out by all the lines 〈p, φ(p)〉
Proof. The simplest proof is given by a straightforward algebraic construction of
the equation of Q. We may assume that the planes spanned by C and C’ are given
by x=0 and y=0 respectively, and that the conics themselves are given by the
additional equations q2(y,z,w)=0 and q′

2(x,z,w) respectively. The equation of the
quadric must then be of the following two forms simultaneously

xL1(x, y, z, w) + q2(y, z, w)

yL′
1(x, y, z, w) + q′2(x, z, w)

where the subscripts gives the degrees of the forms. We get as compatibility condi-
tion that q2(0,z,w) is proportional to q′

2(0,z,w) i.e they define the same two zeroes
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on the line of intersection given by x=y=0. The two conditions then determine all
the monomials except xy and we can write the equation as

Q(x, y, z, w) + λxy

where λ is to be determined. Choosing a point on the line 〈p0, q0〉 not on either
conic gives an additional condition which will determine λ and hence the quadric
Q uniquely. This quadric will by construction contain C and C’ and also the line
M as it contains three of its points already. Now there will be a correspondence
between C and C’ given by all the lines of Q skew toM, this correspondence will
coincide with φ at three points hence be identical with it, thus we see that Q is
indeed sweeped out by the lines 〈p, φ(p)〉

The proof of the above proposition has a nice corollary. One may ask when two
conics C and C’ are projections of each other, i.e. when there is a point p such that
the lines from p to C also pass through C’. Thus this is equivalent with C and C’
being two hyperplane sections of a quadric cone. Hence a necessary condition is
that they intersect in two points, this is also sufficient, as we see from the above
proof that we need only to choose λ such that Q is singular.(The zero of a quartic
equation given by setting the determinant of the associated bilinear form as a linear
function of λ equal to zero)

Thus we see that from a special vantage point a correspondence between two
conics is given by one on a fixed conic C. The two intersection points then will
correspond to the two fixed points. The lines will then correspond to chords 〈p, φ(p)〉
of an automorphism φ on C, where the chords are tangents in the case of the two
fixed points (which may of course coincide). Now the chords define a curve in
the dual space, this curve is of degree two. In fact a degenerate case is that of
an involution the chords all pass through one point (the Fregier point), now an
involution I will have two images common with an arbitrary Möbius transformation
T (the fixed points of IT−1), this means that two of the chords will pass through
any given Fregier point, in other words a line in the dual (the pencil of lines through
a point) intersects the curve in two points. Thus the chords form a dual conic, and
its dual will be a conic in the plane of C with the property that it is tangent to
all the chords of the automorphism φ. The interesting question is what conics may
occur in this way. As there is a five dimensional family of conics and only a three
dimensional family of Möbius transformations. The answer is given below

Proposition. Let C be a conic (in the plane) and let φ be a Möbius transformation,

then the lines 〈p, φ(p)〉 constitute the tangents of a conic Ĉ. This conic is bitangent

to C and the tangency points are given by the fixed points of φ. Ĉ degenerates to a
double line iff φ is an involution. Conversely any conic C’ which is bitangent to C
occurs in this way

Note that Ĉ is just the contourline of the quadric when viewed from a special
point
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Exercises

135 If p is a point and Π a plane through p and Q is a (non-singular) quadric,
show that the polar of p to Q intersects Π at the polar of p to the restriction QΠ

of the quadric Q to Π. Conclude that the lines through p tangent to Q are tangent
to Q along a conic.

136 Show that given a line L outside a quadric Q there are exactly two tangent
planes to Q containing L. Conclude that the tangentplanes to a quadric form a
quadric in the dual space.

137 Show that each line L outside a quadric Q defines a line L’ according to
exercise 130. Show that this correspondence is an involution

138 Show that any line on say a hypersurface must lie in the tangentplane of any
of its points. In particular conclude that through a non-singular point p of a surface
all the lines through p lie in a plane, and consequently through a non-singular point
on a quadric we may draw (at most) two lines

139 Given the quadric XY − ZW show that its lines are given by

(α0t0, α1t1, α1t0, α0t1)

and
(α0t0, α1t1, α0t1, α1t0)

parametrically. Find the intersection between the two lines

(α0t0, α1t1, α1t0, α0t1)

(β0t0, β1t1, β0t1, β1t0)

and find the plane spanned by them
140 Show that if a real quadric contains a line, it will in effect contain two, and

in fact through each point there will be two lines.(Hint: Consider the residual line
of the intersection of a plane containing one line)

141 Show that the singular 2×2 matrices form a quadric of type (4,0)
142 Consider a real quadric as in exercise 139, compute the angle between two

intersecting lines.(Hint: By considering the lines as planes in the 3-dimensional
real space defining the corresponding tangentplane, we define this independent of
any particular dehomogenization)

143 Show that a real quadric of type (4,2) is locally convex, i.e. the tangent
plane lies on one side of the quadric.
If the quadric does not intersect the plane at infinity, save at most in one point,
then it will be globally convex as well

144 Show that in the case of a real quadric of type (4,0) every tangent plane is
divided into two parts, show that they are characterized by whether the quadric
lies “locally” above or below the tangent plane

145 Let Q be a quadric of type (4.0) and let p be a point on it. We may
then consider the planes through p and the curvatures of their intersections with Q
(so called sectional curvatures) with the appropriate signs (how does this relate to
exercise 144?). We may then consider the maximal and minimal sectional curvatures
which will correspond to two (orthogonal) directions on the tangent plane. Show
that those directions bisect the two angles formed by the two lines through p
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146 Preserving the situation of exercise 145 compute the Gaussian curvature
at each point In particular show that it is always negative.Note that the Gaussian
curvature is defined as the product of the minimal and maximal sectional curvature

147 Given a one-sheeted hyperboloid x2+y2−z2 (in affine co-ordinates) find the
locus of maximal Gaussian curvature (the absolute value) and the locus where the
two lines form the most acute angle. Compare! What is the relationship (if any?)
between the angle of the two lines through a point and the Gaussian curvature at
the point?

148 Two pairs of lines, each pair consisting of a line from each family define
a quadrilateral. As in exercise 147 compute the area A(ǫ) of such a quadrilateral
whose sides are of equal length ǫ and compute the limit

lim
ǫ→0

A(ǫ)

ǫ2

at various points of the hyperboloid
149 Show that the space of all on-ordered points can be identified with the

projective space of all binary quadrics. Use this to give a slightly different argument
that the quotient of P1 × P1 by the natural involution is P2

150 Show that the equation w2 = x2 + y2 − z2 defines a real quadric with real
lines, by checking that the right hand side is positive outside the circle

151 Considering the one-sheeted hyperboloid as in the previous exercise, com-
pute for each point p outside the circle the angle formed by the two tangents through
p a) on the plane b) in the space and finally c) the angle between the plane w=0
and those planes formed by any of the two pairs of intersecting lines

152 Show that there are two types of non-singular quadrics over a finite field Fq

depending on whether the double covering of the quadric is defined over the outside
or the inside. Compute the number of points in each case

153 Consider the non-singular quadric as parametrised by all singular 2×2 ma-
trices, the diagonal will then form a distinguished hyperplane section, characterize
those matrices and the hyperplane they span!

154 By considering the Möbius transformation

(

a b
c d

)

as a point (a, b, c, d) in

P3 determine the polar of the point (1, 0, 0, 1) with respect to the quadric ac−bd = 0
and compare with exercise 153

155 Consider a distinguished hyperplane ∆ and C its intersection with the
quadric Q. Show that to each line L in ∆ there is a pencil of hyperplanes H with
L as base, and that if L is non-tangent all but three of those planes correspond to
Möbius transformations with the two intersection points of L with C as fixed points.
Try to characterize the unique involution in this pencil! What is the situation for
L tangent?(cf exercise 53)

156 The spheres in Euclidean R3 are characterized by meeting the plane at
infinity in the invisible conic x2 + y2 + z2 = 0. Then every real plane defines two
circular points by its intersection with the conic at infinity. Henceshow that a real
conic is a circle iff it intersects the conic at infinity at two points.

157 Given a real quadric surface which is not a sphere, show that it determines
two real lines at infinity such that the pencil of real planes with those as base locus
cuts the quadric in circles. Show furthermore that the centers of those circles form
a line, what is the relationship of this line (axis) to the base locus of the pencil (cf
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exercise 137). Note that such a pencil of planes are parallell. Does this mean that
any quadric surface is a surface of revolution?

158 Let S be a sphere, and consider the involution as in exercise 137, show that
this involution is defined on all lines and has no fixed points and determine the
involution on the lines tangent to S. If S is the unit sphere determine the involution
explicitly, in particular write it down using Plücker coordinates (cf exercise 14)

159 Show that if a singular quadric contains two skew lines it must be the union
of two distinct planes. Furthermore show that such a quadric does not conatin any
connecting lines between the two skew lines except of course the line of singular
points. Show though that this surface is naturally the surface S(φ) if φ corresponds
to a degenerate transformation, that is a hyperplane section degenerating into two
lines

160 Show that if p is outside two skewlines L and L’ the projection of p onto a
plane Π maps the two skewlines to two intersecting lines intersecting in a unique
point p’. Show that the line ¡p,p’¿ is the unique line through p intersecting both L
and L’

161 Find the equation of the unique quadric that contains the three skew lines

x = y = 0; z = w = 0 and x = 3z, y = 2w

162 Is it possible to find a unique smooth quadric containing four lines making
up a quadrilateral with opposite sides skew?

163 Consider the one-sheeted hyperboloid given by x2 + y2 = z2 + w2, and
two hyperplane sections given by z=w and z=-w. Show that those are hyperplane
sections of the cylinder x2+y2 = 2z2 and hence that they coincide from the vantage
point of (0,0,0,1). The lines of the hyperboloid then define a Möbius transformation
on the projection- the circle C x2 + y2 = 2z2, determine the transformation and
show that the dual of the chords defined by the lines is a circle concentric with C
and determine it explicitly

164 Let C and C’ be two circles parametrised by

(sin t, cos t, 1)and(sin t′, cos t′,−1)

. Join them by lines according to a phase shift θ i.e. t′ = t + θ. Find the equation
of the quadric, depending on θ of course, and in particular find its “waist”. Finally
determine for which θ the quadric is singular

165 Let C and C’ be given by

(a0s
2 + b0st, b1st, b2st, b3st + a3t

2)

and
(c0s

2 + d0st, d1st, d2st, d3st + c3t
2)

Show that C and C’ has two points in common corresponding to (s,t)=(0,1) and
(s,t)=(1,0) respectively. Show that the correspondence given by the parametrisation
by (s,t) defines a quadric, find the equation of the quadric and find a point p from
which C and C’ coincide and determine the corresponding Möbius transformation
φ and the corresponding contour
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Birational Geometry of Quadric Surfaces

Given a point P on a quadric Q we may project from this point onto a plane,
as we did in the case of conics. As a line intersects a quadric in two points keeping
one point P fixed we expect there to be a 1-1 correspondence between the points
of the quadric (the residual intersections) with the points of the plane, in analogy
with the case of conics. However the situation is more complicated, unremediably
so.

First a line lying in the quadric may go through P (and in the case of C this
will always be so, in which case all the points of the line are mapped onto the same
point on the plane. (We say that the line is “blown down”), secondly there is no
canonical way of mapping the point P, in fact there is no unique way of choosing a
line tangent to Q at P, the tangent lines sweep out a whole plane, and the projection
is indeterminate at P. The solution to this is to replace P by a whole line, each point
of which corresponds to a possible direction and hence a possible value at P. We
refer to this process as “blowing up”

On the level of equations we may assume that P=(0,0,0,1) and the plane of
projection to be w=0, and write the dehomogenized conic accordingly

(1) L(x, y, z) + Q(x, y, z)

where L is a linear form and Q a quadratic form. The lines through P are then
given parametrically by (sx, sy, sz, t) and the residual intersection points by

tL(x, y, z) + sQ(x, y, z) = 0

Note that if both L and Q are zero the entire line lies in Q and if L=0 then so is s
and hence the residual is always P (whose image is the entire line defined by L).

On the other hand we may start with the plane and two points P1 and P2. Any
other point P determines two lines, one PP1 through P1 and one PP2 through P2.
The lines through a point form a pencil thus are parametrised by P1; hence we have
to each point P of P2 associated a point on P1×P1. Now this is not an isomorphism
because this construction goes wrong if P happens to lie on the line P1P2. If P
coincides with one of the Pi’s say P1 then the line PP1 is not well defined (thus P1

is “blown up”) and if P lies on the line P1P2 distinct from either point Pi then it
is always mapped to the same point (P1P2,P1P2). The line P1P2 is “blown down”.

The observant reader may have noticed that the two constructions are inverses
of each other. Given a point T on a quadric Q distinct from the center of projection
P through which the lines L1 and L2 pass, the two lines through T will meet each
one of the lines L and be skew to the other. They will then be projected to lines
through the image of T passing through the image points P1 and P2 respectively
of the lines L. The image of P will “blow up” and constitute the line through P1

and P2, which will simply be the intersection with the tangentplane at P (spanned
by L1 and L2) with the plane of projection.

Projecting from a point also yields a parametrisation of the quadric with quad-
rics. In fact looking at the line

(0, 0, 0, 1) + t(x, y, z, 0)
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plugging it into the expression (1),we obtain

tL(x, y, z) + t2Q(x, y, z)

with the common root t = 0 and the residual root t = −L(x, y, z)

Q(x, y, z)
from which we

get the parametrisation

(x, y, z) 7→ (xL(x, y, z), yL(x, y, z), zL(x, y, z),−Q(x, y, z))

by ternary quadrics.

Note that this 4-dimensional (a so called web) of conics has two base points,
namely at the intersection of the line L = 0 with the conic Q = 0, those are
the two points to which the two lines through P are projected to.(“blown down”),
furthermore points on the line L = 0 are all mapped to (“blown down” to) the
point P ((0, 0, 0, 1))

It is now time to make more precise the notions of “blowing up” and “blowing
down” which we have refered to loosely.

Blowing Ups and Downs

Blowing up means replacing a point with all its directions. As an example we
may think of the union B0C2 of all lines through the origin of C2. The lines through
the origin are of course parametrised by CP 1 and we have a map

π : C2 → CP 1

which to each point p of C2 associates the line through p and the origin. This map
is not well-defined at the origin, not on the space C2 but on the space B0C2, where
we intuitively have replaced the origin by the collection of the origin plus a line.
We simply then let π of such a point be the corresponding line.

More formally what we have done is to consider the closure of the graph of π in
the space C2 × CP 1. That closure is simply our sought after space B0C2 and the
extension of the map π is just the projection onto the second factor.

One notices that the projection onto the second factor will have as fibers exactly
the lines through the origin, while projecting onto the first factor one gets a 1-1
correspondence except over the origin when we will have a whole line. This line is
refered to as the exceptional divisor.

The picture is of a spiral staircase. The lines through the origin of C2 are “lifted
up”

This construction can be localised allowing us to blow up any point on any
complex manifold of complex dimension two.

Letting x, y be local coordinates of a neighbourhood O around a point p corre-
sponding to (0, 0), we will define two charts U and U’ using local coordinates u, v
and u′, v′ respectively. The two charts will be glued together to form a manifold B
which will map to O.

In fact considering the map π : B → O we will define the transitionfunctions
implicitly as follows
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π(u, v) = (uv, v)

π(u′, v′) = (u′, u′v′)

From which follows the transition functions

u′ = uv

v′ = 1/u

u = 1/v′

v = u′v′

Note that x/y = u and y/x = v′. In fact the image of (u, 0) and (0, v′) is the origin
(0, 0) (p), and the inverse image of the origin is a projective line CP 1 where the
intersections with U and U’ give the standard charts of the Riemannsphere. This
projective line is usually denoted by E and refered to as the exceptional divisor; it
does parametrise all the directions through p (0,0). On the other hand outside the
origin π has a unique point in its inverse image.(see exercise 175)

Topologically the inverse image of O is a tubular neighbourhood of the excep-
tional divisor E in B.(see exercise 176). If E would be a P1 in a surface, with a
tubular neighbourhood isomorphic to B, then the process can be inverted and we
can replace B by O. In this way we define a blow down (zit will actually turn out
there there is a simple numerical criterion for this, the “selfintersection” of E (=P1)
should be −1)

The definitions, although implicitly discussed for C, make equal sense over R of
course. Then letting O be a (small) disc, B turns out to be a Möbius strip! The
boundary of O will correspond to the (not so immediate) connected boundary of the
strip B, and the exceptional divisor E will correspond to the centerline of the strip.
(Cutting along the center line does not disconnect the strip, as the complement will
be equal to the punctured disc O*

) Considering a real Quadric with no lines and projecting from a point we will
get a 1-1 correspondence between the Quadric blown up at P and the real projective
plane. As the Quadric is topologically a sphere, we get another illustration of the
fact that the real projective plane is glueing the boundary of a Möbius strip to that
of a disc. (Removing a disc from a sphere yields another disc). And conversely
considering a real projective plane and two complex conjugate points, the quadrics
through them will have no real base points, but the line joining them will be real
and blown down, giving a sphere. The quadric with lines will correspond to two
real blow ups and a real blow down, and yield a torus (S1 × S1)

Cremona transformations

Mapping P2 birationally onto a Quadric and then projecting the Quadric back
to P2 yields a birational map of the plane onto itself, blowing up three points and
blowing down the three lines determined by the points.

We are now considering a 3-dimensional linear space (a net) of conics with three
base points. The conics through the base points are the inverse images of lines,
while the images of lines, not passing through any of the base points are conics

By identifying the image with the original plane we get a birational automor-
phism, and by choosing the coordinates nicely, the involutive character of the au-
tomorphism becomes evident
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Namely consider the map

(x, y, z) 7→ (
1

x
,
1

y
,
1

z
)

associated to the net spanned by the conics yz, zx and xy This map blows up the
vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1) and blows down the lines given by x = 0, y = 0
and z = 0

To get the image of a curve F (x, y, z) = 0 we simply substitute for x, y and z
the conics yz, zx and xy and factor out any factors xyz

One can prove that any birational map of the plane is a composition of Cremona
transformations and linear transformations
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Exercises

166 Let Q be a quadric defined over the reals. Writing it in the form

wL(x, y, z) + Q(x, y, z)

with L a linear form and Q a quadratic form; show that there are two real lines
through (0,0,0,1) iff L and Q have real intersection. Show that this property is
independent of the choice of real coordinates

167 Given the representation of a quadric as the blow up of two points P1 and
P2 in the plane and the blow down of the line between them. Show that the two
rulings of lines of the quadric corresponds to the lines through either point.

168 Show that the birational isomorphism between P2 and P1 × P1 becomes an
isomorphism if restricted to P2\(line through the two points of reference). What
part of P1 × P1 is avoided?

169 Find all solutions to the diophantine equation

x2 + y2 = z2 + w2

expressing numbers as sums of two squares in two different ways, by giving a qua-
dratic parametrisation of the corresponding quadric, using some obvious solution

170 Given four ternary quadratic forms

Q0(x, y, z), Q1(x, y, z), Q2(x, y, z), Q3(x, y, z)

show that the ten ternary quartic forms Q2
0, Q0Q1 . . . formed by all possible qua-

dratic monomials in Q0, Q1 . . . are linearly independent unless the corresponding
system (web) of conics have two base points

171 The web of all circles (conics passing through the two circular poins at
infinity) will map onto a quadric. Show by making no calculations that this quadric
must have index ±2. By choosing a basis of degenerate circles z2, x2 +y2, (x+z)2 +
y2 and (x− z)2 +y2 say, find an explicit equation for the quadric, and in particular
find the equation for a tangent plane corresponding to the point (a, b, a)

172 The linear space of all bihomogenous forms of bidegree (1, 1) in bihomoge-
nous coordinates (x0, x1; y0, y1) (i.e. bilinear forms on a two dimensional vec-
torspace) is of dimension four. Show that they give an embedding of a quadric Q
into P3. Furthermore show that the linear subspace of such form passing through
a fixed point P of the quadric Q, defines a map onto P2 which is the same as pro-
jection from P onto a plane. Thus this gives the inverse map of the parametrisation
of Q with ternary quadrics

173 What happens if we project a singular quadric (a cone) from a point different
from the vertix? Consider the web of all conics of the form

xL(x, y, z) + y2

determine the image in P3 parametrised by those
174 Given the chart (u, v) 7→ (u, 1, 0, 0) + v(0, 0, 1, u) of a quadric xz − yw.

Consider the projection π from the point (1, 0, 0, 0) onto the plane Π given by
x = 0, which projects the line z = w = 0 onto the point (1, 0, 0) on Π, compare this
projection with the local presentation of a blowdown
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175 Show that if (x, y) is not the origin, then there is a unique point in its
fiber. Find the local coordinates for this point (on either chart) from the local
presentation of the blow-up

176 Let U be an open subset of a local blowup B, show that the image of U
under π is open iff the intersection of U with E is either empty or the whole of E

177 Given the map π : B → O show that the map

π∗ : Tp(B) → Tπ(p)(O)

between tangent spaces is an isomorphism iff p does not lie on the exceptional
divisor E. If p would lie on E, determine the kernel of π∗

178 Show that E is the only compact subvariety of B except for finite sets of
points.(Hint: Consider the image of such varities under π in the open subset O)

179 Given a metric on a real B, i.e. a Möbius strip, by e.g. considering B as a
closed subset of O×S1 (a solid torus) show that π contracts the lengths of small
linesegments, depending on their distance to E, and the angle they make with the
“perpendiculars” to E. In fact show that the “perpendiculars” to E can be thought
of the inverse image of lines through the origin (the image of E) in O. Assuming that
B is made of some glass that absorbs light, say proportionally to the cosine of the
angle lights hit it, and that the light rays travel in “concentric” circles through the
solid torus above, compute the intensity of light falling on a perpendicular circular
cut (O)of the solid torus (O×S1) as a function of its distance from the center.(cf
with exercise 177)

180 Given a trivial (i.e. untwisted) strip S1×I where I is a (short) interval. Such
a strip will be the tubular neighbourhood of any of its “circular” fibers. Make a real
blow up of a point P on it, show that the tubular neighbour of the “circular” fiber F
through P now becomes a Möbius strip, and hence F becomes exceptional and can
be blown down. Show that the resulting surface is once more an untwisted strip.
This process is called an elementary transformation. Show that if an elementary
transformation is performed at a point P on a torus, then the resulting space consists
of two Möbius strips glued along their boundaries, yielding a Klein bottle

181 Defining the topological sum U#V of two real surfaces by puncturing by a
“small” disc both surfaces and joing along the edges, we get a semigroup structure
on the real two dimensional surfaces. The neutral element S is given by the sphere,
and P the projective plane and T the torus are two generators. Letting Tn =
T# . . . #T n times with T0 = S we can ask
a) Show the identity P#P#P = T#P In fact this is the only relation
b) Assuming a) show that any surface can be written in either of three ways
(i)Tn

(ii)Tn#P
(iii)Tn#P#P
c) Compute the Euler characteristics (see exercise 11) of the cases (i)-(iii) and show
that the first case corresponds to orientable surfaces, the second and third to non-
orientable
d) To every non-orientable surface we can find a unramified double cover which is
orientable.(Associoate to each point the two possible local orientations). Find the
orientable double covers of the cases (ii) and (iii)

182 Consider the net of circles passing through the origin. This defines a Cre-
mona transformation on the real projective plane blowing up the origin and blowing
down the line at infinity. Relate this to inversion in circles
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183 Given a Cremona transformation centered at the points

(1, 0, 0), (0, 1, 0) and (0, 0, 1)

find the image of
(a) a line Ax + By + Cz = 0
(b) a conic x2 + y2 + z2 passing through none of the base points
(c) a conic (x + y + z)2 − 4(xy + yz + zx) tangent to the three sides
(d) a conic x2 + y2 − (x + y)z passing through one of the base points
(e) a conic x2 + xy + yz + zx passing through two of the base points
(f) a conic Axy + Byz + Czx passing through all basepoints

184 Find the image of the quadric x2 +y2 +z2 under a Cremona transformation
with base points at (1,1,1) and the two circular points at infinity

185 By projecting a Quadric to the plane and then going back again, one gets
a birational automorphism of a quadric. Show that this is given by an elementary
transformation (cf exercise 180)
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Plane cubics

By a plane cubic is meant the zeroes of a cubic form in three homogenous vari-
ables. As there are ten monomials of degree three in three variables (see exercise
186) we have a nine dimensional family of cubics. As the dimension of PGL(3,C)
is eight dimensional, we see that no orbit can be dense, nor that there maybe only
a finite number of orbits. This is in contrast to the case of conics. Thus the case
of plane cubics presents the first case of continous moduli in their description

A cubic C is said to be non-singular iff its gradient never vanishes. Unlike the
case of conics this is hard to check in practice. One may though write down a
(horrible) expression in terms of the coefficients of a cubic which will vanish iff the
cubic is singular (cf exercise 193). Thus one may decide that a cubic is singular
without finding its singular point!

Classification of Singular cubics

While there are only two types of singular conics there is a whole slew of singular
cubics.

Recall that a cubic may be written in the inhomogenous form

(1) A0 + A1(x, y) + A2(x, y) + A3(x, y)

where Ai is a binary form of degree i. The point P(=(0,0,1)) lies on the cubic iff
A0 = 0 and in that case it is a smooth point iff A1 6= 0. If on the other hand A1 = 0
then P is a singular point and it will be called a double point iff A2 6= 0. We see
now in passing that a cubic with a triple point must consist of three concurrent
lines (the equation given by A3 = 0).(Which may be all distinct, or one double, or
all three coinciding into a triple). Thus we may concentrate on the case of double
points.

If A2 has two distinct roots, we say that P is an ordinary double point, or a
node. Such a singularity consists of two distinct branches, tangent respectively
to the two lines through P given by A2 = 0, those are called nodal tangents (see
exercise 194). Now all binary forms split into linear factors, if A2 and A3 have a
factor say L in common, then L becomes a linear component of the cubic through
P. Thus among cubics with a node at P we have three cases, either it consists of
three lines, not concurrent, two of which pass through P (the case of A2 and A3

having two common factors), or of a line and a conic, meeting transversally at P
(the case of A2 and A3 having just one linear factor in common) or the cubic is
what one says, irreducible (of one piece) (the case of no common linear factors),
because any reducible cubic must contain a line.(If you partition three in at least
two summands one has to be one!). The last case is important and called a nodal
cubic.

If A2 has a double root then it is a square of a linear form L, and L defines what
one calls a cuspidal tangent.(see exercise 194). As before L can be a factor of A3.
If it is a square factor then the cubic consists of a double line (L) and a simple line,
if it is a simple factor of L, then the cubic consists of a line (L) and a conic tangent
to the line at P. In case L is not a factor of A3 then the cubic is irreducible and we
have the case of a cusp, and the singular cubic is refered to as a cuspidal cubic
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Flexes and the Hessian

A new phenomena for cubics is the existence of flexes. A flex is by definition a
smooth point such that the tangent has excess contact, i.e. contact of order three.
If the tangentline is parametrised then the restriction of the cubic has a triple root
at the tangency point. (see exercise 198)

Writing down the Taylorformula for a homogenous form F we have

F (x + tζ, y + tη, z + tξ) = F (x, y, z) + t(ζ
∂F

∂x
+ η

∂F

∂y
+ ξ

∂F

∂z
)+

1

2
t2(ζ2 ∂2F

∂x2
+ η2 ∂2F

∂y2
+ ξ2 ∂2F

∂z2
+ 2ζη

∂2F

∂x∂y
+ 2ζξ

∂2F

∂x∂z
+ 2ηξ

∂2F

∂y∂z
+ . . .

Assuming that (x, y, z) is a point on the curve given by F = 0 we see that the t
terms disappear iff (ζ, η, ξ) lie on the line defined by the gradient, furthermore if
this is true then the t2 terms disappear (i.e the tangent is a flexed tangent) iff the
quadratic form (in (ζ, η, ξ))splits.

In fact if it vanishes for some (ζ, η, ξ) it will do so for all points on the tangent
line (defined by the gradient), thus a flex point forces the form to split; conversely
if the form is split means that we can find nontrivial (ζ, η, ξ) such that

ζ
∂2F

∂x2
+ η

∂2F

∂x∂y
+ ξ

∂2F

∂x∂z
= 0

ζ
∂2F

∂y∂x
+ η

∂2F

∂y2
+ ξ

∂2F

∂y∂z
= 0

ζ
∂2F

∂z∂x
+ η

∂2F

∂z∂y
+ ξ

∂2F

∂z2
= 0

If we now multiply the rows by x, y and z respectively and add using Eulers
identity for homogenous forms we obtain

ζ
∂F

∂x
+ η

∂F

∂y
+ ξ

∂F

∂z
= 0

Thus we have proved that the flexes are given as the intersection of the curve
F = 0 with the curve given by the determinant
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= 0

This form is called the Hessian of F, and we note that when F is a cubic then
the Hessian is as well. As we have seen two conics intersect each other in four
(not necessarily distinct) points, and we then expect two cubics to intersect in nine
points. As we cannot parametrise (at least not algebraically and rationally, see
below on the section on Weierstraß ℘-function) we cannot prove this in the same
elementary ad hoc way.(For a discussion of an elabourate ad hoc proof see exercise
201). Let us at this stage just wave our hands, and refer to the principle that this
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number should be unpertubed if the cubics are deformed (“wiggled”) in which case
it would be obvious if one of the cubics consists of lines say.(cf exercise 202). We
have thus established the existence of at least one flex on a non-singular cubic. (The
intersection maybe of multiplicity nine! (although that will never happen as we will
see below) or may be completly swallowed up by the singular point in the singular
case, the cases when the intersection is infinite, which of course can happen, all
refer to reducible cubics)

Weierstraß Normal Form

The fact that every cubic has a flex allows us to write down a standard and
useful normal form attributed to Weierstraß.

Assuming that the flex is given by (0, 1, 0) and the flexed tangent by the line at
infinity z = 0 we can write the cubic in the form

zQ(x, y, z) = x3

where Q(x, y, z) is a quadric.(Restricting the cubic to z = 0 we get a triple root at
(0, 1)) Reshuffling terms and completing squares we may write it as

zQ0(x, y, z) = q(x, z)

where q(x, z) is a binary cubic with x3 as leading term, and Q0(x, y, z) is a perfect
square L(x, y, z)2. Replacing y by L(x, y, z) does not change the coordinates of
our flex, nor does replacing x by a linear form in x, z cause any harm. The latter
switch allows us to write q(x, z) without any x2 term. Dehomogenising we have the
Weierstraß form

y2 = x3 + px + q

Factoring the cubic x3+px+q into (x−e1)(x−e2)(x−e3) We observe the following

Lemma. A cubic in Weierstraß form is non-singular iff the three roots e1, e2, e3

are distinct. The condition for this is that the discriminant 4p3 + 27q2 does not
vanish. If two roots coincide we get a singularity at the corresponding x-value. This
is a node iff the multiple root has multiplicity two, and a cusp iff the multiple root
has multiplicity three, i.e. all three roots coincide. The condition for the latter is
that both p and q vanish

For a proof and further ramifications see exercise 204
We note that the Weierstraß mormal form is symmetric with respect to the x-

axis, under the reflection (x, y) 7→ (x,−y). This symmetry is induced from the
projection from the flex at infinity (0, 1, 0), the corresponding vertical lines are
tangent to the cubic exactly at the points corresponding to x = e1, e2 and e3 the
significance of which we will return to

The normal form of the cubic is also handy in getting the real picture. Assuming
at first that all three roots are real, and say e1 < e2 < e3 then the righthand side
becomes positive iff e1 ≤ x ≤ e2 or x ≥ e3, the first finite interval determines a
“small” oval, while the unbounded interval determines an “unbounded” portion
of the curve. If only one of the roots is real, then only the “unbounded“ portion
appears. For further details see exercises 207,208 and 209
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Nodal and Cuspidal cubics

Both the nodal and cuspidal cubic can be parametrised by P1. In fact we consider
the lines through the singular points, they intersect the cubic in one additional point
(which may coincide with the singular points) setting up the correspondence. (cf
exercises 190,191 and 210)

The standard form of the cuspidal cubic is given by

y2 = x3

in inhomogenous coordinates with a cusp at the origin, with its standard parametri-
sation given by

(s, t) 7→ (st2, t3, s3)

in homogenous coordinates.
The singular point will correspond to t = 0 , with cuspidal tangent given by

y = 0, while it will have exactly one flex corresponding to s = 0 and flexed tangent
given by z = 0 (see exercise 212)

There really is not an equally canonical form for the nodal cubic, but the follow-
ing form has its advantages as we will see

(x + y + z)3 = 27xyz

with its node at (1, 1, 1) and with a (inhomogenous) parametrisation given by

t 7→ ((t − 1)3, (t − ρ)3, (t − ρ2)3)

The singular point will correspond to either t = 0 or t = ∞ with complex conjugate
nodal tangents x + ρy + ρ2z = 0 and x + ρ2y + ρz = 0 (cf exercise 215). The three
flexes correspond to t = 1, ρ or ρ2 and are all real (0, 1,−1), (−1, 0, 1) and (1,−1, 0)
respectively. (See exercise 216 for further remarks)

Topologically the cuspidal cubic is homeomorphic to the Riemannsphere.(A 1-1
map between two compact Hausdorrf spaces is always a homeomorphism) while the
nodal cubic is given by the identification of two distinct points on the sphere.

The non-singular points of a cuspidal cubic form C, while the non-singular points
of a nodal cubic are isomoorphic with C∗. Both of these are groups under addition
and multiplication respectively.

The Group Law

The intrinsic groupstructure on the nodal and cuspidal cubics are remarkably
enough also external and geometrical. In fact if ϑ denotes the standard parametrisa-
tion of a standard cuspidal cubic, then the following two statements are equivalent

(1) t1 + t2 + t3 = 0
(2) ϑ(t1), ϑ(t2), ϑ(t3) lie on a line
The proof is easy (see exercise 218)Note that the flex corresponds to the zero of

the group.
Using similarly the above parametrisation (say φ) for the nodal cubic we can set

up in a completly analogous way the two equivalent statements
(1’)t1t2t3 = 1
(2’)φ(t1), φ(t2), φ(t3) lie on a line
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The verification is straightforward, but necessarily a little bit more involved in
this case (see exercise 219). Note that one of the flexes corresponds to the unit
element of the group

Now we are motivated to try and use the same construction on a non-singular
cubic, whose internal structure is still a mystery to us. Letting a flex be zero , like
the one at infinity in the Weierstraß model, we simply postulate that three points
of the cubic add up to zero iff they lie on a line.

Using the picture of the Weierstraß model this becomes rather explicit. Given
two points P and Q on the cubic, we construct their sum P+Q accordingly: Connect
P and Q with a line, this will intersect the cubic in a residual point R. (this will be
-(P+Q) by definition) Now join R with the flex at infinity, this will be a “vertical”
line intersecting the cubic in -R which is our sought for point (P+Q). Note -R is just
the reflection of R with respect to the x-axis. Thus we have incidentally interpreted
the reflection or the symmetry (x, y) 7→ (x,−y) as the involution R 7→ -R.

We can also be quite explicit, in terms of coordinates, to write down this con-
struction.(See exercise 220)

Now there is actually some work involved to prove that this construction actually
yields a group structure, notably to show that the addition so defined is associativ.
We will not do that, but will get this for free below using a wide diversion into anal-
ysis. But as a first step in trying to get some grip on the underlying groupstructure
we would like to determine the topology of the complex cubic curve. (The topology
of the real curve we have already seen, it is either one or two circles)

The involution R7→-R defines the cubic as a double cover of the line x = 0 or the
Riemannsphere. This double cover will be branched at four points e1, e2, e3 and ∞.
Making two slits joining two disjoint pair of branch points, we get the topological
double cover by taking two such slitted sphers and glueing them along the slits.
Note that each slit has two edges, and the glueing is done with no “crossings”.
What we actually are constructing is the Riemann surface corresponding to the
multivalued function

y =
√

(x − e1)(x − e2)(x − e3)

with its four branch points. The resulting surface is a torus (see exercises 223 and
224, the book Topics in Complex Function theory (I) (pp 22-29) by Siegel is a
good and exhaustive reference).

The postion of the four branchpoints is not determined by the cubic, it obviously
depends on the particular coordinates we choose, but any such four points are
equivalent under a Möbius transformation. Thus to a non-singular cubic we have a
-invariant associated.(zIn fact as we will see, through any point on a non-singular
cubic we can draw four tangents, tangent at residual points. Thus we will have four
points on the Riemann sphere determined. As such tangents can never coincide
(see exercise 224 for a preliminary observation) those four points will determine
the same  invariant as it can never be allowed to take infinite values). The 
invariant constitute the continous invariant to which we refered in the beginning of
this chapter. Its value is straightforward to compute in terms of p and q yielding

 =
27p3

4p3 + 27q2
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The Weierstraß℘-function

Now there is a remarkable function (Weierstraß ℘-function) defined as follows

℘Λ(z) =
1

z2
+

∑

ω∈Λ∗

1

(z − ω)2
− 1

w2

Once you convince yourself that the sum on the right converges, you see that the
function ℘(z) is doubly periodic i.e it satisfies

℘(z + ω) = ℘(z) for any ω ∈ Λ

One says that ℘(z) is a so called Elliptic function. In virtue of its double periodity
it will be a meromorphic function that naturally lives on the quotient space C/Λ
which is a so called complex torus (see exercise 225), as it is also a group, the
quotient of two additive groups, it seems natural to assume that this is indeed the
group structure defined above geometrically.

One may also take the derivative of the ℘-function, yielding

℘′
Λ(z) = −2

∑

ω∈Λ

1

(z − ω)3

and between those two functions there is a remarkable polynomial identity

(2) ℘′
Λ(z)2 = 4℘Λ(z)3 − g2(Λ)℘Λ(z) − g3

for a judicious choice of the constants g2(Λ) and g3(Λ).
The “trick” is to consider the difference, and note that it is an analytic function

which is doubly periodic (hence constant by Liouville or equivalently the maximum
principle) vanishing at the origin.(see exercise 228)

Thus we have the “transcendental” parametrization

Θ : C/Λ → EΛ

of the elliptic curve

(3) y2 = 4x3 − g2x − g3

by
z 7→ (℘Λ(z), ℘′

Λ(z), 1)

What we need to show is that
(i) Every non-singular elliptic curve occurs as (3)
(ii) The canonical addition on C/Λ agrees with the geometric addition
For the first part we make the trivial rearrangement

(y/2)2 = x3 + (−g2/4)x + (−g3/4)

showing that we need for any choice (p, q) with 4p3 +27q2 6= 0 find a lattice Λ such
that p = −g2/4 and q = −g3/4. To do so we need to make a short detour into
Modular forms
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Introducing the Eisenstein forms

En(Λ) =
∑

ω∈Λ∗

1

ω2n

we note that the Laurent expansion of ℘Λ(z) is given by

1

z2
+

∑

n≥1

En+1(Λ)z2n

and that

g2(Λ) = 60E2(Λ)

g3(Λ) = 140E3(Λ)

(cf exercise 228)
The Eisensteins forms have the homogenity property that

En(tΛ) = t2nEn(Λ)

We can then consider them as homogenous functions on the space of all lattices.
We say that two lattices Λ and Λ′ are equivalent iff

Λ = tΛ′ for some t 6= 0

(note the analogy with homogenous coordinates!)
Two equivalent lattices Λ and Λ′ give rise to isomorphic manifolds C/Λ and C/Λ′

by the homothety z 7→ tz, what is less obvious (but not less important) is that two
tori are isomorphic iff the lattices are homotheties of each other (see exercise 229).
We are thus interested in the space of all lattices up to homothety. As a first step we
can normalize the basis (ω1, ω2) to (1, τ) with τ an element of the upper halfplane
H. Now a basis is not uniquely determined by a lattice, the group SL(2,Z) acts
naturally on any basis, which descends to an action on H as follows. The basis (1, τ)
is transformed into the basis (cτ + d, aτ + b) and normalizing we get the action

τ 7→ aτ + b

cτ + d

Note that by slight abuse of notation considering the Eisenstein forms as functions
on H by En(τ) = En(1, τ) we find that they turn out to be modular forms of weight
n satisfying

En(
aτ + b

cτ + d
) =

1

(cτ + d)2n
En(τ)

We are thus interested in the quotient

M1 = H/SL(2, Z)

The remarkable thing is that we can write down a function J(τ) (or equivalently
J(Λ) which classifies the orbits under this action. The function can be expressed
in terms of the Eisenstein forms as follows

J(Λ) =
g3
2(Λ)

∆(Λ)
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where
∆(Λ) = g3

2(Λ) − 27g2
3(Λ)

is a discriminant which vanish iff the lattice Λ degenerates to rank 1
The function J identifies M1 with C, and (up to a multiplicative constant)

coincides with the -invariant! (For further discussions of this see exercise 230)
This settles (i), as to (ii) we need only to show that the determinant
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vanishes whenever z1 + z2 + z3 = 0. This is left as an exercise (232).
We have thus established a non-singular cubic as a complex torus C/Λ via the

Weierstraßfunction, and interpreted the canonical group structure geometrically. Λ

is a sublattice of
1

n
Λ, and the subgroup Λ/

1

n
Λ is finite of order n2 and corresponds

exactly to the points of order n on the elliptic curve. In particular if n = 2 we have
four points, the three non-zero points are called primitive two torsion points. In
the Weierstraß normal form those corresponds to the intersection of the cubic with
the y-axis (i.e. to the three roots e1, e2 and e3 pf the cubic x3 +px+ q, or the three
zeroes of ℘′(z)). ℘(z) is an even function and the map

℘(z) : C/Λ → CP 1

defines a double covering of the Riemann sphere CP 1 branched exactly over the
three points ℘(e1), ℘(e2) and ℘(e3)

We also observe that the three-torsion points will correspond to the flexes, and
that there will be hence nine distinct flexes. As the sum of any two three torsion
points as well as the inverse of one is a three torsion point, we see that the line
through any two flexes must meet the cubic in a third flex. The flexes of the cubic
then form a remarkable system of nine points (impossible over the reals see exercise
233) which is a faithful representation of the finite affine space F2

3. We will discuss
this at greater length in the context of the Hesse normal form

Two special cubics

The connection between the lattice Λ and the cubic y2 = x3 + px + q and its
coefficients is rather subtle and indirect.

It is hard to compute the Eisenstein forms for a given lattice (and hence get the
numbers p and q), and conversely given the equation it is hard to find a correspond-
ing lattice Λ.(see exercise 236). There are however two special cubics for which we
can go back and forth explicitly

If Λ is generated by < 1, ρ > (ρ a primitive cube root of unity) we have a “hexago-
nal” lattice invariant under multiplication by ρ, thus computing the Eisenstein form
of weight two we have

E2(Λ) = E2(ρΛ) = ρE2(Λ)

from which we conclude that E2 = 0 and hence p = 0 and  = 0. This curve
is a double cover of CP 1 branched at an equianharmonic set of four points. The
curve is commonly known as the Fermat cubic (because it can be put in the form
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x3 +y3 +z3 = 0) and its Weierstraß normal form has an additional symmetry given
by

(x, y) 7→ (ρx, y)

Thus there is a cyclic group of order six which fixes a flex and leaves the curve
invariant. Conversely any elliptic curve of the Weierstraß form y2 = x3 + q is
equivalent to the Fermat cubic

If Λ is generated by < 1, i > (i.e. a “square” lattice) which is invariant under
multiplication by i. Computing the Eisenstein form of weight three we get

E3(Λ) = E3(iΛ) = −E3(Λ)

concluding that E3 = 0 and hence q = 0 and  = 1. This curve is a double cover
of CP 1 branched over a harmonic set of four points. This curve has no commonly
accepted ‘nick name, I prefer to call it the Gauß cubic, as the lattice is given by
the Gaussian integers, others prefer to refer to itas the “leminiscate” (see exercise
246). The Weierstraß form of a Gauß cubic has also an additional symmetry given
by

(x, y) 7→ (−x, iy)

Thus in this case there is a cyclic group of order four which fixes a flex and leaves the
cubic invariant. Conversely any elliptic curve of the Weierstraß form y2 = x3 + px
is equivalent to the Gauß cubic

Those two cubics are special, but very distinguished, examples of a more general
concept, so called elliptic curves with complex multiplication (or of CM-type)

Isogenies

As we have seen (exercise 229) any map between two elliptic curves respecting
their zeroes is a homomorphism. Such a map is either trivial (i.e. the image is zero
or surjective. In the latter case we say that it is an isogeny . Given two arbitrary
elliptic curves (E = C/Λ and E’ = C/Λ) we expect no interesting map between
them, the condition that there exists an isogeny (ι : E → E’) is that there exists

some t such that tΛ ⊆ Λ′ If that is the case the quotient
Λ′

tΛ
is a finite subgroup

(the kernel of the isogeny) and if N is its order (the index of tΛ in Λ′, and also by

definition the degree of the isogeny) then Λ′ is a sublattice of
1

N
tΛ and we get an

isogeny ι∗ : E’ → E’ also of degree N . ι∗ is called the dual isogeny to ι. We thus
see that the notion of an isogeny is symmetric, in fact an equivalence relationship
(see exercise 250)

Given a point P of order N translation by P defines a map ΘP (not a homomor-
phism!) of order N , the quotient by this map gives an isogeny of degree N, and all
isogenies occur in this way (provided of course their kernels are cyclic, cf exercise
252). The point P is not determined by the isogeny (except if for trivial reasons
see below) but the subgroup generated by it is.(cf exercise 255)

The isogenous curve is seldom isomorphic with the original curve, unless of course
the isogeny is given by multiplication by an integer (cf exercise 251). Thus the ring
End(E) of an elliptic curve is in most cases just Z. However for certain lattices Λ
it turns out that the endomorphism ring is strictly bigger, or what is equivalent,
there exists cyclic isogenies in the endomorphism ring. Examples of such curves are
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the Fermat and Gauß cubic, but as the notion has little geometric content, we will
relegade it to some exercises (see exercises 259 and 260)

A particular important case are isogenies of degree two. They correspond to
the primitive two-torsion points (hence there are three of them) via the involutions
given by their respective translations.

Given a two-torsion point ǫ we have that the translation x 7→ x + ǫ commutes
with the involution x 7→ −x as −ǫ = ǫ. Thus the involution descends down to
the covered Riemann sphere permuting the four branch points (see exercise 256 for
more details). This involution on the Riemann sphere will have two fixed points
and the quotient will be another Riemann sphere with four distinguished points on
it, namely the two images of the four branch points on the original sphere, and the
two branch points of the covering. The associated elliptic curve will be the image
of the associated isogeny.

Hesse Normal Form

Translations are usually not induced by linear transformations of the ambient
projective plane, unless they are effected by elements of order three (see exercise
261). We are now going to study a normal form of cubics in which those translations
are prominent and conspicious

By the Hesse normal form we will mean a cubic of form

x3 + y3 + z3 = 3λxyz

A cubic of this form will be denoted by Hλ

As we will see every non-singular cubic may be written in Hesse form (see
exercise 262). The Hesse form has many symmetries. The most obvious is the one
under S3 acting by permutation of the coordinates. Setting

I(x, y, z) = (y, x, z)

T (x, y, z) = (y, z, x)

With I2 = T 3 = 1 and ITI = T 2 we establish S3 as the semidirect product Z2 ⋉Z3,
adding the somewhat less obvious symmetry

S(x, y, z) = (x, ρy, ρ2z)

satisfying ST = TS and ISI = S2, we find a big symmetry group G given as
Z2 ⋉ F2

3. We will presently interpret the group G intrinsically with respect to the
cubics of the Hesse pencil

The Hesse form is invariant under Hessians, and the Hessian of Hλ is Hλ′ with

λ′ =
8 − 2λ3

6λ2

(see exercise 263) Our next task is determine which members of the Hesse pencil
are singular. One case is obvious λ = ∞ corresponding to the triangle xyz = 0,
three other cases occur for those values λ such that λ3 = 1 as those are exactly
those for which λ = λ′. Are there others? As a singular cubic can at most contain
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three singular points, we may simply make a catalogue of all the points whose orbit
under G is at most three (cf exercise 264)

If Hλ is a Hesse cubic not of the above type, its intersection with the Hessian is
given by

xyz = 0

x3 + y3 + z3 = 0

Thus we can give a table of all the flexes (which will be common for all cubics Hλ

in the Hesse pencil) and an explicit identification of this set with F2
3

(0,0) (1,−1, 0) (1,0) (−1, 0, 1) (−1,0) (0, 1,−1)

(0,1) (1,−ρ, 0) (1,1) (−ρ, 0, 1) (−1,1) (0, 1,−ρ)

(0,−1) (1,−ρ2, 0) (1,−1) (−ρ2, 0, 1) (−1,−1) (0, 1, ρ2)

There are twelve lines (cf exercise 267) they come in four packages of three
parallel lines, each corresponding to a point at infinity (at the projective completion
of F2

3) or a singular fiber of the Hesse pencil.

Now we can identify the action of the group G. The normal subgroup (generated
by S and T) isomorphic to F2

3 corresponds to translations by flexes (see exercise
268) while the involution I acts as z 7→ −z (provided (1,−1, 0) is zero )

We are also interested in the points of order two, keeping as usual (1,−1, 0) as
zero those correspond to points invariant under I, which can be listed as (1,−1, 0)
(of course) and points of type (1, 1, α) which are solutions to the equation

α3 − 3λα + 2 = 0

Thus we can compute the -invariant of a Hesse cubic Hλ as follows

(λ) = −λ3(8 + λ3)3

64(1 − λ3)3

Polars to Cubics

Let P be a point in the plane. We are interested in finding the tangents to a
cubic C which passes through P.

If P is given by (ζ, η, ξ) and (x, y, z) a point on the cubic then its tangent clearly
passes through P iff

ζ
∂C

∂x
+ η

∂C

∂y
+ ξ

∂C

∂z
= 0

For fixed (ζ, η, ξ) we have defined a conic, the polar conic to P with respect to C,
and whose intersection with C gives exactly the points whose tangents pass through
P

Thus we observe that through a point outside C we can expect to draw six
tangents, and furthermore the corresponding six tangency points lie on a conic,
which is somewhat remarkable

In analogy with the case of polars to conics we have the following
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Proposition. . A point P lies on a cubic C iff it lies on its polar Q. The conic Q
is then tangent to C at P, and it splits into two lines iff P is a flex, in that case
one of the components is the flexed tangent, and the other is the line that joins the
three primitive two-torsion points (if P is considered as the zero)

Proof. We may assume that P is given by (0,0,1) and that the cubic C is given by
(cf (1))

A0z
3 + A1(x, y)z2 + A2(x, y)z + A3(x, y)

then the polar Q is simply given by ∂C/∂z, hence

3A0z
2 + 2A1(x, y)z + A2(x, y)

Thus we see that the condition that P lies on C or Q in both cases is given by A0 = 0.
If that is the case we see that the common tangent is given by A1(x, y) = 0. Now
(cf exercise 198) P is a flex iff A1 is a factor of A2, thus if P is a flex Q splits with
one component being the flexed tangent and the other joining the tangency points
to the residual tangents passing through P. (cf exercise 274) will be the primitive
two-torsion points. Finally if the polar splits one component has to be tangent to
the cubic, hence A1(x, y) = 0 has to be a component.

Furthermore the polar Q to a point P is tangent to the cubic iff P lies on a flexed
tangent. The polars to points on a flexed tangent form a pencil of conics. This
pencil has a double base point exactly at the flex, and it contains two degenerate
members. One being of multiplicity one, the polar to the flex, and one being of
multiplicity two, with its singular point on the flex. In fact we have

Proposition. Given a flex F, its polar is a singular conic, and the polar of that
conics singular point F’ is singular at F. Furthermore F’ lies on the Hessian of the
cubic, and if F is taken as zero it is a point of order two

For a proof see exercise 276 In case the cubic has singular points, the polars will
all go through those, as is easily checked (exercise 278)

The dual cubic

The tangents to a cubic form a curve in the dual plane. The degree of that curve
is sometimes refered to as the class of the cubic, and equal to the number of tangents
to the cubic through a given point. As the tangents are given by the intersection of
the polar with the cubic we get six (for a topological proof see exercise 279). If the
cubic is singular, the count will not be correct as their will be false tangents (lines
through the singular point), those will have to be subtracted. We see then that the
dual of a nodal cubic will be four, and that of a cuspidal cubic three, (exercise 278).

The case of the cuspidal cubic y2z = x3 can also be checked by direct compu-
tation. The tangent to the point (t2s, t3, s3) is given by (−3ts2, 2s3, t3) thus the
dual cuspidal cubic is given by 4x3 = 27y2z another cuspidal cubic. The cuspidal
tangent of the original cubic (corresponding to t = 0) will now correspond to the
flex of the dual cubic, while the flexed tangent of the original cubic will correspond
to the cusp of the dual

This global calculation is really local, thus we see that the dual of a non-singula
cubic will be a sextic with nine cusps, while the dual of a nodal cubic will be a
quartic with three cusps and a bitangent corresponding to the node. This particular
quartic is known as the Steiner quartic
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Exercises

186 Let Q be a homogenous form of degree N in k homogenous variables

x1, x2, . . . xk

Show that we can write Q in a unique way as

xkQ1 + Q2

where Q1 is a form of degree N − 1 in k variables and Q2 a form of degree N in
k − 1 variables x1, x2, . . . xk−1

Denote by B(N, k) the number of linearly independent forms of degree N and with
k variables use the above to conclude the following recursive formula

B(N, k) = B(N − 1, k) + B(N, k − 1)

and compare this with binomial coefficients and write down an explicit formula for
B(N, k) in terms of a binomial coefficient

187 Show that any cubic written as the sum of two monomials must either be
reducible or cuspidal. Can every cubic be written as the sum of three monomials
with the proper choice of coordinates?

188 Show that any cubic defined over the reals must have real points,in fact
show that any real line has to intersect a real cubic. Is this still true if we restrict
to R2?

189 Compute the dimension of rational cubics (i.e. cubics which can be paramet-
rised by binary forms like e.g smooth conics).(Hint: Show that a rational cubic must
be parametrised by cubic forms)

190 Given a cubic parametrised by cubic binary forms,(p(s,t),q(s,t),r(s,t)) show
directly that either
(i) There are two distinct points on P1 mapped to the same point
or
(ii) Some combination of (pt,qt,rt) and (ps,qs,rs) vanish at some point

191 Determine for which λ the cubics (x+ y + z)3 = λxyz are singular, and find
a parametrisation in those cases

192 Show that there exists a polynomial in the coefficients of two binary quartics
(this will of course work for any degree) which vanishes iff the two forms have a
common zero. Such a polynomial is refered to as the resultant.(Hint: If P and Q
are two quartics with a common root then one may find two cubics p and q such
that Pp=Qq. Treating the coefficients of p and q as unknown show that we have too
many equations and not enough unknowns)

193 If C is a cubic, show that the question of whether C is singular i.e. whether

the three conics
∂C

∂x
,
∂C

∂y
,
∂C

∂z
have common base point can be reduced to whether

two quartics have a common root
Use this to establish the existence of a polynomial in the coefficients of the cubic,
which vanishes iff the cubic is singular. If you are a bit more careful determine the
degree of such a polynomial, and if you are really courageous try and determine it
explicitly!(Hint: exercise 192 )
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194. Show that a nodal tangent or a cuspidal tangent intersects a cubic in just
the singular point, unless of course it is a component of the cubic

195 Show that over the reals there are two types of nodes, one in which the
nodal tangents are real, one for which they are complex conjugate. Show that in
the latter case the singularity consists of an isolated point, while in the former it
has two real branches. On the other hand show that a cusp defined over the reals
never can consist of an isolated point

196 Write down all the different types of singular cubics (8) and show that they
are all projectively equivalent within their type. Also make a partial order in which
one type dominates another if it can be “specialised” to it. Note this is not a
total order, as neither a conic with a non-tangent line nor a cuspidal cubic can be
“specialised” to each other. Finally try and compute the dimension of each type, as
“subvarities” of the big 9-dimensional space of cubics. Note that with the exception
of one type (which?) those subvarities are not “closed” but their closures contain
types of lower order in the domination ordering. In this way we can make precise
the notion of “specialising”. Note finally that those types are simply orbits under
the induced action of PGL(3,C) on P9 and hence are smooth, but their closures
are not!

197 Extend the classification of singula cubics to the affine case by considering
the position of the line at infinity visavi the cubics. Furthermore refine the classi-
fication by considering the real case, and the position of the two circular points at
infinity!

198 Show that, conserving the notation of (1), P is a flex iff A0 = 0 (of course)
and A1 is a factor of A2

199 Let P be a point through which two flexed tangents to a cubic can be drawn,
by choosing coordinates such that P is given by (0,0,1) the two flexed tangents by
x = 0 and y = 0 and the flexes by (0,1,0) and (1,0,0) respectively, and such that
an additional tangent from P is given by x = y and tangent at (1,1,1), find the
equation of the cubic (up to a parameter)

200 Observe that the Hessian of a linear form is always identically zero, and
that of a conic constant and equal to zero iff the conic is singular. How does this
tally with inflexion points?

201 Given two cubics they form a pencil, the intersection of any two members of
this pencil give the same intersection points (the base points), thus we will be done
if we can assume that one cubic is singular, as it then can be parametrised by cubic
binary forms which can be plugged into the cubic equation of an arbitrary member
of the pencil. (If the singular cubic turns out to be reducible, the argument is even
simpler). Prove that any pencil oc cubics has a singular member!(cf exercise 193)

202 Find the Hessian of the Fermat cubic x3 + y3 + z3 = 0 and determine its
flexes explicitly. How many are real?

203 Show that any real (non-singular) cubic has an odd number of real flexes.
In particular observe that any real cubic can be put in real Weierstraß form.

204 Prove the claims of the lemma! In particular show that a cubic x3 + px + q
has a multiple root iff it has a common root with its derivative 3x2 +p, and use this
to get the expression for the discriminant. Furhermore the roots of the derivative
corresponds to the local extrema of the cubic, show that we have three real roots
iff the local extrema have opposite signs, and just one real root if they have qual
signs. Use this to give a criteria in terms of the sign of the discriminant whether
the cubic has one or three real roots.
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205 Show the identity

4p3 + 27q2 = (e1 − e2)
2(e2 − e3)

2(e3 − e1)
2

and compare with exercise 204
206 Show that if two non-singular cubics have the same -invariant, then they

belong to the same orbit under PGL(2,C). By considering the two real cubics

y2 = x3 + px + q

y2 = −(x3 + px + q)

show that this is not true over PGL(2,R)
207 Show that the “unbounded” portion of the real cubic meets the line at

infinity at the flex. Furthermore show that any line intersects this component
in R2 except some of those parallel to the y-axis. In particular show that the
component cannot have any asymptotes. Finally show that all the flexes lie on the
“unbounded” component, and that they correspond to x-values which are roots to
the polynomial 2qq′′−(q′)2, where q(x) = (x−e1)(x−e2)(x−e3). You may also try
and prove that this polynomial has exactly one real root (hence there are exactly
two additional real flexes to the one at infinity),

208 Show that the bounded component encloses a convex region. Write down
the integrals giving the length of its perimeter, its area and rotated volume, in
terms of the cubic q. Which of those integrals can you do?

209 Show that if the cubic is nodal we have two cases corresponding to whether
e1 = e2 < e3 or e1 < e2 = e3, one case corresponds to a isolated singular point
(the nodal tangents are complex conjugate) the other to a connected curve. Which
corresponds to which? What about the number of real flexes in those two cases?

210 Give a parametrisation of the the two nodal cubics y2 = x3 + x2 and
y2 = x3 − x2 defined over the reals, and show that in one case we can identify the
real part of the cubic (except the isolated singularity) with a circle (RP 1), while in
the other case, it is identified with the figure 8

211 Show that the inhomogenous equation y = x3 defines a cuspidal cubic when
it is homogenised. Where is the cusp?

212 Find the flex(es) of a cuspidal cubic, either by computing its Hessian and
find the intersections (which is now easy why?) or by finding directly a line Ax +
By + Cz = 0 which becomes a perfect cube when the parametrisation of the cubic
is plugged into it.

213 Exploit the parametrisation of a cuspidal cubic to find the equation of a
conic which is tangent to the cubic y2 = x3 at the points (1, 1, 1),(4, 8, 1) and
(12,−8, 27) (Hint: Write down the binary form of the conic when restricted to the
parametrisation of the cuspidal cubic, and go backwards)

214 By using a parametrisation of a nodal cubic, show that there are three points
at which it is possible to find a non-singular conic intersecting the cubic at just one
point - with multilicity six (one more than you expect). Such a conic will be refered
to as a super-flexed conic. If the nodal cubic is parametrised as in exercise 219,
compute the equation of the superflexed conics, how many are real?

215 Show that the nodal cubic (x+y+z)3 = 27xyz is invariant under the action
of S3 via permutation of coordinates; thus conclude that the nodal tangents most
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belong to orbits with only two elements under the dual action on P2∗ and determine
them by finding a unique such orbit

216 Prove that the point ((z−1)3, (z−ρ)3, (z−ρ2)3) is real (with ρ3 = 1, ρ 6= 1)
iff |z| = 1

217 Show that the cuspidal cubic is not diffeomorphic to the Riemannsphere
218 Substituting the parametrisation (t2, t3, 1) of a cuspidal cubic into the equa-

tion of a line Ax + By + Cz observe that there is no t-term and interpret this
intelligently. Furthermore assuming that the determinant

∣

∣

∣

∣

∣

∣

t21 t31 1
t22 t32 1
t23 t33 1

∣

∣

∣

∣

∣

∣

= 0

conclude that t1 + t2 + t3 = 0
219 Substituting the parametrisation of exercise 216 into the equation Ax +

By +Cz of a line we will observe that the constant coefficient will always equal the
leading coefficient. make as above an intelligent interpretation of this. Furthermore
considering the vanishing of the determinant below

∣

∣

∣

∣

∣

∣

(t1 − 1)3 (t1 − ρ)3 (t1 − ρ2)3

(t2 − 1)3 (t2 − ρ)3 (t2 − ρ2)3

(t3 − 1)3 (t3 − ρ)3 (t3 − ρ2)3

∣

∣

∣

∣

∣

∣

try and conclude that t1t2t3 = 1
220 Given a cubic in Weierstraß form y2 = x3 + px + q and two points (x1, y1)

and (x2, y2) on it, write down the coordinates (x3, y3) of their sum, and show that
this is given as rational functions with coefficinets defined over the field generated
by p and q. In particular write down the coordinates of a “doubling” of a point
(x, y). As a comparison do the same thing for the cuspidal cubic and for some nodal
cubic (in Weierstraß form)

221 The above construction allows us to produce new rational solutions provided
we already have rational solutions. The rational solutions will form a subgroup,
the so called Mordell-Weil group, of the group of all points on the cubic. It is a
deep theorem that although this group may be infinite, the rank (as a Z module)
is always finite. This is known as Mordells theorem.
In particular check that (1, 2, 1) is a rational solution to the curve y2 = 3x + 1 and
construct others (less obvious)

222 Although there may be an infinite number of rational solutions to a smooth
cubic, there is never more than a finite number of integral solutions. A theorem of
Siegel. Show that on the cuspidal cubic y2 = x3 we may find an infinite number of
integral solutions, what about nodal cubics?

223 Let S1 be a group, defined by its identification with the unit circle |z| = 1
inside C. Consider the torus S1 × S1 as a group, and show that the involution
defined by (z1, z2) 7→ (−z1,−z2) has exactly four branch points. Find them!

224 Given a surface one may triangulate it and consider the alternating sums
of vertices, edges and sides. (cf exercise 11). This alternating sum, as observed by
Euler, is independent of the triangulation and denoted the Euler characteristics.
Show that the Euler characteristics of a double cover of the sphere at four points is
zero, by choosing a triangulation of the sphere (with Euler characteristics 2) such
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that the four branch points are part of the vertices, and then lifting it up to a
triangulation of the double cover

225 Given a lattice Λ we may take two periods ω1 and ω2 which generate the
lattice (i.e. Λ = Zω1 + Zω2. Those span a parallelogram, which is a so called
fundamental region for the action of the lattice Λ on the complex plane C. Now
opposite sides of the parallelogram are identified, as they differ by translation of
a lattice element, a so called period. Use this to argue that the quotient C/Λ is
indeed a torus.

226 Considering the two real cubics in exercise 206, show that they are real
subgroups of the same complex torus. Explain how their components fit as closed
paths in the torus

227 Show that the unbounded component is a real subgroup of the real cubic
228 Compute the Laurent expansions of the Weierstraß function ℘Λ(z) and its

derivative ℘′
Λ(z) and conclude that the difference between the two sides of (2) has

a Laurent expansion with no poles nor any constant terms
229 Any isomorphism θ : C/Λ → C/Λ′ lifts to a map Θ : C → C on the universal

double coverings, respecting the lattices (i.e. Θ(Λ) ⊆ Λ′). Show that such a map Θ
must be of the form z 7→ tz for some t. Conclude also that any map between two
elliptic curves E and E’ respecting the zeroes must be a homomorphism

230 We say that F is a modular function of weight n if

F (
aτ + b

cτ + d
) =

1

(cτ + d)2n
F (τ)

. Examples are given by the Eisenstein forms. A modular function is automatically
periodic with respect to τ 7→ τ + 1 thus we may may expand it in a so called
q-expansion, with q = exp(2πiτ)

F (τ) =

∞
∑

−∞

anqn

and we say that F is a modular form iff it has a removable singularity at q = 0 and
a parabolic form if in addition it vanishes at 0.

Show that the space Mn of modular forms of weight n is a finite dimensional
vectorspace, that dimCMn = 1 for 0 ≤ n ≤ 5 and write down the generators in
each case. Furthermore show that dimCM6 = 2 containing (up to a multiplica-
tive constant) a unique parabolic form ∆. Show that multiplication with ∆ yields
an isomorphism between Mn and the 1-codimensional subspace M0

n+6 of Mn+6

consisting of parabolic forms. Finally observe that the quotient by any two lin-
early independent forms in the same space Mn yuields a holomorphic function on
H/SL(2, C)

231 Show that there are polynomials Pn(x, y) with rational coefficients. such
that En = Pn(E2, E3) and give a recursive defintion of those polynomials.(Hint:
Use the the Laurent expansion of the identity (2))

232 Show that the function

℘′(z) − α℘(z) − β

has three zeroes adding up to a period (cf exercise 239). Use this to show that for
suitable choice of α and β we may assume that the zeros are x, y and − (x + y).
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Conclude that for x + y + z = 0 mod (Λ) the determinant

∣

∣

∣

∣

∣

∣

℘(x) ℘(y) ℘(z)
℘′(x) ℘′(y) ℘′(z)

1 1 1

∣

∣

∣

∣

∣

∣

vanishes
233 Show that if a finite collection of points in the real projective plane has the

property that any line joining two points contains a third, then they all lie on a
line. In particular show that a cubic may at most have three flexes.

234 Given the parametrisation of a smooth cubic by C/Λ (Λ generated by <
1, τ > say) show that the “unbounded” oval corresponds to the image of the real
line. While the “small” oval, corresponds to the image of the line R + 1

2τ which

will be real iff the two two-torsion points 1
2τ and 1+τ

2 are real.
235 Show that one may find a super-flexed conic (see exercise 214) at a point P

iff P is of order 6 but not of order 3. Show that if P is of order 3, the super-flexed
conic degenerates into a double line. In particular conclude that a cuspidal cubic
has no super-flexed conics

236 The identity (2) is really an example of a non-linear differential equation,
showing that the “inverse” function Ψ is a primitive of the function

1
√

x3 + px + q

Now a primitive does not exist on the torus, as we may find closed paths Γ such
that the integrals

∫

Γ

dx
√

x3 + p + q

do not vanish. The values of such integrals on closed paths of the elliptic curve are
called the periods of the integral, the periods form a lattice Λ and the elliptic curve
is recaptured via that lattice.

By chosing suitable “slit”paths between the branch points downstairs on the
Riemann sphere, give an integral expression for τ

237 The presentation of ℘(z) in terms of partial fractions is not a very efficient
way of computing the function, nor is the Laurent expansion, giving the extra
difficulty of approximating the Eisenstein forms
a) Give an error estimate of the approximation

℘(N)(z) =
1

z2
+

∑

ω∈Λ
|ω|<N

(
1

(z − ω)2
− 1

ω2
)

b) Give an error estimate of the Laurent approximation

℘<N>(z) =
1

z2
+

N
∑

n=1

(2n + 1)En+1z
2n

A more efficient way is outlined in exercise 238 below
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238 Define the theta function θ(z, τ) accordingly

θ(z, τ) =
∞
∑

n=−∞

exp(π(n +
1

2
)2τ + 2(n +

1

2
)z)

Due to the exponential factors in the summand this converges very fast. This
function is not periodic, but it has the following quasi-periodic behaviour

θ(z + 1, τ) = −θ(z, τ)

θ(z + τ, τ) = −1 exp(−πi(τ + 2z))θ(z, τ)

from which we conclude that the function

Θ(z) =
d2logθ(z, τ)

dz2

is doubly periodic.
Show that Θ coincides with the Weierstraß ℘-function up to an additive constant
c) Give an error estimate by approximating the theta function by

θN =
N

∑

n=−N

exp(π(n +
1

2
)2τ + 2(n +

1

2
)z)

239 A function doubly periodic with respect to a lattice Λ is called elliptic. Show
that for en elliptic function E the integral

1

2πi

∫

∂P

Edz

where P is a period parallelogram. vanishes. Conclude
a)The sum of the residues for an elliptic function equal zero. Hence an elliptic
function cannot have just one pole simple at that
b)The number of zeroes of an elliptic function equal the number of poles (each
counted with the appropriate multiplicity). This number is called the order of the
elliptic function. Note that no elliptic function has order 1(Hint: Consider instead

of E the elliptic function
E′

E
)

c) Show that the sum of the distinct zeroes and poles inside a fundamental par-
alellogram of an elliptic function is an element of the lattice Λ(Hint: Consider
zE′

E
)

240 Denote by ℘τ (z) the Weierstraß function associated to the lattice < 1, τ >.
Show that we have

lim
τ→∞

℘τ (z) =
π2

sin2 πz
− π2

3

241 Check that the point (0, 1,−1) is a flex on the Fermat cubic x3 +y3 +z3 = 0
and write down all the linear transformations that fixes the flex and leaves the cubic
invariant
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242 Show that an elliptic curve is a Fermat cubic iff three flexed tangents go
through a point. And if that is the case, the flexed tangents come in three triplets
each consisting of concurrent lines

243 Find all complex numbers t such that tΛ = Λ for the “hexagonal” lattice,
they form a finite subgroup of C∗ determine it!

244 Show that the automorphisms of a Fermat cubic permutes the primitive
two-torsion points simply transitively (cyclically). What are its orbits under its
action on the nine three-torsion points?

245 What is the condition that three three-torsion points lie on a line, or that
the corresponding flexed tangents are concurrent in the case of a Fermat cubic?

246 Show that the Riemann surface associated to the function

y =
√

1 − x4

is given by the Gauß cubic. Furthermore if

x4 + y4 + 2x2y2 + y2 − x2 = 0

gives the equation of a lemniscate (the locus of points whose product of the distances
to two fixed points is constant) the lines through the origin (in this case) give a
parametrisation via the length r = x2 + y2 of the radi vectors of the curve
a) Show that the origin is a node of the curve, what are its nodal tangents
b) Are there any other singularities (complex, at infinity?)
c) Show that

2x2 = r2 + r4

2y2 = r2 − r4

constitute a parametrisation of the curve
d) Using the parametrisation show that the arclength s(r) (from the origin to the
point (x, y)) is given by

∫ r

0

dr√
1 − r4

e) Show that if

r2 =
4u2(1 − u4)

(1 + u4)2

then
∫ r

0

dr√
1 − r4

= 2

∫ u

0

du

1 − u4

this is known as a formula for doubling the arclength of a lemniscate, devised by
the Italian count Fagnano at the beginning of the 18th century (cf exercise 220)

247 Determine the complex numbers t such that tΛ = Λ for a “square”lattice,
show that they form a finite subgroup of C and determine it

248 Show that the automorphisms of the Gauß cubic switches two primitive
two-torsion elements and fixes a third. Which? How does it act on the flexes?

249 Show that the Gauß cubic is characterized by the existence of a flexed
tangent and a super-flexed conic (see exercise 214) which are tangent
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250 Show that there are to each degree N only a finite number of isogenies
of degree N . How many? Conclude that each equivalence class only contains a
countably infinite number of curves

251 Show that the endomorphism z 7→ Nz is an isogeny of an elliptic curve onto
itself. Determine its degree and show that the composition of an isogeny and its
dual is always of that type

252 Show that any isogeny can be factored into a cyclic isogeny and one of form
z 7→ Nz

253 Are the Fermat cubic and the Gauß cubic isogenous?
254 If E,E’ and E” are isogenous curves, with an isogeny of degree N between

E and E’ and an isogeny of degree M between E and E”, show that there exists an
isogeny of degree P between E’ and E”, where P |MN

255 Let EN denote the subgroup of N-torsion points, and let P be a primitive
such point, generating a subgroup PN of EN . P defines an isogeny of degree N onto
an elliptic curve E’. Show that we have a surjection from EN2 to E’N

256 Given the four branch points normalized to 1, 0,∞ and λ say on the Riemann
sphere. Assuming that 0 corresponds to the zero upstairs, write down the three
involutions corresponding to the points 1,∞ and λ and find their corresponding
fixed points

257 Given a lattice Λ generated by < 1, τ > and consider the isogenies corre-

sponding to the points
1

2
,
τ

2
and

1 + τ

2
, determine the period parallelograms, or

equivalently the “τ” values of the quotient. Use this to compute the -value of the
quotient in terms of the original elliptic curve

258 Make a similar calculation of the -invariants of quotients of degree two, but
this time using exercise 256

259 Recall that any endomorphism of an elliptic curve is given on the universal
cover by z 7→ λz (cf exercise 229), thus the existence of non-trivial isomorphisms is
equivalent to the existence of non-integral λ such that λΛ ⊆ Λ.
a) Show (assuming as we may that Λ =< 1, τ >) that this is equivalent to τ satis-
fying a quadratic equation
b) Show that the endomorphism ring of the elliptic curve will turn out to be the
ring of integers of the quadratic field Q(τ)
260 Determine all elliptic curves who have endomorphisms of degree two (i.e. de-
termine the “τ” values) and compute their -invariants. Use this to compute the
Eisenstein forms for such lattices

261 Assume that z1, z2, z3 lie on a line, show that z1 + θ, z2 + θ, z3 + θ do so iff
3θ = 0 i.e. a flex

262 Show directly that neither the nodal nor the cuspidal cubic can be written
under Hesse form

263 Write down the Hessian of a cubic Hλ in Hesse form and verify that it is
also of Hesse form Hλ′

264 Determine all the orbits under the group G containing at most three ele-
ments. Use this to confirm that there are no other singular members than those
four accounted for by λ = λ′

265 Observe that if λ3 6= 1,∞ then Hλ has nine distinct flexes, and hence cannot
be singular. Why?

266 Write down the equations of the flexed tangents to the flexes of a Hesse
pencil. Those equations will depend on λ. Try and find those λ for which we may
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find three concurrent flexed tangents (cf exercise 242)
267 Show that G acts on the dual projective plane of lines, and that the or-

bits with three elements divide into four groups, each corresponding to a singular
member (cf exercise 264)

268 S and T acts as translations on the subgroup of flexes, identify that action
setting (1,−1, 0) as zero

269 Given (x0, y0, z0) on cubic Hλ and letting (1,−1, 0) be zero use the vanishing
of
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∣

∣

∣

∣

x y z
x0 y0 z0

1 −1 0

∣

∣

∣

∣

∣

∣

= 0

to determine explicitly the involution z 7→ −z on the coordinate level
270 Show that points of form θ + ǫ with θ flexes andǫ points of order two, form

points of order six; and that conversely every point of order six can be written
uniquely in such a form. Try and find all the six-torsion points on a Hesse cubic
Hλ

271 Show that a Hesse cubic Hλ with λ real has one or three real points of order
two depending on the sign of 1−λ3. Show that a Hesse cubic has three real points
of order two iff its Hessian has just one real point of order two. Will this still be
true if the cubic is not under Hesse form?

272 For certain values of λ the group leaving Hλ invariant is even bigger than
G. Prove that we have the two following cases
(0) U(ξ, η) = (ξ, η−ξ) lifts to a linear transformation leaving Hλ invariant for λ = 0
and λ3 = −8 (the case of the Fermat cubic)

(1) V (ξ, η) = (−η, ξ) lifts and leaves Hλ invariant in the case of λ = 1 ±
√

3 (the
case of the Gauß cubic)
And determine explicitly the linear transformations that lift U and V, and how
they will transform H − λ in general

273 Show that there exists 12 λ values for each -value, except for certain 
values. Which?

274 Show that if P is a point on a cubic, we can draw four tangents from P, not
counting the tangent at P, unless of course it is a flex. Show that in the latter case
the three residual tangents are tangent at three points lying on a line, and those
three points are the primitive 2-torsion points, in case P is taken as the zero

275 Show that a polar conic is bitangent to the cubic iff the point lies on the
intersection of two flexed tangents. What can we say in the case the polar conic is
triply tangent?

276 Letting F=(1,−1, 0) be the zero on the Hesse cubic Hλ show that the polar
of the point F’=(λ, λ,−2) has its singular point on F. Show furthermore that it
actually is the singular point of the polar of F, and that it lies on the Hessian.
Finally show that the tangent at F’ of the Hessian passes through F and conclude
that F’ is a point of order two (on the Hessian, with F=0)

277 Preserving the notation from exercise 276. The polars of the points lying on
the flexed tangent of the Hessian Hλ′ to F, form a pencil of conics. Show that those
conics are flexed to each other at F’ and that their common tangent is given by the
flexed tangent of Hλ, and that their simple base point is given by (3λ, 3λ, λ3 + 2)

278 Show that a singular point of a cubic lies on every polar. Show furthermore
that if the singular point is a cusp, every polar will be tangent to the cuspidal
tangent
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279 Let C be a smooth cubic and P a point outside. Projecting from P to a
line we get C presented as a triple cover of the Riemann sphere. By chosing a
triangulation with vertices at the branch points, compute the Euler characteristic
of C in terms of the Euler characteristic of the Riemann sphere and the number
of branch points. (cf exercise 224). As two quantities in the “equation” will be
known, find the unknown (the number of branch points) and interpret this number

280 Show that the cuspidal tangents of the Steiner quartic all are concurrent
281 Show that the real points of a Steiner quartic are formed by the hypocycloid

of a circle of radius r rolling inside a circle of radius 3r
282 Show that the Steiner quartic is given by the image of a conic tangent to

the edges of a triangle blown down under a Cremona (cf exercise 183 c)
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Nets of Conics

By a net of conics we mean a 2-dimensional linear subspace N of the space P5 of
conics.

A net in analogy with a pencil can be written as all the conics of the form

λ0Q0 + λ1Q1 + λ2Q2

where (λ0, λ1, λ2) then are homogenbous coordinates for the plane N.
Associated to a net is a discriminant cubic corresponding to the conics in the

net which are singular. This is clearly given by the intersection of N with the
discriminant hypersurface.

Furthermore the discriminant cubic of a net comes with a canonical double cover-
ing, namely to each singular conic we can associate either component. This double
cover the “dual” discriminant is a curve that naturally lives in the dual P∗. This is
also a cubic, this can be seen as follows. Each point p of P2 defines a line in the dual
space, the number of times this line meets the “dual” discriminant is given by the
number of components of singular conics in the net passes through p. The conics in
the net passing through p form a pencil (unless of course p is a base point), a pencil
has three singular members counted of course with appropriate multiplicities, thus
the degree of the “dual” discriminant is also three.

We may also associate to N a curve in P2 being the locus of singular points of
singular members of the net. This curve will be denoted the Jacobian of the net A
member of the net is singular iff all its partials vanish at some point. For such a
point this means that the system

λ0∂Q0/∂x + λ1∂Q1/∂x + λ2∂Q2/∂x = 0
λ0∂Q0/∂y + λ1∂Q1/∂y + λ2∂Q2/∂y = 0
λ0∂Q0/∂z + λ1∂Q1/∂z + λ2∂Q2/∂z = 0

has a nontrivial solution (λ0, λ1, λ2) which translates into the vanishing of the
determinant

∣

∣

∣

∣

∣

∣

∂Q0/∂x ∂Q1/∂x ∂Q2/∂x
∂Q0/∂y ∂Q1/∂y ∂Q2/∂y
∂Q0/∂z ∂Q1/∂z ∂Q2/∂z

∣

∣

∣

∣

∣

∣

which gives the equation for the Jacobian and shows that it is a cubic as well.
Given a net N we may canonically associate a map

Θ : P2 → N∗

By simply to each point p ∈ P2 associating the subpencil of N (i.e. a line in N and
hence an element of N∗) consisting of the conics passing through p. If p happens
to be a basepoint this will not be defined, unless we blow up p. We will from now
on assume that the net does not have a basepoint, and later discuss the rather easy
modifications when it has

This map is 4:1 as each fiber consists of the basepoints of the corresponding
pencil. A point P (P for pencil) of N∗ is called a branchpoint iff the corresponding
fiber does not have four distinct points. And a point p of P2 is called a ramification
point iff it is a multiple point of some fiber
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A pencil which has a multiple base point is tangent to the discriminant hence to
the discriminant cubic. Thus the locus of branchpoints on N∗ is simply the locus
of tangents to the discriminant, hence its dual curve. As a dual cubic it is a sextic
with nine cusps, the cusps corresponding to the flexed tangents of the discriminant,
or equivalently to branchpoints whose fibers contain points of multiplicity three.

At a ramification point p, the corresponding pencil of conics through p has (at
most) two singular members. In any case one of those has p as singular point. Thus
the locus of ramification points coincide with the Jacobian.This gives a geometric
explanation of the determinental form of the Jacobian equation above.

At a ramification point p, all the conics passing through p are tangent (cf exercise
283). Thus if the conics of a net would be plotted the Jacobian would appear
darkened as a Moire pattern. If p has multiplicity three in its fiber, then all the
conics through p are flexed to each other.

At a point p of the Jacobian there are two distinguished lines, namely the two
components of the singular member. If the multiplicity of p is two, there is also a
third distinguished line, namely the common tangent to all the conics through p.
If p is of multiplicity three that common tangent will coincide with one of the two
components. There is also of course a fourth line, the tangent of the Jacobian at p.
Its relationship to the other three (two) lines is interesting (see exercises 285,286
and 287) We note the following

Lemma. If P is a singular point of a singular conic L1L2 corresponding to a flex of
the discriminant, then the tangent to the Jacobian at P coincides with the component
Li which is the common tangent to all the conics in the pencil determined by P

For a proof see exercise 287. We only note that such points P are mapped onto
cusps of the branchcurve on N∗ under the canonically associated map Θ : P2 → N∗,
but that they are not flexes of the Jacobian curve

Assuming now that the net N does not contain any double lines, we will have
a 1-1 correspondence between the points of the discriminant cubic D and those
of the Jacobian J. Namely each point of the discriminant determines a singular
conic which has a unique singular point; and conversely if p is a singular point of
a singular conic, that singular conic is unique (otherwise we would have a pencil
spanned by two containing double lines)

There is also a direct correspondence between the points of the Jacobian (the
ramification curve) and the branchcurve, assuming of course no double lines, as
there can be at most one multiple point in a fiber of Θ

The map Θ maps the conics of N onto lines (4:1) and the inverse of each line of
N∗ is a conic of the net, in fact the conic that corresponds to the line by duality.
This gives another proof that the Jacobian is a cubic, in fact a line L in N∗ intersects
the branchcurve in six points, those six points corresponds 1:1 with the intersection
of their fibers with the Jacobian, hence the Jacobian intersects the inverse image
of L in exactly six points, as the inverse image is a conic, we see that the Jacobian
has to be of degree three

Furthermore the map Θ maps lines onto conics, except when the lines are com-
ponents of singular members of the net. (see exercise 288)
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Jacobian Nets

Given a cubic C we may consider the net spanned by all the partials

∂C/∂x, ∂C/∂y, ∂C/∂z

The particular conics spanning the net depend of course on the choice of coordi-
nates, the net itself is independent of the coordinates. This can be seen by a direct
calculation, or better the Jacobian net can be identifed with all the polars of C.
Thus presenting a Jacobian net means identifying the net N with the space P2 on
which the conics of the net lives

In particular the two cubics the discriminant and the Jacobian now live in the
same space. We have the following remarkable fact

Proposition. The discriminant and the Jacobian of a Jacobian net coincide. The
canonical isomorphism now becomes a canonical involution. This involution defines
an isogeny dual to the isogeny given by the “dual” discriminant and its canonical
involution described above

Proof. As we are for the moment considering nets without basepoints, we will
restrict ourselves to the case when C is non-singular. Hence we can assume that it
is in Hesse normal form.

The fact that a point (x, y, z) is a singular point of a conic in the net, or that a
given point (ζ0, ζ1, ζ2) has a polar which is singular can be stated that the system

ζ02x + −ζ1λz + −ζ2λy = 0
−ζ0λz + ζ12y + −ζ2λx = 0
−ζ0λy + −ζ1λx + ζ22z = 0

has non-trivial solutions in both (ζ0, ζ1, ζ2) and (x, y, z). Thus it means that both
the determinant
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−λy −λx 2z
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and the determinant

(2)

∣

∣

∣

∣

∣

∣

2ζ0 −λζ2 −λζ1

−λζ2 2ζ1 −λζ0

−λζ1 −λζ0 2ζ2

∣
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∣

∣

vanish. Now (1) gives the Jacobian and (2) gives the Discriminant. (Note that it is
clear that the Jacobian of a Jacobian net is simply the Hessian of the corresponding
cubic, and as we have remarked the Hessian of a cubic in Hesse form is still in Hesse
form)

Straightforward computations now yield that both determinants give the same
cubic (with the obvious notational change in the case of (2))

x3 + y3 + z3 = 3(
8 − 2λ3

6λ2
)xyz
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Furthermore for each critical value (i.e on the discriminant) (ζ0, ζ1, ζ2) we can as-
sociate the point

(”i”)
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∣
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)

of the Jacobian. And similarly to each point (x, y, z) of the Jacobian we can asso-
ciate the point

(”ii”)
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of the discriminant. Clearly they are each others inverses. (This does not have to
be checked computationally of course, as a singular conic determines uniquely its
singular point, which in its turn determines the singular conic).

Those maps can of course be extended to the whole of P2 and are then given by
nets (see exercise 289)

The fact that the involution defines an isogeny dual to the isogeny defined by
the natural double cover of the discriminant is deeper.

Given a flex F on the cubic C, it will also be a flex of the discriminant cubic (or
if you prefer the Jacobian cubic) and from now on refered to as the zero of either

cubic involved. Its polar with respect to C will be singular at a point F̃ and consist
of two lines LM with L the flexed tangent of the cubic C passing through the flex
F and M will be the line joining the three primitive two-torsion points (cf exercise
274).

Considering the pencil Π defined by the flexed tangent to the discriminant cubic
at F it will have two base points, one of them being F̃ of multiplicity 3, and the
other being F̄ of multiplicity one. By the previous lemma, the common tangents
to the conics of the pencil Π will be L and the point F̄ will hence lie on M

Looking at the dual space P2∗ the point F̄ will correspond to a flexed tangent to
the dual discriminant D∗ at the flex M (considered now as a point in P2∗), while F̃
will correspond to a line through M residually tangent to the point L (on D∗). The
canonical involution on the dual discriminant, interchanges L and M , choosing M
(being a flex on D∗) as the natural zero on the dual discriminant, this involution
is given by translation by the point L of order two. There will now be two other
points of order two on the cubic D∗ namely L′ and L′′ permuted by translation by
L, the corresponding tangents both passing through M will be denoted by G′ and
G′′ will also be considered as two points lying on the line M in P2. As the points
L,L′ and L′′ lie on a line (in fact the point F considered as a line in P2∗) the lines
G′, G′′ and L pass through a common point (in fact F )

The two lines G′ and G′′ form a singular conic in the net, as they are paired by
the canonical involution on D∗, the singular point is of course F and it will be the
polar of the point F̃ (cf exercise 276)

We have thus identified the dual isogeny defined by the canonical involution on
the dual discriminant with the natural involution defined on the discriminant. In
fact the two pairs L,M and L′, L′′ on the dual cubic correspond to two singular
conics, i.e. two points on the discriminant (or Jacobian), which are permuted by
the natural involution on that cubic
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Singular Nets

A singular discriminant cubic can be obtained in two different ways (and further
degenerations thereof). Either there could be base points (typically one base point)
or there could be double lines

In the case of base points, there could be one, two or three thereof. (The case
of four base points forces the net to be a pencil), which may coincide. There may
also be a common line component.

In the case of double lines there could be one, two or three of those, but never
more.

In the case of a base point P the map

Θ : P2 → N∗

is not defined at P, but the point has to be blown up. The degree of the map is
also then reduced by one. Thus a single base points gives a 3:1 map between the
blow up BP P2 and N∗, while two base points give a double cover of N∗, and finally
three base points define a Cremona transformation from P2 to N∗ generically 1:1,
as all birational transformations

It is interesting to determine the branch loci in the three cases and the corrspond-
ing relations between the discriminant and the Jacobian and the dual discriminant

Geometrically a net N has a base point P iff it is tangent to the discriminant
hypersurface in the space P5 of all conics. The tangency point P̌ corresponds to the
unique singular conic in the net with its singularity at P (see exercise 294). This
point P̌ will be a singular point of the discriminant cubic, as any pencil containing
P̌ will have its singular point as a base point. This proves the assertion that N is
tangent to the discriminant locus.

The nodal tangents at P̌ will correspond to the two pencils formed by chosing
conics in the net tangent to either component of P̌ . We see thus that the singularity
at P̌ has degenerate quadratic term (cf discussion of singular cubics) iff the net has a
double line (necessarily passing through P ). Thus we may observe that a net which
has both a base point and a double line has a cuspidal discriminant (provided there
are no other base points or double lines). Geometrically this corresponds to the net
N being tangent to the discriminant locus at a singular point, i.e. actually tangent
to the singular locus (see exercise 295)

Higher dimensional system of conics

As the space of conics is five-dimensional. any six conics are linearly dependent,
and no higher dimensions than five occur. Such a linear system must coincide with
the space of conics itself, and nothing more can be said of it.

As to four-dimensional systems, they correspond to hyperplanes, and they are
completly determined by their intersections with S the singular locus of the discrim-
inant hypersurface. S is a surface, in fact the Veronese surface, identified by P2 or
rather by the dual P2∗. Its hyperplanes correspond to conics, thus four-dimensional
systems are dueal to 0-dimensional ones, and the classification is already known.

In the same way 3-dimensional systems of conics, so called webs of conics are dual
to pencils (1-dimensional families), by associating to each web W the intersections
with S of the hyeprplanes containing W. Thus a web is determined by its four
intersection points with S.
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Finally we see that to each net N we can associate a dual net N* on the dual
projective space, by associating the intersections with S of hyperplanes containing
N.(see exercises 299,300)

We have seen before that the discriminant hypersurface has a natural non-
singular double covering given by P2∗ × P2∗ ramified at the diagonal, canonically
identified with S. The discriminant of a 4-dimensional system F will be doubly
covered by the zeroes Z(B) of a bilinear form B(X,Y ) with X and Y linear forms
on P2. This bilinear form will in effect be symmetric (see exercise 301). The 3-
dimensional space Z(B) will have a projection onto either factors and with fibers
P1. In fact the fiber over a point X will be the line PX given by {Y : B(X,Y ) = 0}.
As a symmetric bilinear form corresponds to a conic C, the fiber will just be the
polar to X with respect to the conic C. The conic C will be canonically identified
with the intersection of Z(B) with the diagonal ∆ (canonically identified with S).
Thus we will have two cases.(cf exercise 303)
1) B is non-degenerate, or equivalently the system F intersects S transversally
or
2) B is degenerate,(of rank 2) or equivalently the system F is tangent to S at a
point L

In this case the fiber of π : Z(B) → P2∗ will “blow-up” above L to an entire
plane.
3) B is degenerate (of rank 1) or equivalently the system F is tangent to S along
an entire line ℓ

Now away from the points of ℓ the fibers are canonocally identified with ℓ, above
ℓ the fibers “blow up” to planes

In the case of a web, we will consider a double covering of the discriminant
surface, Z(B1, B2) (or Z for simplicity), which is given by the intersection of two
symmetric bilinear forms B1(X,Y ) and B2(X,Y ) on P2∗ × P2∗. Those bilinear
forms will determine a pencil of conics, and the fiber associated to the projection to
(either) factors over a point P, will correspond to the intersections of all the polars
to P with respect to all the conics in the pencil. In general this will correspond
to a point, except when P coincides with a singular point of a singular fiber, when
we will have an entire line. The surface Z will be a blow up of P2∗ above three
points (which may coincide) and it will define a graph of a birational isomorphism
between the two factors. In fact in general a Cremona transformation.(see exercise
306,307). The surface Z will be invariant under the natural involution (the forms
B1.B2 are symmetric) and the quotient will be a singular cubic hypersurface in the
web, with singular points corresponding to the four base points of the dual pencil,
or equivalently the four intersection points with the diagonal.

Finally in the case of a net, we may describe the double covering of the discrim-
inant cubic, as the intersection of three symmetric bilinear forms corresponding to
the dual net. Projecting as usual onto a factor P2∗ we see that the fiber over a
point L is non-empty, iff the polars of L with respect to the dual net all go through
a point. By exercise 284 this happens iff L is a point of the Jacobian of the dual net.
As clearly the double covering defined by the bilinear intersection in P2∗ ×P2∗, is
none but the canonical one, associating either component of a singular conic, we
have shown that the “dual” discriminant is in fact isomorphic with the Jacobian of
the dual net, and hence isomorphic with its discriminant.(As the linear forms are
symmetric, the natural involution leaves the curve invariant) These ideas can be
exploited to show the dualism between the two natural isogenies discussed in the
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context of Jacobian nets.(See exercise 309)

The birational map between P (S2V ) and P (S2V ∗)

Given any conic C we may associate the dual conic C* in the dual projective
plane. This presents no problem when we just consider non-singular conics. Then
there is a 1-1 correspondence. The problem arises when we consider singular conics,
in particular double lines.

The duals of a pencil Π of conics do not form a pencil of conics in the dual
space, and conversely. Given a pencil of conics in the dual space, they will (in
general) have four base points, and dualizing we get a one dimensional family of
conics tangent to four given lines (corresponding to the base points). This is not
a linear family, as the reader can easily convince herself of.(see exercise 310). This
means that the association between the conics and their duals cannot be extended
to a linear one between the complete 5-dimensional spaces.

The dual of a singular conic (not a double line) will correspond to the lines
through the singular point. Thus two singular conics with the same singular points
will have the same dual, naturally a (double) line. It is now natural to encode the
dual, by distinguishing two points on it corresponding to the two components. In
this way we are lead to the definition of so called complete conics. A complete conic
is either a non-singular conic or a singular conic with two components, or a double
conic with two (possibly coinciding) distinguished points.

It is now clear that duality extends to complete conics, in fact in such a way
that we have complete duality. The dual of a double line with two distinguished
points, is clearly two lines corresponding to the two points (or a double line with
a distingusihed point), and the dual of a conic with two component, a double line
with distinguished points corresponding to the two components.

Geometrically the space of complete conics can be thought of as a blow up of
the space of conics, blown up at the locus S. In fact given a point Q in P(S2V ),
the lines through Q make up a P4 (parametrising all directions), and the cone over
Q a C5 denoted by DQ. If Q would lie on S the tangent directions to S at Q would
form a P1 and its cone a C2 denoted by TQ. If we identify two directions in DQ

iff their difference lie in TQ we get a space P2 of “normal directions” to S at Q.
Blowing up S means “replacing” each point of S with all its normal directions.
The “exceptional divisor” in this case will then be a fibration over S, with each
fiber a P2 corresponding to the normal directions. The fiber above a special double
conic Q will be all the complete conics with Q as underlying conic. As the space
of two points on the projective line is naturally given by the projective plane (via
binary quadrics, cf exercise 87) everything fits nicely. Furthermore a pencil Π of
conics through Q determine two points on Q, namely the two basepoints. A pencil
corresponds to a direction, and consequently two directions are equivalent, if the
corresponding base points are identical (see exercise 312)

A more formal and direct definition of the complete conics would be had if we
consider the closure of the graph of the association of dual conics defined on non-
singular conics.(see exercise 314).

This closure defines a birational correspondence between the two spaces P(S2C3)
and P(S2C3∗ By identifying somehow the projective plane with its dual (via some
non-singular quadric) we also get a birational correspondence on the space of conics
itself. This is a Cremona transformation generalized to higher dimensions. It is
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given by a six-dimensional family of quadrics in six homogenous variables, given by
the 2 × 2 minors of a symmetric 3 × 3 determinant (cf exercise 311). It blows up
the locus S of double lines, while it blows down the discriminant hypersurface, in
analogy with the Cremona transformation in the plane that blows down the edges
of a triangle (a cubic), while blowing up its vertices.(see exercise 315 for further
analogies)

The tangent locus to a conic

Given a (non-singular) conic C, we may look at all the conics C’ which are tangent
to C. Projecting from C, we see that C’ is tangent iff the pencil spanned by C and
C’ is tangent to the discriminant locus. The discriminant locus projects 3:1 onto a
hyperplane and will be ramified along a hypersurface of that plane. By considering
a net containg C, we see that the degree is six (as there are six tangents to a cubic
through a point outside, for an alternative prrof see exercise 317). Thus the conics
C’ tangent to C form a hypersurface of degree six.(A cone over the ramification
locus). In particular given a pencil Π and a conic C, not a member of the pencil,
we expect six conics in the pencil to be tangent to C. Conics C’ tangent to two
conics C and Ĉ then form a space of codimension two, the intersection of the two
sextic hypersurfaces. And given a net of conics we expect 36 members to be tangent
to two given conics.

Continuing reasoning in likewise manner, one may conclude that there are a
finite number of conics tangent to five given conics (as there is a finite numbner, in
fact just one, conic through five given points (unless in very special position). And
even bolder conclude like Steiner did, that there are 7776 such conics.(If you wonder
about the number think of 65). Now any double line is automatically tangent to any
given conic, thus a sextic hypersurface of conics tangent to a given conic always
contains S, and thus the intersection of any number, in particular five, always
contains S. Thus the number 7776 has little relevance. Yet one may wonder?

The solution to this dilemma is to look at the space of complete conics. Then
we consider the proper transforms (i.e. the closures of the inverse images of non-
singular conics in the tangent locus to a given conic) of tangent loci. It now turns out
that a complete conic, i.e. a double line with two distinguished points is tangent to
a conic iff one of its distinguished points lie on the conic. Now it turns out that five
proper tangentloci intersect in a finite number of points, and with a mild generality
conditions on the five conics. now double line will be tangent to all of them. The
problem now is to compute the number.

The number 7776 was computed by Bezout’s theorem, generalized to higher
dimensions. The argument was that any hypersurface is formally given as nH
where H is a hyperplane, and n is the degree of the hypersurface. In the case
of a plane we have that a hyperplane H is a line, and the intersection H2 is a
point. Thus formally nH and mH intersect in mnH2 i.e. in mn points. In the
case of the 5-dimensional space of conics, we need to look at higher powers H5

to get a point. Bezouts theorem can also be worked out for other spaces, e.g the
quadric. Then we have two families of lines L1 and L2 and every curve is given
by a bihomogenous polynomial of bidegree (d1, d2) and such curves can be written
formally as d1L1+d2L2. To get the number of intersection points we need to look at
the three basic intersections L2

1 = 0,L2
2 = 0 as lines in the same family do not meet,

and L1L2 = 1 as lines from opposite families meet in exactly one point. To get the
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intersections for two curves d1L1 + d2L2 and e1L1 + e2L2 we multiply formally to
get

d1e1L
2
1 + (d1e2 + d2e1)L1L2 + d2e2L

2
2

which simplifies to the right intersection number

d1e2 + d2e1

The space of complete conics needs two generators to describe all the hypersurfaces.
One say given by H, the inverse image of a hyperplane under the natural projection
onto the space of conics, and E the exceptional divisor. The proper transform of
a quadric containing S will then be given by 2H-E, while the proper transform
of the discriminant cubic will be 3H-2E as S is the locus of double points on the
discriminant. The proper transform of the tangent locus will be 6H-2E (see exercise
319), and we are reduced to look at the formal product

(6H − 2E)5 =

5
∑

k=0

(−1)k+16k25−k

(

5

k

)

HkE5−k

and thus we have to compute the intersections

H5, H4E,H3E2, . . . E5

Those computations are unfortunately a little beyond the scope of this “book”,
we are swimming at deep water as it is, but some of those can be heuristically
explained. In fact H5 = 1 is easy, and that H4E = H3E2 = 0 should be clear as
a line or a plane in general do not meet S and hence not the exceptional divisor.
The remaining three are harder, and just for completeness we give them.

H2E3 = 4, HE4 = 18, E5 = 51

The reader can now, with some patience, complete the calculation, yielding the
magic number 3264, which has significance. The interested reader can consult Grif-
fiths and Harris Principles of Algebraic Geometry (page 749 ff) for the complete
details and the checking that the five hypersurfaces do in fact meet transversally.
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Exercises

283 Show that if p is a point not on the Jacobian then through every line L
through p, there is a unique conic in the net tangent to L at p. What happens if p
lies on the Jacobian?

284 Show that if p is a point not on the Jacobian then the polars of p with respect
to the conics of the net comprise all lines, and hence establish an isomorphism
between N and P2∗. On the other hand show that if p lies on the Jacobian, the
polars all pass through a fixed point p’, and in particular given a line L there is an
entire pencil of conics in the net such that for each of them L is the polar of p.

285 Given the four lines through a point on the Jacobian, compute the crossratio
of the two lines forming the singular conic with respect to the common tangent
of conics and the tangent to the Jacobian. In particular determine whether this
crossratio is constant(Hint: Make an explicit calculation by e.g. using a Hesse
cubic cf exercises 276,277 )

286 Show that if given a singular conic C0 = L1L2 the pencil spanned by C0 and
the conic C1 is tangent to the discriminant cubic at C1 iff C1 is tangent to either
L1 or L2, and that it is tangent at C0 iff C1 passes through the singular point of
C0

287 Preserving the notation of exercise 286 conclude that the lines L1 and L2

intersect the Jacobian cubic in two additional points each, in addition to the singular
point of C0 (cf exercise 274). In particular observe that neither line L1 or L2 is
tangent to the Jacobian (cf exercise 285), unless C0 is a flex of the discriminant

288 Show that a line L is a component of a singular member of a net N, iff the
restrictions of three spanning quadrics to L are no longer linearly independent. Use
this to get an explicit equation for the “dual”discriminant as a cubic in P2∗ for the
Jacobian net of the cubic

x3 + y3 + z3 = 3λxyz

289 Show that the three conics

λζ0ζ2 + 2ζ2
1 λζ1ζ2 + 2ζ2

0 4ζ0ζ1 − λ2ζ2
2

defined by the minors in (i) define a net of conics with three base points. Find the
three base points, and show that the same holds for (ii)

290 Not every translation on a cubic can be induced by a linear transformation,
(see exercise 261). Show however that any translation can be induced by a Cremona
transformation (for a judicious choice of base points). Interpret the result of exercise
289 in this context.

291Given a cubic C we can associate another net to it, namely as given by the
2x2 minors of the matrix







∂2C

∂x2

∂2C

∂x∂y

∂2C

∂x∂z
∂2C

∂y∂x

∂2C

∂y2

∂2C

∂y∂z







Show that this does not depend on the choice of coordinates, and that the net will
have three base points.

292 Show that the points inside a small oval of the discriminant cubic in a net
corresponds to invisible conics (cf exercise 104)
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293 Given a triangle with vertices A,B and C and an inscribed circle O tangent
at a on the line BC, at b on the line AC and finally at c on the line AB. Show
that the four conics (AB)c,(BC)a,(AC)b and O actually form a net, and that the
discriminant cubic is a Fermat cubic (cf exercise 242)

294 Given a point P = (0, 0) we can write a polynomial F (x, y) in inhomogenous
coordinates

fo + (f11x + f12y) + . . .

Thus there will be one condition (f0 = 0) for the curve F = 0 to pass through P
and two additional conditions (f11 = f12 = 0) for the curve to be singular at P . In
our case of P being the base point of a net, show that the net will always contain
a conic singular at P

295 Write down the tangent planes to the singular locus (the Veronese surface)
of the discriminant algebraically

296 Given the polars of the cubic

(x + y + z)3 = 27xyz

Show that they form a net with just one base point at (1, 1, 1), by finding the
three flexes to the discriminant cubic, write down explicitly three conics all passing
through a point and being mutually flexed

297 Show that one can find four mutually bitangent conics. Show that all such
configurations are projectively equivalent, and that the four conics are linearly
dependent. Furthermore write down explicit equations.(Hint: Show that they span
a net with three double lines)

298 Show that through each point on the discriminant locus we can find exactly
two nets meeting the singular locus of the discriminant (the Veronese surface) once
each

299 Show that the dual of a dual net is canonically isomoprhic with the net itself
300 Show that if a net N has a non-singular discriminant the same is true for its

dual N*. Is it true that its discriminant is the “dual” discriminant of the original
net?

301 Given the parametrisation of the discriminant hypersurface (L1, L2) 7→ L1L2

show that the inverse image of a hyperplane in the space P5 of conics will correspond
to a symmetric bilinear form on the dual space P 2∗

302 Show that Z(B) is not isomorphic to P1 × P2, but show that under the
natural map π : Z(B) → P2 we have that π−1(C) is isomorphic with P1×P1, where
C is the associated conic. Is it possible to find a section to the map π?

303 Compute the “polar” to a point in the case of a degenerate symmetric
bilinear form B, and show that it “blows up” to the entire plane iff the point is a
singular point.

304 Write down basis elements for 4-dimensional linear systems of conics in the
three possible cases

305 Given a pencil of Π of conics, we can to each point P associate P’ the base
point of the corresponding pencil of polars to P. Write down an explicit pencil and
determine this association, decide whether or not it will define an involution

306 Given a pencil Π of conics, and consider the lines joing the three associated
singular points. Show that points on such a line determine the same pencil of polars
with respect to Π.Find the corresponding base point, and conclude that they are
blown down.
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307 Corresponding to different types of pencils Π of conics, determine the cor-
responding Cremona transformations. In particular what happens if Π contains
double lines?

308 The graph Z(B1, B2) of a Cremona transformation contains a natural hexa-
gon of “lines” which splits up into two dijoint parts containing three lines each,
blown down to respective factor. What happens to this hexagon under the natural
involution?

309 Show that the “dual” discriminant has a natural double covering (in virtue
of being a discriminant of a net (the dual net)) and that this double covering is
given by the discriminant. Use this to show that the corresponding involution on
the discriminant is the same induced by the identification in the case of a Jacobian
net.

310 Given four lines (say X = 0, Y = 0, Z = 0 and X + Y + Z = 0) determine
all the conics tangent to the lines. Notice that all double lines are automatically
tangent to any line. Furthermore consider the duals of the conics in dual space
going through the duals of the four lines and show that they form a conic of conics.

311 Recalling exercise 90, show that the six quadrics given by the 2×2 minors of
a symmetric 3× 3 determinant define a map of P(S2C3) onto a P5. Show that the
base locus of this map is given by S the locus of double lines. Furthermore show
that this map is generically 1-1, in particular show that a non-singular symmetric
3 × 3 matrix is determined by its 2 × 2 minors. What about singular matrices?

312 Show that the conics in pencils with two fixed base points on a double
line Q form a 3-dimensional linear space W, and hence that the pencils themselves
correspond to a P2. Furthermore if TQ denotes the tangentplane to S at Q, and U
is a plane disjoint from TQ, the webs containing TQ will then be in a natural 1-1
correspondnec with the points of U via their inytersectins with U . Show that such
webs automatically have two basepoints, and that U naturally parametrises all the
normal directions to TQ.

313 Show that the “exceptional divisor” i.e. complete conics which are double
lines, contains a 3-dimensional subvariety which is a so called conic bundle, by
considering complete conics whose distinguished points coincide. Is this fibration
trivial? Does it have a section?

314 Let L be a double line, and Q an arbitrary conic in the dual space. Further-
more let Γ be the collection of (C, Č) with C a non-singular conic and Č its dual.
Given C we can look at the pencil < C,L >, the duals of its conics are defined
except for L, by closing we get a representative LC for the dual of L. Show that
LC is always a double line, and that it depends on the pencil < L,C >, and that
LC = LC′ iff the pencils < L,C > and < L,C ′ > have the same basepoints. Thus
identify Γ with the space of complete conics.

315 Given the inverse image of the discriminant hypersurface in the space of
complete conics, it will split up into two components. Show that one consists of
the closure of all singular conics which are not double lines, the so called proper
transform of the discriminant locus, while the other turns out to be the exceptional
divisor. Furthermore show that both of those are non-singular. Finally show that
the image of the proper transform of the discriminant locus is blown down to S in
the space of dual conics under taking duals.

316 Define the blowup of the diagonal in the product P2 × P2, show that the
natural involution (switching factors) naturally extends, and show that the quotient
is non-singular. Identify both the proper transform of the discriminant locus and
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the exceptional divisor with this space.
317 Show that every cubic hypersurface can be written under the form

X3
0 + X0Q(X1, . . . , Xn) + C(X1, . . . , Xn) = 0

where Q and C are quadratic and cubic forms respectively. Projecting from the
point (1, 0 . . . ) to the plane X0 = 0 show that the branchlocus is given by 4Q3+27C2

which is a sextic hypersurface
318 Try and find the six conics in the pencil through the four points (±1,±1, 1)

tangent to the unit circle. Will certain conics be counted with multiplicity, and if
so why?

319 Let Π be a pencil of conics containing a double line, and let C be a generic
conic. Show that there are just four conics in Π additional to the double line which
are tangent to C. Conclude that S consists of double points of the sextic tangent
locus associated to C.

320 Consider the net XY, Y Z,ZX defining a Cremona ytransformation and find
the members which are tangent to the two conics XY − Z2 and XZ − Y 2. Would
it be possible to find conics tangent to Y Z − X2 as well?

321 A curve of bidegree (1, 1) on a quadric, is the intersection with a plane, use
this to check that its selfintersection is in fact 2 (1+1) as it should be. Further
more a curve of bidegree (2, 2) is given by the intersection with a quadric, and use
this to check that its selfintersection is 8 as it ought to be. Finally two quadrics
containing a line (L1) intersects residually in a curve of bidegree (1, 2), use this to
ccheck that the intersection with a curve of bidegree (2, 1) is 5 (=8-1-2)

322 Setting H’=2H-E and E’=3H-2E verify that H=2H’-E’ and E=3H’-2E’. The
significance of this is that the quadrics containing S give a birational map onto
the space of dual conics, and H’ is the inverse image of its hyperplane and E’ is
the exceptional divisor (cf 315). By using the identities H’5=1, E5=E’5 and say
H’4E’=0 (etc if necessary) conclude formally the values of the missing intersections
H2E3 etc..
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Quadrics

The notion of a conic and a quadric hypersurface can readily be generalized to
arbitrary dimensions.

Thus we will consider a quadratic form Q(z0, . . . , zn+1) whose zeroes form a qua-
dratic hypersurface of dimension n. Every Quadric of dimension n will henceforth
be denoted by Qn. As before we can to each point p in Pn+1 consider the gradient

∂Q(p)/∂z0, . . . , ∂Q(p)/∂zn+1

and if this is non-zero for each p we say that the Quadric is non-singular, and the
corresponding hyperplane

∂Q(p)

∂z0
z0 + . . . ,

∂Q(p)

∂zn+1
zn+1 = 0

defines the polar hyperplane to p.
If p does not belong to the Quadric the polar p̌ intersects in a non-singular

quadric of one lower dimension, and all the tangentplanes of the Quadric along this
intersection pass through p. And of course if p lies on the Quadric, the polar is
nothing but the tangent hyperplane.

The notion of polars can be extended to linear subspaces. In fact given a linear
subspace V its polar V̌ is defined to be

⋂

p∈V p̌ and clearly its dimension is com-
plementary to that of V . We should also note that if V is contained in the quadric,
it is necessarily contained in its polar. Hence a non-singular n-dimensional quadric
can at most contain linear subspaces of dimension [n

2 ].
By completing squares any Quadric (singular or not) can be written as a sum

of such, the number of squares gives the rank, and the rank classifies the Quadrics
over C. (Over R there is a slight complication due to the signature (see exercise
323).) Thus we get n + 1 different types, ranging from the most degenerate the
double hyperplane (rank 1) to the non-singular (rank n + 1). All of this translates
into the usual matrix approach, there is a 1:1 correspondence between quadratic
forms and symmetric bilinear forms. The rank of the quadratic equals the rank of
the corresponding matrix.

Geometrically each singular quadric is a cone over a non-singular quadric of lower
dimension, whose dimension is one lower than the rank.

The group PGL(n+1, C) acts on the family of quadrics. The orbits are given by
quadrics of fixed rank. In particular the non-singular quadrics are all projectively
equivalent. The stabilizer of the natural projective action on (non-singular) quadrics
is denoted by PO(n+1, C) and constitute the automorphism group of the quadric.
Its dimension is easily computed from the transitive action of the (n + 1)2 − 1

dimensional group onto the space of all quadrics of dimension (n+1)(n+2)
2 , and it is

not too hard to see that it acts transitively on the quadric.
There are alternative normal forms for Quadrics which are quite instructive. We

will then have to distinguish between the case of odd- or even dimensional Quadrics.
In the even-dimensional case we can write a non-singular Quadric (over C as (cf
page 50)

X0Y0 + X1Y1 + · · · + XnYn = 0

while in the odd-dimensional case we may write

X2
0 + X1Y1 + · · · + XnYn = 0
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Looking at the first we see that every Q2n contains a linear space of dimension n
(X0 = X1 = · · · = Xn = 0) in fact we can say much more as we will see.

Quadrics as Double coverings

Writing a Quadric Q as x2
0 +Q′(x1, . . . , xn) we represent it as a double covering,

projecting from the point p (1, 0, . . . , 0) outside the quadric onto the plane x0 = 0.
This covering is ramified along the quadric Q′ of one lower dimension. In this way
we can relate properties of the quadric Q′ to Q and study quadrics inductively,
although a more efficient way of doing so will be treated in the next section.

In particular we can relate the linear subspaces of Q′ to those of Q. In fact
a linear space Π in Pn−1 will split upstairs iff the restriction of Q′ is a double
hyperplane. Thus in particular we see that the dimension of a linear subspace of Q
is at most one more than the maximal dimension of a linear subspace of Q′.

If we look at a three-dimensional quadric, we see that through each point there
will be a P1 of lines, in fact they will correspond to the lines through a point on
the ramification quadric in P3 lying on its tangentplane.

Birational Representation of Quadrics

Projecting from a point p of a quadric onto a hyperplane we get a 1 : 1 map,
except that i) the intersection of Q with the tangentspace Tp at p is a singular
quadric, a cone over a quadric Q′ of dimension two less, and the projection blows
it down onto Q′ and ii) the projection is not well defined at p and we have a blow
up.

From the point of view of the hyperplane Pn−1 we blow up a quadric of codi-
mension two and blow down the hyperplane it spans.

This map can be represented by a linear system Q0, Q1, . . . , Qn of quadrics van-
ishing along a fundamental locus given by the intersection of a hyperplane H with
a quadric Q′.(see exercises 335 and 336). The inverse map is simply given by a
n-dimensional system of hyperplane section on Q

Algebraically we are writing the quadric Q as

x0x1 + Q′(x2, . . . , xn)

(projecting from (1, 0, . . . , 0) onto x0 = 0 with fundamental locus given by x1 =
Q′(x2, . . . , xn) = 0

In this way we get an inductive step that relates a quadric to one of two less
dimensions. In particular wee see that the inverse image of a linear space is linear
upstairs iff it intersects the hyperplane spanned by the fundamental quadric exactly
in the fundamental quadric. Thus the maximal dimensions of linear subspaces on
Q are exactly one more than those on Q′

Applying this to the three dimensional quadric, we see that it is given by blowing
up a conic in P3 and blowing down the hyperplane it spans. Thus the linear spaces
of maximal dimensions are the lines that intersect the conic in just one point. In
particular through each point we have a family of lines, a P1, those are in effect
exactly those line that are defined by the cone given by the intersection with the
tangentspace

In order to look at the totality of all lines on a three- dimensional quadric look
at exercise 337
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Linear Subspaces on a Quadric

We have the following basic theorem

Theorem. On a even-dimensional quadric Q2m the maximal dimension of a linear
subspace is m and there exists two disjoint system of m-planes, each of dimension
m(m+1)

2 . On n odd-dimensional quadric Q2m+1 the maximal dimension of a linear
subspace is likewise m, but here we have but one system of m-planes, and it is of

dimension (m+1)(m+2)
2

Proof: There is a one-to-one correspondence between the linear spaces of maxi-
mal dimension on a quadric Qn with those of a quadric Qn+2 through a point, by
taking the cones. Thus the two initial statements are clear by induction. (From the
cases of Q0 and Q1 respectively). We need to verify the dimension statements. To
that purpose we are going to look at a bigger space, namely all linear subspaces of
dimension m together with a distinguished point. The dimension of such a space is
clearly 2m (2m+1) higher than the space of all m planes through a given point, but
the latter space is by induction in 1:1 correspondence between the space of all m−1
planes in a quadric of dimension two less. Finally we observe that the difference
between the space of m-planes (without distinguished point) and the auxiliary one
we considered is of course m. hence we are done by induction.♦

If we look at the even-dimensional case, we can say more. In fact we have

Theorem. On a quadric Q2m with m odd, two m-planes in the same system do
not generally meet, and if they do, they do so in a space of odd dimension. While
two m-planes from opposite systems generally meet in a point, and if more in a
space of even dimension.

On a quadric Q2m with m even, two m-planes in the same system generally
meet in a point, and if more, in a space of even dimension, while m-planes of
opposite system do not generally meet, but if they do, they do so in an odd number
of dimensions.

Proof: Almost all of this, that which pertains to intersecting linear spaces, follows
straightforwardly by the standard induction used. Remains to show the statements
on generic m-planes. Putting the equation of the quadric under form

x0y+ . . . xmym = 0

we can exhibit two disjoint m-planes (Πx and Πy) namely x0 = · · · = xm = 0
and y0 = . . . ym = 0. We need then show that in case m is odd those two linear
subspaces belong to different systems, wheras they belong to the same in case m is
odd. If m = 2k + 1 is odd we can make a pairwise grouping of the terms

(x0y0 + x1y1) + (x2y2 + x3y3) + · · · + (x2ky2k + x2k+1y2k+1)

and consider the following system of linear m spaces

sx0 + ty1 = sx1 − ty0 = · · · = sx2k + ty2k+1 = sx2k+1 − ty2k = 0

All of those are contained in Q a specialization to s = 0 and t = 0 respectively
gives Πy and Πx. Conversely if we have two disjoint m planes given as above, the
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equation of the quadric can be written after possibly rescaling as
∑

xiyi and they
have to belong to the same system.

To consider odd m we simply consider Q2m+2, any two m + 1 planes passing
through a point of the same system meet in an even-dimensional subspace, hence
the corresponding m planes of the blow down has to meet in at least a point, and
disjoint m-planes can easily be exhibited, hence they need to belong to different
families.

Topology of Quadrics

Given a smooth quadric Qn and T a tangent hyperplane, then T ∩Qn is a cone
over a smooth quadric Qn−2 and we can write the disjoint sum Q = (Qn \ (T ∩
Qn) ∪ (T ∩ Qn) the first component will be isomorphic with Cn while the second
can be further decomposed by removing the intersection of Qn−2 with one of its
hyperplanes. In this way we get

Proposition. An 2m-dimensional quadric can be decomposed in the direct sum

C2m ∪ Cn−1 ∪ . . . Cm ∪ Cm ∪ Cm−1 ∪ · · · ∪ {p}

while an 2m + 1-dimensional quadric has a decomposition

C2m+1 ∪ Cn−1 ∪ . . . Cm ∪ Cm−1 ∪ · · · ∪ {p}

Proof: By induction. In fact we add strata succesivley by reducing the rank by
two. In the even dimensional case the last quadric we get is the cone over the union
of two points i.e. two hyperplanes which can be decomposed as Cm ∪ Cm ∪ Pm,
while in the odd dimensional case, the last quadric is a cone over a conic i.e.
Cm−1 ×C∪Pm.♦ We can use this to compute the Euler characteristic of a smooth
quadric (for a simpler approach see exercise 344). In fact e(C) = 1 hence e(Cn) = 1
as well by the product formula. Adding we simply get e(Q2m) = 2m + 2 and
e(Q2m+1) = 2m + 2

But the very explicit decomposition gives of course much more information. For
anybody familiar with cohomology we can state

Proposition. The non-zero homology groups of an even- and odd-dimensional
quadric Q (of dimensions 2m and 2m + 1 respectively) are given by

H2i(Q, C) ∼= C 0 ≤ i ≤ 2m i 6= m,Hm(Q, C) ∼= C2

and

H2i(Q, C) ∼= C 0 ≤ i ≤ 2m + 1

respectively.

Now as a change of pace we are going to consider real quadrics.
The topological classification of (smooth) real quadrics is rather simple. Recall

that a real quadric is classified by its index, hence one of index n−2k can be written
under the form

X2
0 + · · · + X2

k − (X2
k+1 + · · · + X2

n) = 0
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A solution hence satisfies

X2
0 + · · · + X2

k = λ = X2
k+1 + · · · + Xn

where λ 6= 0 as we are looking at real solutions. Hence we can normalize λ = 1 and
parametrise all solutions by the product Sk × Sn−k−1 On each sphere we have the
antipodal involution s 7→ −s which diagonalizes to an involution (s, t) 7→ (−s,−t)
on the product, whose quotient gives the real quadric

In particular we conclude that if both the dimension and the index of a quadric
is even, then its Euler characteristic is equal to two and zero otherwise.

We also see that index (n − 2) for an n-dimensional quadric gives a sphere Sn

(as S0 consists of two points).
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Exercises

323 Show that the quadrics over R are classified by rank and index.
324 Show that if a quadric contains the linear space cut out by L0, L1, . . . , Lk

then it can be written under the form L0M0 + · · · + LkMk where Mi are other
linear forms. Conclude that the maximal dimension of a linear subspace on a
smooth quadric of dimension n is [n

2 ]
325 Show that the polar of a point to a non-singular quadric intersects it

smoothly unless the point lies on it, and in that case the rank goes down only
by one

326 Show that on an even-dimensional quadric, any hyperplane containing a
linear subspace of maximal dimension has to be tangent. While it is not true for
odd-dimensional quadrics.

327 Given a point p0 on a smooth quadric, consider its tangentplane T0 = Tp0

and a point p1 on its intersection, distinct from p0. Consider then the intersection
of the quadric with T0∩T1 and choose a point p2 on it, not lying on the line spanned
by p0 and p1, and continue. This process will obviously have to stop, show that
when it does we have constructed a linear space of maximal dimension containing
p0, p1, . . .

328Given an odd-dimensional quadric Q and a linear space L of maximal di-
mension, show that among all spaces Π of one higher dimension there is a unique
space ΠL such that Q ∩ ΠL = 2L

329 Given an odd-dimensional quadric Q2m+1 and a linear space Lm of maximal
dimension, construct all linear m-planes contained in Q intersecting L in a (m−1)-
plane. And show that they are in one-to-one correspondence between points on a
projective plane. Determine its dimension.

330 Show that PO(3, C) ∼= PGL(2, C). What can be said about the groups
PO(4, C) and PO(5, C)?

331 For real quadrics we can define the notion of inside and outside, by pos-
tulating that for outside points the polar intersects the quadric, but not for inside
points. Show that we can associate an orientation to a defining quadratic equation
depending on whether it is positive or not on the outside points.

332 Show that over a finite field Fq the notion of inside and outside (according to
331) does not work unless n = 2 but for a defining quadratic equation we can divide
the points not on the quadric according to whether the values are quadratic non-
residues or not. Show that this divison is independent of the quadratic equation.
(But the orientation will of course vary)

333 Show that there are two types of non-singular quadrics over a finite field Fq

and determine the number of points in either case, and try and make a discrimi-
nantal characterization

334 Determine the dimension of all transformations that leave the point (1, 0, ., 0)
invariant while preserving the quadratic x0x1 + x2

2 + . . . , x2
n and conclude that

PO(n + 1, C) operates transitively.
335 Show that any quadric Q(x1, . . . , xn) which vanish on the conic C given by

the two equations Q′(x2, . . . , xn) = x1 = 0 can be written on the form Q′ + x1L
where L is a linear form. Furthermore determine the dimension of the vectorspace
of quartics of the form q0x

2
1 + q1Q′x1 + Q2′ and show that it contains any product

of two quadrics that vanish on the conic C.
336 Consider the quadric x0x1 − q(x2, . . . , xn) = 0 and the projection from
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(1, 0, . . . , 0) to x0 = 0 show that the inverse image is given by the system of quadrics
q, x2

1, x1x2, . . . x1xn. (Compare 335)

337 Consider a smooth three-dimensional quadric Q3. Two points on it are said
to be related if they are joined by a line lying in Q3.

a) Show that two points are related if equivalently

i) They are contained in each others tangentspaces

ii) The intersection of their tangentspaces intersects Q3 in a double line

Given a line l on Q3 the planes Π through l are parametrized by P2 (In fact any
plane skew to l may serve as parameterspace).

b) Show that for any Π through l there is a residual line lπ lying on Q3 and
that l = lπ iff Π is equal to the intersection of all tangent hyperplanes containing
l. Conclude that the lines meeting a given line make up a P2

For a generic hyperplane, the intersection becomes a smooth two-dimensional
quadric Q2. Let L(Q) is the space of all lines lying on Q3 and let L1 and L2 be the
lines of the two rulings of Q2.

c) Show that we can associate to each point of L(Q) \ (L1 ∪ L2) a unique point
of Q2 with fibres C∗. Compare this with P3 minus two skew lines, to conclude that
L(Q) ∼= P3

338 By considering the three-dimensional quadric in the form x2
0 + x1x2 − x3x4

find the totality of all its lines explicitly.

339 By considering all the lines on a three-diemsnional quadric as P3 show that
each point is contained in a canonical hyperplane (the hyperplane of all lines meeting
the given). Conclude that if two lines meet, the line given as the intersection of
their corresponding hyperplanes, is simply the line that parametrises all the lines
through a given point.

340 A real three-dimensional non-singular quadric come in two types (excluding
the invisible) corresponding to index three and one, determine which has lines and
which as not.

341 Give an example of two linear subspaces of maximal dimension that intersect
each other in codimension 1. Is it possible to have three subspaces of maximal
dimension m intersecting along a subspace of dimension m − 1?

342 Assume that a quadric Q2m contains the two disjoint m-planes x0 = · · · =
xm = 0 and y0 = · · · = ym = 0, show that the quadric can be written as

∑

i αixiyi =
0

343 In P2m+1 consider two disjoint m-planes Π1 and Π2 show that for any point
p outside the m-planes, there are unique points pi ∈ Πi such that p lie on the line
spanned by them.

Let Q be a quadric containing the linear spaces Πi, show that for each point p
in Q but not on any of the Πi there is a unique line Lp containing p and meeting
both linear subspaces.

This defines a subset Γ ⊂ Π1 × Π2 and a map π : Q̃ → Γ (where Q̃ denotes the
quadric minus the Πi) Taking the closure of the graph we get a map π : Q → Γ
with fibres the lines Lp.

Determine this set for the case of m = 1 and show that we get a natural splitting
P1 × Γ.

Show that it is a hypersurface in general. By choosing suitable equations for Πi

determine the equation for this hypersurface and determine whether we still can
factor out a P1



106

344 Representing a quadric as a double cover, compute inductively its euler-
characteristic using that e(Pn) = n+1 and a formula for the euler characteristic of
a double cover in terms of the euler characxteristic of the branch locus

345 Let Qn be a real quadric of index (n − k, k)(= n − 2k), we may then
consider the two quadrics Q+ = z2 − Q and Q− = z2 + Q of index (k + 1, n − k)
and (n + 1 − k, k) respectively (cf exercise ?4). If e+(n, i) and e−(n, i) denotes the
euler characteristics of the inside and outside respectively of a real n-dimensional
quadric of index i write down inductive formulas for e(n, i) (the euler characteristic
of the quadric itself) and try to determine those in that way.

346 Do the analogous decomposition of a real quadric. Show that it will ter-
minate whenever the intersection with a tangentspace fails to become a cone. (In-
visible conic). Compute the real homology of a real quadric and compare with the
representation as a quotient of the product of two spheres.
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The Quadric Line Complex

We would like to parametrise all the lines in P3. A line is given either by two
distinct points or by the intersection of two hyperplanes. Unfortunately neither
choice of points or hyperplanes is canonical. A reformulation of the problem is to
look at the linear space C4 and the space of planes through the origin, A plane
is either given by two linearly independent vectors (two distinct points) or by two
linearly equivalent linear equations.

However we can to each linear space V associate the space
∧2

V spanned by the

vectors a ∧ b. If dimV = 4 then dim
∧2

V = 6 and consequently we have a space
P5.

Letting ei, i = 0, . . . 4 be a basis for V and ei ∧ ej , i < j a basis for
∧2

V Writing
a =

∑

aiei, b =
∑

biei we have by bilinearity a ∧ b =
∑

(aibj − ajbi)ei ∧ ej .
In practice we are to each pair of 4-vectors

a = (a0, a1, a2, a3)andb = (b0, b1, b2, b3)

going to associate the 6-vector consisting of the six minors of the 4 × 2 matrix

(

a0 a1 a2 a3

b0 b1 b2 b3

)

Those are called the Plücker coordinates of the (plane) line spanned by a and b. It
is easy to see directly that up to a scalar the Plücker coordinates do only depend
on the (plane) line not on the (vectors) points a and b that span it.

The space of lines in P3 will be denoted by G(2, 4) and the Plücker coordinates
gives a map into P5.

Now it is not true that any point in P5 represents a line in P3 via the Plücker
coordinates. In fact a vector v in

∧2
V represents a line, iff it is decomposable, i.e.

v = a ∧ b. Now (see exercise 348) a vector v ∈ ∧2
V is decomposable iff v ∧ v = 0.

If we let v =
∑

pijei ∧ ej , i < j this translates into the quadratic condition

(1) p12p34 − p13p24 + p14p23 = 0

This quadric is known as the quadric line complex. Now this being a quadric of
dimension four, it will contain two systems of planes. Those systems have very nice
direct geometrical representations. If we fix one point (say p = (1, 0, 0, 0)) and look
at all the lines through it (they will have Plücker coordinates p34 = p24 = p23 = 0)
they will make up a P2 in P5. Or if we fix a hyperplane in P3 (say X0 = 0) and
consider all the lines on it (their Plücker coordinates will satisfy p12 = p13 = p14 =
0) they will make up another P2 in P5.

Two planes in the same system will clearly always intersect in a point (unless
they coincide) while two planes in different systems will normally be disjoint (the
point not on the plane) or intersect ina line (the lines lying in a hyperplane and
passing through a fixed point).

It is clear that both families are parametrised by P3 Furthermore there is a
striking duality. As (cf exercise 347)

∧2
V and

∧2
V ∗ are canonically identified,

the space of lines in P3 and its dual P∗3 are the same. Thus there is a natural
identification between the lines in P3 and in its dual. Given a line L in P3 it
determines a pnecil of hyperplanes (those that contain L), hence a line Ľ in P∗3
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The plane of all lines L through a point p ∈ P3 will then correspond to all lines Ľ
contained in a hyperplane p̌ (the hyperplanes vanishing on p), while conversely the
plane of all lines L contained in a hyperplane H correspond to all lines Ľ passing
through Ȟ. Of course both L and Ľ will have the same Plücker coordinates, and
correspond to the same point. It is only the geometric interpretation that will differ
as lines of P3 or of P∗3

Given a smooth quadric Q in P3 we can define an involution on the space of lines,
simply by considering the polar to each line. The fixed points of this involution will
consist of the lines contained in Q. The involution will permute the two system of
planes.

Two points on a quadric line complex will be said to be connected iff they are
both contained in a plane lying inside the complex. If so they will be contained in
a unique plane from either system. It is easy to see that two points are connected
iff the corresponding lines meet. Equivalently, two points are connected iff they are
contained in their respective tangentplanes. Thus the intersection of the quadric
complex with the tangentspace at a point p (corresponding to a line L in P3) consists
of the points connected to p or equivalently meeting L.(cf 353)

We have in the previous chapter discussed the topology of quadrics, and how they
can be built up from simpler entities. This can be given an instructive geometric
interpretation. Consider two hyperplanes Πi meeting in a line L0. Any line L
not meeting L0 determines a pair of points by its intersections with the planes Pi.
Conversely given a point on each plane, not lying on L0 determine a line. In this
way we have parametrised “almost” all the lines in P3 by C2 × C2. We can also
say that the quadric line complex is birational with P2 × P2. The lines we have
forgotten are exactly those that intersect L0 namely the intersection of the quadric
complex with the tangentspace at L0. This intersection is a cone over a smooth
two dimensional quadric, which can be seen explicitly. (cf exercise 355) The two
ruling of lines on a smooth quadric in P3 will of course show up naturally on the
quadric line complex. In fact each quadric determines two skew planes in P5 whose
intersections with the quadric line complex gives the lines.(cf exercise 356)

The Real Quadric

The discussion above works as well for other fields, e.g R. The real quadric
linecomplex will hence be a quadric of rank six and index zero. The system of
planes will be real as well, as the geometric interpretation will testify.

The real quadric line complex also comes equipped with a canonical double
covering. Any basis of a two dimensional real space has an orientation. This
double cover is of course induced by the double cover S5 → RP

5. Geometrically we
are considering directed lines in RP

3. Topologically the directed complex is given
by S2 × S2 (which incidentally we recall has a complex structure as a complex two
dimensional smooth quadric)

If we identify R4 with C2 we can identify the complex lines among the real 2-
planes. In fact (see exercise 360) those are given by the linear conditions p13−p24 =
0andp14 +p23 = 0 and the inequality p12 +p34 6= 0 Rewriting the equation (1) using
u1 = p13 − p24, u2 = p13 + p24, v1 = p14 + p23, v2 = p14 − p23, w1 = p12 + p34 and
w2 = p12 − p34 we get

(1’) (u2
1 + v2

1 + w2
1) − (u2

2 + v2
2 + w2

2) = 0
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And the conditions for complexity translate into u1 = v1 = 0 and w1 6= 0 giving
the quadric

u2
2 + v2

2 + w2
2 = w2

1

(we see that the condition w1 6= 0 is a consequence of the two linear conditions)
which is clearly a rank four quadric of index two, and topologically equal to the
two sphere S2. It also inherits a complex structure as the complex lines through
the origin of C2 hence CP1

The canonical double cover is given by the normalization

(u2
1 + v2

1 + w2
1) = 1 = (u2

2 + v2
2 + w2

2)

Now RP
3 is a group, in fact we can consider the Hamiltonian quaternions H and the

associated real projective space P (H). This space comes equipped with a distin-
guished point (P (R)) the origin (the identity), from now on denoted by 1. In fact
the space can be identified with SO(3) (see exercise 361). The lines through the
origin correspond to planes in H containing the reals. Any such plane is a subfield
of H (in fact isomorphic with C) (se exercise 362) and define a one dimensional
subgroup of SO(3), conversely any one-dimensional subgroup of SO(3) is a line
through 1. In general the lines in RP

3 can be thought of as left (or right) cosets of
one-dimensional subgroups of SO(3). The subgroups of SO(3) or equivalently the
lines through a point are clearly classified by RP

2. Fixing a line L corresponding
to a subgroup L (using the same notation for economy), we get a whole family of
skewlines αL (or equivalently another family by Lβ). The family of skewlines is
parametrised by S2 (see exercise 364). Hence we have exhibited RP

3 as a S1 bundle
over S2. Furthermore the complex lines correspond to the translates of the unique
complex line through 1 (cf exercise 365)
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Exercises

347 Let V be a 4-dimensional vectorspace, show that
∧3

V ∼= V ∗ via the natural

map V ∋ v 7→ v∗ ∧ v ∈ ∧2
V ∼= C for each v∗ ∈ ∧3

V . Show also that
∧2

V ∼=
(
∧2

v)∗ via the linear amps
∧2

V ∋ v :7→ a ∧ v ∈ ∧4
V ∼= C. Furthermore show

that
∧2

V maps naturally into hom(V, V ∗) ∼= V ⊗ V via V ∋ v :7→ a ∧ v ∈ ∧3
V .

348 An element v ∈ ∧2
V is said to be decomposable iff we can write v = a∧ b.

Show:
a) If dimW = 3 show that any element in

∧2
W is decomposable.

b) While in case dimV = 4 an element v in
∧2

V is either of the form
i) a ∧ b (decomposable)
ii) a ∧ b = c ∧ d, a, b, c, d linearly idependent (indecomposable)

c) Given 0 6= v ∈ ∧2
V then

i) v decomposable ⇔ dim ker x 7→ v ∧ x = 2
ii)v indecomposable ⇔ ker x 7→ v ∧ x = (0)

d) Show that v ∈ ∧2
V is decomposable iff v ∧ v = 0

349 Show that two decomposable elements a ∧ b and c ∧ d wedge to zero iff
a, b, c, d are linearly dependent.

350 Show that the pencil λa ∧ b + µc ∧ d consists of decomposable elements iff
a, b, c, d are linearly dependent.

351 Show that the nets of decomposable elements are either given by elements
a ∧ x (where x ∈ V ) or by a ∧ b (where a, b ∈ W a 3 dimensional subspace of V )

352 Given a decomposable element a ∧ b ∈
∧2

V (dimV = 4) it determines
both a kernel K(a ∧ b) inside V and an image I(a ∧ b) inside

∧

2V ∼= V ∗. Show
that K(a ∧ b) is canonically identified by the 2-dimensional vectorspace in V with

Plücker point a wedgeb ∈
∧2

V . Give a similar characterization of I(a ∧ b)

353 Show that the polar of a given point p ∈ P (
∧2

V ) is given by the hyperplane

x ∈ ∧2
V : p ∧ x = 0

354 Given a point p on the quadric line complex, show that it is contained in
many different planes from either system. In fact the planes containing p form
a P1. More precisely if P ∼= P3 parametrise all the lines from one system, those
containing p will form a line in P.

355 Any line L intersecting L0 does of course lie on a unqiue plane containing
L0. Thus show that if M0 is a line skew to L0, any line L intersecting L0 determines
a point in M0 × L0

356 Given a quadric x0x1 − x3x4 determine explicitly the Plücker coordinates
of the lines on it, and hence the two skewplanes in P5.

357 Given three skewlines, show that they determine a plane in P5, and hence
a conic. Show that this conic sweeps out the unique quadric containing the three
lines.

358 Given the lines of one ruling of a quadric, they determine a plane Π as in
356, show that the plane defined by the other ruling, is simply the polar Π̌ to Π
with respect to the quadric line complex

359 Given a sphere ( a real quadric with no lines) in RP 3 show that it defines
a fixed point free involution on the real line complex by considering the polars.
Determine this involution explicitly in terms of Plücker coordinates.

360 Given an identification R4 ∼= C2 a complex line is given by an equation
Az + Bw = 0. Setting A = a + ib, z = x + iy . . . translate this into two real
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conditions and compute the Plücker coordinates. (cf exercise 14)
361 For each α consider the linear mapping x 7→ αxα−1. Show that it preserves

the pure quaternions (i.e. x such that x∗ = −x where x 7→ x∗ denotes conjugation)
and the quadratic form < α, β >= αβ∗+βα∗. Hence conclude that P (H) ∼= SO(3).

362 Show that if α is a non-real element of H then α satisfies an irreducible
quadratic equation (over R).Hint: R(α) is a field

363 A one-dimensional subgroup is often refered to as a 1-parameter subgroup.
As such it can be parametrised by R via the exponential map. Given a non-
real element α of H or equivalently, a non-trivial element of SO(3), show that it
determines a unique line in H− (the three dimensional space of pure quaternions)
via its eigenspace; and determine explicitly a parametrisation (the exponential map)
of the one-parameter subgroup that contains α

364 SO(3) operates on S2 in a natural way, show that the different stabilizers
are identical with the set of one-parameter subgroups. In particular show that the
translates of a given line through the origin form a S2 and hence that the real
quadric line complex can be thought of as a S2 bundle over RP

2

365 Fixing a line L through the origin, means giving H the structure of a complex
vectorspace. (By identifying L ∼= C). We may then ask what planes (lines in RP

3)
are complex.

a)Show that each element in H is contained in a unique complex line, and that
each hyperplane contains a unique complex line.

b)Show that the complex lines coincide exactly with the left (or right depending
on whether the complex structure on H is given by left or right multiplication)n
cosets of L.

366 Fixing a complex structure as in 365 and a hyperplane H ∼= RP
2 in RP

3 we
get a map onto S2 by considering through each point the unique complex line. Show
that this map is 1 : 1 except along the unique complex line (cf 365 a))contained in
H. Conclude that RP

2 is the blow-up of S2

367 By considering a quaternionic structure on C4 show that CP
3 is fibered over

S4 by spheres S2 (actually isomorphic with CP
1)

368 Determine the number of lines in FqP
3 for a finite field Fq
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Pencils of Quadrics

The elliptic quartic

Given two (non-singular) quadrics Q1 and Q2 on P3 we need to find out what
its intersection C = Q1 ∩ Q2 is.

Writing Q1
∼= P1 × P1 we see that C can be written as a curve of bidegree (2, 2)

as every line of the ruling of Q1 intersects Q2 in two points. Thus it is given by a
bihomogenous form F (x0, x1; y0, y1) of bidegree (2, 2). Explicitly we write

F = q00(x0, x1)y
2
0 + q01(x0, x1)y0y1 + q11(x0, x1)y

2
1

where qij are quadratic forms in x0, x1

By dehomogenization we can consider this as a quartic polynomial say in x =
x1, y = y1 by setting x0 = y0 = 1 defined on C × C. Hence we can define tangents
and the notion of non-singularity. (see exercise 370) This leads to the notion of
transversal intersection. Two quadrics (or more generally any two surfaces) are
said to intersect transversally at a point if and only if their tangentplanes are
distinct. We then have

Lemma. The tangentline to an intersection of two surfaces is given by the inter-
section of their tangent planes

In particular we have the important corollary

corollary. Two quadrics meet in a non-singular curve iff they intersect transver-
sally at every point

We have a projection from C to either of the factors ∼= P1 of Q, this projection
is clearly 2 : 1 and the fiber over a point (x0, x1) is given by the roots of the binary
quadric

q00y
2
0 + q01y0y1 + q11y

2
1

Thus we have defined a double cover of C onto P1 or equivalently an involution
on C (with rational quotient). The ramification of this covering is given by the
vanishing of the discriminant of the quadric, i.e. by

4q00(x0, x1)q11(x0, x1) − q2
01(x0, x1) = 0

which is a quartic. Thus we have four ramification points and C is an elliptic curve!
A Curve C given by the transversal intersection of two quadrics is refered to as

the elliptic quartic . One may show that a curve in P3 of degree four is either plane,
rational or the intersection of two quadrics.(see exercise 373)

We can also exhibit C as a (smooth) cubic. For that purpose we pick an arbitrary
point p on C and project onto a plane Π. To check the degree of the projection
C ′ we take an arbitrary line L in Π and consider the plane P spanned by p and
L, it will intersect C in four points, namely the intersection of the two conics C1

and C2 formed by the intersection of P with Q1 and Q2 respectively. Clearly
the intersection of C ′ with L are given by the projections of the three residual
intersection points of C with P . (For a computational form see exercise 371 and
372).
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Generic Pencils of Quadrics

Given two quadrics Q1, Q2 they will span a pencil λQ1 + µQ2 , the baselocus
of this pencil will clearly be C. The singular members of this pencil will be cones,
and they will correspond to the vanishing of a 4×4 determinant, and hence we will
expect four singular members.

We thus have two sets of four points on P1

The four branch points of C considered as a double covering of P1

The four points of the pencil corresponding to the singular members
One may hazard to guess that those two sets of four points define the same

-invariant. In fact we can set up a 1 : 1 correspondence between the points. A
smooth quadric has two sets of rulings, while a cone has only one. Thus we can
associate another canonical elliptic curve to a pencil of quadrics, namely the double
covering defined by the rulings of the quadrics of the pencil. This defines a 2 : 1
map ramified exactly at the singular members.

Proposition. The two canonically associated elliptic curves to a pencil of quadrics
are indeed isomorphic

Proof: Pick a point p0 on C and for each point p of C consider the line Lp =<
p, p0 >, there will now be a unique quadric Qp in the pencil, containing the line
Lp. This mapping is 2 : 1 as Qp will have two rulings and also contain the line Lp′

through p0. Clearly it will be ramified exactly when Qp is singular (and have only
one ruling).♦

The elliptic curve associated to a pencil of quadrics is a projective invariant
of the pencil. In fact there is a projective transformation of P3 transforming the
quadrics in the pencil Λ into those that constitute the pencil Λ′ iff the associated
elliptic curves have the same -invariants. (In contrast to the case of pencil of conics,
when any two generic pencils (i.e. with four distinct basepoints) are projectively
equivalent). The above proposition takes care of one direction, the converse is
deeper. (see exercise 374)

We should also note (in analogy to the case of pencils of conics) that given
an elliptic quartic C, there is a unique pencil of quadrics containing it, and hence
having it as a baselocus (see exercise 373). We may construct this pencil canonically
by considering rational involutions on C. For each such involution ι we may consider
the surface Λι traced out by the lines < x, ι(x) > where x runs through the points of
C. Knowing that C is indeed the intersection of two quadrics, it is straightforward
to see that Λι must be a quadric and a member of the pencil spanned by any two
quadrics cutting out C. It is somewhat harder to prove this directly. (see exercise
376)

Given a generic point outside p the quartic C the projection of C onto a plane
will yield a binodal quartic (cf exercise 372). The two nodes corresponds to the two
lines through p of the unique quadric in the pencil passing through p. (For further
degeneracies see exercise 382). If however the point p will be chosen as one of the
four vertices of the cones in the pencil, the projection will degenerate into a double
cover of a conic.

The four vertices of the singular quadrics are canonically associated to a elliptic
quartic, and they determine a so called coordinate tetrahedron Using the coordinates
corresponding to the faces of the tetrahedron, the equations defining the elliptic
quartic gets to be particularly simple (see exercise 383)
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The Geometry of Elliptic Quartics

By restricting a pencil λ of quadrics to a plane Π we get a pencil Λπ of conics,
the base points of which are given by the intersection of Π with the baselocus C of
Λ, and the degenerate members corresponds to quadrics tangent to Π.

In general we will have four basepoints, if less, it means that the plane is in
special position visavi C. Two points coalescing means that the plane Π is tangent
to C i.e. containing a tangentline to C, while four points coming together two
and two of course means that the plane is bitangent to C. Similarly three points
coinciding means that the plane gives the best fit to C at the point in question,
it is the so called osculating plane . The extreme case is that four points come
together, this corresponds to the osculating plane having gratioutous contact, and
such planes play similar rôles to the elliptic quartic as flexed tangents do to the non-
singular cubic. For want of better terminology let us refer to such points at which
the osculating planes have additional contact, as hyperosculating . It is easy to
see (cf exercise 384) that the hyperosculating points correspond to the ramification
points of C corresponding to the four involutions given by the singular cuadrics of
the pencil cutting out C, and the corresponding hyperosculating planes are given
by the tangentplanes to the quadric cones along the tangent lines . Thus there are
16 hyperosculating points, and one may guess cleverly (and correctly) that those
somehow correspond to the sixteen four-torsion points of the elliptic quartic under
some suitable choice of origin. In fact this leads us to take one of the hyperosculating
points 0 as an origin, and to postulate (in complete analogy with the cubic case)
that four points add up to zero iff they lie in a plane. In this way we define an
addition by simply choosing two points a, b on C and consider the plane Π spanned
by those and 0. This plane will intersect C in a fourth residual point −(a + b) by
definition. To get a + b we then choose the plane containing the tangentline T0

to C at 0 and −(a + b) and consider its residual intersection with C. To actually
show, on first principle, that this defines an associative and commutative binary
operation on C is however rather involved.

Degenerate Pencils

As in the case of conics we can discuss various pencil when the baselocus degen-
erates.

The simplest such example is given by two tangent quadrics. In that case the
intersection will no longer be elliptic but a rational quartic with a node at the
tangency point. The determinental condition on the quadrics will degenerate into
a binary quartic with a double point, and there will be only three degenerate
members, one of which is double. The double cone will have its vertex at the node,
the common tangency point of the members. The pencil maybe generated by two
cones one of which has its vertix on the other.

Degenerating once more we may do it in two ways. Either we allow two tangency
points, then the pencil will be generated by two cones havinga line in common, and
the quartic baselocus will split into a line and a rational cubic curve (a so called
twisted cubic), or we allow higher order contact between the tangent quadrics. The
latter alternative can be degenerated even further into the case of only one singular
member.

In all the cases discussed, the singular members are still cones. We may of course
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also consider the case when the singular members degenerate. The simples such
case consists of a pencil generated by a reducible quadric (consisting of two planes)
and a cone. The baselocus then splits up into two conics meeting transversally in
two points. The singular members are then three, a reducible anmd two cones. The
cone may however become tangent to the singular line of the reducible quadric, in
case the baselocus consists of two conics meeting in one point. The two singular
cones have then coalesced to one. Then there may also be higher order contact.

As can be seen the classification becomes rather tedious to compile. There are
standard ways (dating from Segre) of book-keeping. One obvious, which we did
consider from the beginning, is to keep track of the branchlocus, a simpler one is
to keep track of the type of the degenerate fibers with multiplicity, as we did in the
case of pencils of conics. Representing a cone with • a reducible quadric with ×
and a double plane with || and adjoining the appropriate multiplicities (adding up
to 4) we can present the following cases corresponding to generic member of pencil
non-singular

• • • • the generic case, non-singular intersection
•(2) • • nodal intersection
•(2) • (2) line component of intersection
•(3) •
•(4)
× • • two conics
× • (2)
×(3) •
×(4)
× × intersection fourlines
||(3) • double conic

The reader is invited to fill out (some of) the gaps of the commentaries.(Exercise
386)
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Exercises

369 Show that any bihomogenous form F of bidegree (2, 2) may be written in
the form

∑

0≤i,j,k,l≤1

Aij,klxixjyiyj

where the coefficents Aij,kl form a 3 × 3 matrix A.
Setting zij = xiyj show that F can be written as a quadratic form

∑

Bij,klzijzkl

but that this form is only unique up to the Segre condition

z01z10 = z00z11

and conclude that any bihomogenous curve of bidegree (2, 2) on a quadric (Q1) is
given by the intersection of another quadric (Q2).

370 Preserving the notation of 369, show that
a) F vanishes at (1, 0; 1, 0) iff A00,00 = 0 and is non- singular at that point iff

the linear part (A01,00, A00,01) 6= (0, 0)
b) Write down, in general, the tangent at a point (x, y) to F = 0 considered as

a curve in C2

c) Interpret the tangent C2 (as in b)) as a line in P3 using the coordinates zij of
369

371 (Still keeping the notation of 369) Assume that A00,00 = 0 so that p =
(1, 0; 1, 0) ∈ C = (F = 0). Write down a cubic condition on z01, z10, z11 in order
that the line spanned by (1, 0, 0, 0) and (0, z01, z10, z11) intersect the intersection of
the two quadrics Q1 and Q2 (see 369) in an additional point to p

372 By dehomogenization, a biquadratic form F can be considered as a quartic
in C2, and by homogenization as a quartic in P2.

Show that this quartic will have two nodes at infinity, and hence by a suitable
Cremona transformation be brought to a (smooth) cubic.

For a suitable equation of F do this Cremona transformation expliciyly.
373 Show that by projecting a quartic curve from a point onto a plane, we get

(unless the quartic is contained in a plane) a cubic curve. Conclude that the cubic
is either smooth or singular, and that it is rational (i.e. parametrisable by a P1) in
the latter case.

Try also and show the converse to 372, namely that if the projection of a quartic
is a smooth cubic, the quartic is given by the intersection of two quadrics.

374 Extending 373, show that if two elliptic quartics lying on the same quadric Q
have projectively equivalent (cubic) projections, then they are cut out by additional
quadrics which are projectively equivalent under transformations preserving Q. Or
equivalently the corresponding biquadratic forms can be transformed into each
other by bi-Möbius transformations on P1 × P1. I.e by transformations of the type
(x; y) 7→ (Ax,By) (if necessary composed with conjugation (x, y) 7→ (y, x)) where
A,B ∈ PGL(2, C)

375 Given an elliptic curve E with zero (and hence addition defined), show
that all involutions with rational quotients can be given under the form x 7→ a −
x for some a, hence the collection of such involutions is isomorphic with E but
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not canonically isomorphic. Show that geometrically an isomorphism is given by
considering the elliptic as a cubic and considering projections from points p on the
cubic.

376 Given a rational involution ι on an elliptic quartic C, show directly that the
surface traced out by the lines < x, ι(x) > is a smooth quadric.

In particular show that two such lines cannot meet (unless they coincide, or ι
belongs to four special cases) and that any line L not meeting C intersects two such
lines.

377 Given an elliptic quartic C and a point p0 on it. Consider an involution
defined by considering the pencil of planes through the tangent line Tp0

and its
residual intersection with C. Show that this is equivalent to the one considered in
the proof of Proposition.(cf 375 as well)

378 Let L be a line that intersects the basecurve C of a pencil Λ of quadrics in
just one point. Show that to each point p on L there is a unique quadric Qp in the
pencil passing through p. (In case p lies on C this statement has to be modified
somewhat, how can uniqueness be ensured?).

At each point p of L we can consider the two lines (from each ruling) of Qp,
letting Π be a plane not containing L those lines will trace out a curve on Π. Try
and determine that curve.

Preserving the setup of exericise 378 Consider a point p0 such that Qp0
is a cone,

and a small circle γ around p0 in L ∼= CP 1. For each t consider a line lp(t) ∋ p(t) in

Qp(t) with p(t) = p0 + eit letting the lines vary “continously”. Compare lp(0) with
lp2π). If you prefer make the calculations explicit by suitable choice of C,L and p.

The phenomena is refered to as monodromy .(Cf the choice of squareroot
√

z when
z rotates once around the origin)

379 Consider a (generic) pencil Λ of quadrics, and the collection of all lines
contained in some member of the pencil.

Show that this collection is given by C ×P1 Hint: Use exercise 378 to get a map
onto C and to show that the ensuing fibration is trivial. (lots of disjoint sections)

380 The lines of quadrics contained in a pencil will trace out planes in P5 Try
and determine the union of those planes. In particular by fixing a 3-dimensional
subspace appropriately, they will trace out a curve in that space, try and determine
the curve.

381 Consider a real pencil of quadrics spanned by two quadrics of index zero,
and such that the four cones are complex conjugate.

Show that all the reaL members of are smooth one-sheeted hyperbolas, and that
their lines gives two families of real skewlines filling up RP 3

382 Show that the projection of an elliptic quartic from a point neither on the
quartic nor on any of the four cones associated to it is a quartic with two distinct
singularities, which are either nodes or cusps. (Show that all the (three) possible
combinations actually occur). What happens from a point not on a vertice of a
cone, but on one of the cones?

383 Show that any elliptic quartic can be defined by equations of the form

X2
0 = a11X

2
1 + a12X

2
2

X2
3 = a21X

2
1 + a22X

2
2
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Try and compute the -invariant of such an elliptic curve in terms of the determinant

(

a11 a12

a21 a22

)

384 Given an elliptic quartic C given as the baselocus of a pencil Λ of quadrics,
and a point p on it. Show that the osculating plane to C at p can be constructed
by choosing the one member containing the tangentline Tp to C at p, and its
tangentplane at p

385 Given a point p on an elliptic quartic C, we may try and find the points
p′ such that there is a plane Π containg both p and p′ such that restriction of the
pencil of quadrics defining C yields a pencil of bitangent conics. Show that there
are four such points p′ and give a geometric construction of them.Hint: Involve the
four vertices associated to C

386 Consider a pencil generated by a cone K with vertex p and a non-singular
quadric Q with p ∈ Q. The tangent plane to Q at p may intersect K in either two
lines or a double line. Show that those cases correspond to whether the intersection
has a node or a cusp.
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Involutions on twisted Cubics

and nets of quadrics

Let C denote a twisted cubic (fixed from now on) i.e. a P1 embedded in P3 via
a complete linear system of degree three.(cf exercise 387)

An involution T on a P1 is given by an unordered set of two distinct points.(The
two fixed points of the involution) Thus the involutions are parametrised by P2

minus a conic. This can be made nicely explicit via Fregier points, in fact embedding
P1 as a conic in P2 each point outside the conic defines an involution by projection,
and conversely the lines joining any two points interchanged by T (a so called
conjugate pair with respect to the involution) go throuh one point - the Fregier
point of the involution.

Note that in this way it is clear that any two involutions share exactly one
conjugate pair

One may now do someting similar for our twisted cubic C. In fact to each in-
volution T we consider the surface that is sweeped out by the lines <p,Tp>. This
surface turns out to be a non-singular quadric, and the lines constitute one of the
rulings. And conversely all the non-singular quadrics that contain C occurs in this
way. (As C must sit as a (1,2) curve)

Choosing a point P on C and projecting from P onto a plane Π C becomes a conic.
The images of the lines joining conjugate pairs will hence need to pass through one
point (The Fregier point), this point turns out to be exactly the intersection of Π
with the line through P from the other ruling.

We thus see that to each twisted cubic C we can associate a net of quadrics. The
singular quadrics will be parametrised by a conic in the net. Any twisted cubic
lying on a singular quadric must pass through the vertex.

Given two involutions T1 and T2 they will correspond to two quadrics Q1 and
Q2 respectively, and they will have one conjugate pair in common, thus there in-
tersection will consist of C and the line joining that conjugate pair.

Q1 and Q2 will define a pencil, all of whose members are bitangent, the tangency
points being exactly the common conjugate pair.

In that pencil there will be only two singular members (each occuring with
multiplicity two) namely the two quadric cones we get by considering the chords of
C through any of the two points in the common conjugate pair

This incidentally explains why one can always find a twisted cubic through six
(generic ) points in P3. Pick any two, and for each of those project onto a plane.
In each case there will be a conic through the projections of the remaining five and
the twisted cubic will be the residual intersection of the two cones with respect to
the common line joing the two points

In the degenerate case however, the common conjugate pair may reduce to a
fixed point, in that case all the quadrics in the pencil are hyperflexed at the fixed
point, and there will be only one singular quadric (of multiplicity four) in the pencil.

Thus we have identified a subpencil of the net of quadrics containing C with a
chord of C. The chords of C hence form a P2 dual to the net of quadrics containing
it

Given a point P outside C there will be a unique chord to C through P. One sees
that by projecting C from P obtaining a plane cubic with one singular point. The
chords of C (C(C)) form a P2 and hence we have established a rational map from
P3 to P2 with fibers P1 .
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Given a plane Π in P3 it can be used to rationally parametrising the chords.
In fact each chord to C determines a point on Π and conversely a point on Π
determines a chord. This however only works birationally. Letting P1,P2 and P3

be the three intersection points of C with Π (they may coincide), we see that the
plane of chords is the Cremona of Π, the three lines joing the the points Pi are
blown down, and to each Pi there will be a whole P1 of chords

The map from P3 to the plane P2 of chords is clearly given by the net of all
quadrics containing C. This map blows up C. What is the inverse image?

The tangent chords will be parametrised by a conic in the net, the dual of the
reduced discriminant of the net. Thus the exceptional divisor will map 2:1 onto
the family of chords and be branched over a conic. Thus it will be a P1 x P1 i.e a
quadric in its own right.

The exceptional divisor will have a natural section, namely the tangent chords.
On the other hand to each point P on C we may consider the chords through P.
On Π those trace out a conic (the projection of C) this conic clearly passes through
the three fundamental points, thus it will correspond to a line on C(C). As there is
only one tangent through each point, those lines must all be tangent to the conic in
C(C) parametrising all tangentchords. The inverse image of that line will split up
into two components in the quadric branched over the conic of tangent chords. One
component will be naturally identified with C (through the residual intersections
of the chords through P) the other will be identified with the constant P ( hence
P times a P1 so to speak) We have those identified the rulings of the exceptional
divisor. Due to the existence of the section of tangent chords there will be a natural
identification of points on either ruling.

The chords through a point P on C establish a 1:1 correspondence between the
normal directions, with respect to C, through P and the curve C. In fact if L1 and
L2 are two distinct non-tangential chords through P, the plane spanned by them
cannot contain the tangent chord through P. (A line cannot intersect a conic in
three points) Thus the exceptional divisor can be identified with the ordered pairs
(P,Q), hence naturally identified with C×C and with the diagonal as distinguished
section.

Given a pencil L of quadrics containing C (denoting the residual chord by L) this
defines naturally a P1 bundle over the base P1 of L, by considering to each quadric
in the pencil the lines of the appropriate ruling. This Hirzebruch surface has one
distinguished section, namely the line L which will occur in each fiber. Clearly we
are looking at F1 and by blowing down the distinguished section we obtain C(C)
= P2. Disjoint sections are simply gotten by fixing a quadric Q in the net not
belonging to L, and for each Qt in L considering the residual chord Lt of Q and Qt.
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Exercises

387 Show that by proper choice of co-ordinates any twisted cubic can be para-
metrised as follows

(s3, s2t, st2, t3)

(from now on refered to as the standard parametrisation) and conclude that any
two twisted cubics are projectively equivalent.

388 Given a point (a0, a1, a2, a3) in P3 find the secant to the “standard” twisted
cubic passing through it.

389 Given the standard twisted cubic, find the net of all quadrics containing it
390 Consider the 2 × 2 minors of the matrix

(

X0 X1 X2

X1 X2 X3

)

Show that those define a net of quadrics with a twisted cubic as baselocus. Deter-
mine the twisted cubic explicitly.

391 The family C(C) of secants to C form a P2 together with a distinguished
conic K corresponding to the tangents. The points of K are naturally identified by
the points of C. Show

i) The secants through a point p on C corresponds to the tangentline of K at p
ii)The secant through p and q (< p, q >) correspond to the intersection of the

tangents to K at p and q, hence to the polar of the line p, q
Furthermore show that
iii) A line L in C(C) defines an involution on K (the dual of the Fregier construc-

tion, and the secants corresponding to L trace out a quadric containing C, and that
the corresponding involution (defined by the quadric) is the same as defined by the
line L

This gives a way of identifying the net of quadrics containing C with the dual of
the projective space C(C); as we already have an identification with C(C) itself we
get a canonically defined quadric. Show

iv) This quadric is just K
392 Given the parametrisation of C given in 387, write down explicitly the

Plücker co-ordinates of a given secant in terms of points of P2 Thus a point
(a0, a1, a2) corresponds to a binary form a0s

2 + a1st + a2t
2 whose two zeroes give

the endpoints of the secant
In particular consider the restriction of this parametrisation of C(C) to the conic

K of tangents.
393 Show that the secants of C that meet a given line L form a quadric in C(C)

and that this quadric splits into two lines (one of which necessarily is a tangent to
K) iff L meets C. (What happens if L is a secant of C?)

394 The tangents of C sweep out a surface T (C), called the tangent developable
of C, show that this surface is a quartic, and that its singular locus consists of C.
Furthermore show that the intersection of T (C) with a generic plane is a tricuspidal
quartic (a Steiner quartic)

395 Given the standard twisted cubic find the equation of its tangent developable
explicitly.

396 Among the planes that contains the tangent at a point, there is a distin-
guished one, whose intersection at the point has multiplicity three. This is caled
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the osculating plane. Show that in the case of a twisted cubic, a plane is osculating
iff it can be written as

A0s
3 + A1s

2t + A2st
2 + A3t

3 = λ(α0s − α1t)
3

use this to show that the osculating planes of a twisted cubic form a twisted cubic
in the dual space

397 Using the fact that the Grassmanian of lines in P3 and that of its dual are
canonically isomorphic, we can to a twisted cubic associate the tangent developable
to its dual (according to the construction of 396 via osculating planes) and consider
it in the same P3 . Thus to each twisted cubic we can associate a dual cubic (the
singular locus of the tangent developable of the dual cubic in P3*). Show that the
dual cubic lies on the tangent developabel of the original one (and vice versa). Do
the two cubics coincide?

398 Show that three distinct osculating planes to a twisted cubic C cannot
belong to a pencil, hence that they determine a point. Conversely show that through
a point (outside C) there are exactly three osculating planes passing through it.

Thus a point p in P3 determines three points on C and conversely. Show that
p ∈ C iff the three points coincide, and p lies outside the tangentdevelopable iff the
three points are distinct.

399 The conics of C(C) corresponding to lines in P3 form a 4-dimensional sub-
variety (G), in fact a quadratic hypersurface of the space P(S2(C3)) =P5 of conics.
Show that to each four points of K there corresponds two conics in G Hint: To
four skew lines there exists exactly two lines meeting them, and that this exhibits
a double cover of G onto P4 (sets of four points on K) through projection from K

400 Show that there is a natural embedding of C(C) into the Grassmanian of
lines G(2, 4) in P3 , and that the composite

C(C) → G(2, 4) → P5

exhibits C(C) as the Veronese embedding of P2 . Thus the conics of C(C) corre-
sponds to the secants lying in a linear complex (the intersection of G(2, 4) with a
hyperplane, and the special conics to tangent hyperplanes to G(2, 4))

401 Considering the setup of 392 write down the conditions of the coefficients
of conics corresponding to specail conics (those whose secants all intersect a fixed
line). Try to find a purely geometric characterization of such conics.

402 Corresponding to a conic X in C(C) we obtain a surface S(X) in P3 traced
out by the secants. Find the degree of S(X) and determine its singular locus. And
finally determine when two such surfaces are projectively equivalent.

403 Let < Q0, Q1, Q2 > span a net with a twisted cubic C as baselocus, in the
product P3,2 = P3 ×P2 consider the variety V cut out by the three bihomogenous
polynomials yiQj(x) − yjQi(x). Show that

i) V is the closure of Γ the graph given by the map defined by the net
ii)V is the blow up of P3 along the twisted cubic C
iii) If π2 : P3,2 → P2 is projection onto the second factor (and π1 defined

similarly). Then for any conic X the map π1 : π−1
2 (X) ∩ V → P3 exhibits a so

called resolution of S(X)
404 Consider the linear space V 3 of all cubic forms that vanish on a fixed twisted

cubic C.
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i) Show that dimV 3 = 10 and any v ∈ V 3 can be written under the form

L0Q0 + L1Q1 + L2Q2

where Li are linear forms, and Qi span the net of quadrics vanishing on C
ii) Conclude that the linear map C4 × C4 × C4 → V 3 given by

(L0, L1, L2) 7→ L0Q0 + L1Q1 + L2Q2

is surjective and has a 2-dimensional kernel K
iii) Show that if (L0, L1, L2), (M0,M1,M2) span K than the line L0 = M0 = 0

coincide with the residual intersection line of Q1 and Q2 and etc. by symmetry
iv) Given L0 subjected to the condition of iii) show that the planes L1 = 0 and

L2 = 0 giving L0Q0 + L1Q1 + L2Q2 = 0 are unique and describe how to get them
v) Determine K explicitly in the case of the net given in 390
405 Consider the 15-dimensional group PGL(4, C) of projective transformations

of P3 . Show that it operates transitively on twisted cubics (cf 387) and that its
stabilizer S at each cubic is isomorphic with PGL(2, C)

406 Conserving the notation of 405 consider the orbits of S operating on P3 .
Show that there are exactly three orbits. (cf 398)

407 Consider a real twisted cubic C in RP3 show that the secants do not fill
out space, but that the tangent developable subdivides it into two parts, one which
consists of the union of all secants. (Note; Real secants corresponds to the outside
of the conic K in C(C) considered as a real projective space)

By introducing a plane at infinity we can talk about betweeness and segments
and hence convexity. Show that the union of all secants can never be convex (in
fact that the convex hull of a real twisted cubic is always the whols space). But
that the “empty” space is convex?


