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This is not meant as a systematic account of elementary facts about groups,
those are assumed known, and in any case to be found in the course compendium,
but is meant as a complement.

Groups come in basically three flavours, finite groups, countable groups and
continuous groups. Examples of all three will figure in the course, especially of the
first and last.

There is a notion of an abstract group and a concrete one, the latter is usually
referred to as a representation. A representation is usually given by an action of
a group. A group G is said to act on a set X by associating to every x € X an
element gr € X. The action should be compatible with the group structure this
means the ’associative’ law g(hz) = (gh)z.

The set gz : g € G is refered to as the orbit of . Any action of a group on a set
X effects a partion of the set given by the orbits. An action is said to be transitive,
if X itself is an orbit.

(Any action on X defines an action on X X X by g(z,y) = (g, gy). The original action can
be recaptured by looking at the restriction to the diagonal A = {(z,z)}. The action is said to be
doubly transitive, if X \ A is an orbit. I.e. for any pairs (z1,z2), (y1,y2) with 1 # £ —2,y1 # y2
there is a g such gz1 = y1,gz2 = y2).

The stabilizer of an element is the subgroup S, defined by {g : gx = z}. The
number of elements in an orbit is given by the index of S, in G, i.e. |G|/|Sz|.

If X is a finite set we speak of G as a sub-group of permutations. If X is an
infinite set with some structure, say a vector space, we want the functions x — gx
to respect that structure. In particular we have representations of groups as linear
transformations on some vector space. Those are actually the most important and
fruitful of all the concrete presentations and we will return to them later in the
course.

Every finite group can be thought of as a subgroup of a finite permutation group.
Simply let G cat on itself by left multiplication. A more important action is given
by conjugation. g — (zr — gzg~!'). In particular a group can act on itself by
conjugation. Each element can then be thought of an automorphism of the group
(the action respects the special structure on G, namely its group structure). The
stabilizer of every element z € GG is then all the elements that commute with z. In
particular the number of elements in a conjugacy class is given by the index of the
stabilizer.

If G is a finite group and H is a subgroup then the order of H always divide
the order of GG, the quotient is referred to as the index of the sub-group. We can
think of H and its left cosets a H. Those make up a partition of the elements of the
group under the equivalence relation a ~ b iff there is an h € H such that a = hb.
The properties of a group makes sure that this is indeed an equivalence relations,
and equivalence classes are given by the cosets. The crucial observation is that all
the cosets have the same number of elements. Thus the order of H divides that of
G, and the index is given by the number of cosets. The cosets form a set on which
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G operates transitively, the stabilizer to H is H itself while the stabilizer of aH is
the conjugate aHa~!. The cosets form a set (denoted by G/H, but not in general
a group.

The following conditions are equivalent.

(i) every left coset is a right coset i.e. Va3b such that aH = Hb

(ii) Va aH = Ha

(ili) Va aHa™! = H i.e. H is normal.

Sketch of proof: (ii) (iii) obvious as well as (ii) (i) for the other just put h =1
and we get b € aH.

Now because of this property we can define a multiplication

(aH)(bH) = a(Hb)H = a(bH)H = abH

In general a subgroup is not normal, unless of course the group is abelian. If
H and K are two subgroups then HK i.e. all elements of type hk,h € H, k € Ks
not in general a subgroup. However if K is contained in the so called normalizer
of H i.e. kHk™' = HVk then kh = hFk for some unique h*¥ € K. The map h —
hF is actually an automorphism of H and we can define a multiplication because
hikihoks = h1h5 k1ky and we see that the set HK satisfies all the conditions for a
subgroup.

Inspired by this example we may define what is called a semi-direct product.
More precisely given two groups H, K and with a homomorphism K — Aut(H)
where the homomorphism corresponding to k is denoted by h — h*F we will write
down a group composition on the product H x K as follows.

(hy, k1) (hg, ko) = (hih5, k1K)

It is a good exercise to check that this really defines a group structure making
H = H x (1) into a normal subgroup. Note also that we have a direct product if
and only if the map K — Aut(H) is trivial.

Now in general the group HK is not a semi-direct product, it is so iff we have
that H N K = (1). In this case we have indeed |[HK| = |H||K|. In general the
representation hk is not unique, but we have of course a group homomorphism
H x K — HK given in the obvious way (h, k) — hk.

Now what is the kernel of this map? It consists of elements (h, k) such that
hk =1 i.e. elements of the form (h,h~') where h € H N K. Thus in particular we
have that |HK| = |H||K|/|HN K|.

So now let us look at the simplest and most basic forms of groups, namely the
(finite) cyclic groups. A cyclic group of order n is a group generated by one element
a such that the group is given by 1,a,...a"™ = 1. It is usually denoted by Z,, and
sometimes written additively 0,1, 2a,...na = 0.

The following facts are elementary and characterize cyclic groups.

(i) They are generated by one element

(ii) Whenever d|n where n is the order of the group, there is a unique subgroup
of that order.

In particular we get that there is a nontrivial homomorphism between Z,, and
Z iff (n,m) #1

We also note that if the order of a group is a prime p the group has to be cyclic
of order p.



Now what is the automorphism group of a cyclic group? An automorphism is
uniquely determined by giving its value on a generator. A generator has to map
to a generator. If a is a generator, when is a* a generator? Clearly we should
have (k,n) = 1. Thus the automorphism of a finite cycle group is given by the
multiplicatiove group Z of all elements k relatively prime to n (and taken modulo
n). In case n = p a prime, this group is of order p — 1 and turns out to be cyclic.

To what extent can groups be built up from cyclic groups? In the case of finite
abelian groups the answer is very easy, every abelian group is the direct product
(or direct sum, as we usually think of abelian groups as additive) of a finite number
of cyclic groups.

In the general case we would like to build up a given group G from cyclic groups.
That is start with a cyclic subgroup Z choose then an element a ¢ Z but which
normalizes Z and consider Za, then pick another element and continue, In this way
we could construct the group by successively adjoining cyclic groups to a product
with twists and quotients. Is this feasible? There is no problem taking one element
at the time, but how do we make sure that the elements can be chosen to normalize
the previous groups.

As a first step we will consider so called p-groups. A p group is a group whose
order is a power of p. Note that trivially any subgroup or quotient of a p group is
a p group, as is any semi-direct product of p-groups.

Now let a p-group act on a set. The basic observation to be made is that the
cardinality of all the orbits are either one, or divisible by p, as those orbits are
indices of sub-groups.

Let us now apply it to the conjugate action on itself. Such an action has always
an orbit of cardinality one, namely the orbit of 1. More generally an orbit has only
one element exactly when the element is part of the center, i.e. commutes with all
elements. From this we conclude that the center in a p-group cannot just consist of
one alone. Thus any p-group has a non-trivial normal subgroup (except of course
when it is of prime order).

Now the further thing we want to know, is the existence of suitable cyclic sub-
groups. Of course there are plenty of such, each element generating one. The order
of such a cyclic group is called the order of the element. The order of an element
always divides the order of the group. The converse is not true, unless the group is
cyclic.

We now want to prove the following. If the prime p divides the order of the
group, there is an element of order p in the group.

This is trivially true for the trivial group, so let us proceed by induction. This
means that we assume that the fact is true for all groups of order strictly less than
a given G and we want to prove it for G as well.

If G is cyclic we actually know it by the observation above. So first assume
that G is abelian. Pick a non-trivial element. It generates a cyclic subgroupZ.
If p divide its order, we are done. If not we consider G/Z which we can for Z
is automatically normal. The quotient has order divisible by p and is of strictly
less order than G, by induction we can pick an element ag/Z of order p. Pick an
element b in its pre-image. It generates a cyclic subgroup of order divisible by p
and we are done.

Now for the general case. The problem is that we cannot guarantee the existence



of either normal subgroups or proper subgroups with orders divisible by p. If there
would be no such subgroups, that would mean in particular that all the non-trivial
conjugate classes would have cardinalities divisible by p, and thus in particular the
center would be divisible by p. But the center being abelian we are done.

Thus we see that for p-groups we can actually build them up cyclic subgroups
one at a time. More generally groups that can be so built up are called solvable
groups. For all we know all groups maybe solvable.

We can now make some handy observations as corollaries of what we have just
proved.

First any group of order p? is abelian. Such a group being a p-group it has a
non-trivial center. Pick a central element x and an element y outside the cyclic
group generated by z (if that would be the whole thing we would be done). Now
the group of element commuting with y contains both z, y, thus it contains properly
the subgroup generated by x and has to be the whole thing.

The case of groups of order p? is a bit more complicated and will be given as an
exercise. the case of order p* is more complicated still, and with increasing value
of the exponent, the complexity increases dramatically.

First any group of order pq (p, q) primes is either cyclic or non-commutative. In
the second case exactly one of the cyclic subgroups is normal, and the group is a
semi-direct product of the two cyclic groups.

Proof: Let H = Z, and K = Z, and assume that both are normal. We first note
that H N K = (1) the only thing we will need in addition to the normality. Then
let a € H,b € K and consider the commutator aba='b~! we have

H>alba™'v™) = (aba )bt € K

thus aba='b~! = 1 i.e. ab = ba. Thus the subgroup generated by HK is the direct
product H x K. In particular if H, K commutative, so is HK.

Now assume that H is thrown around by conjugation of the elements of K.
Either all the conjugates are equal or distinct. In the latter case they will spread
out to 1 4+ ¢(p — 1) elements, then there is only ¢ — 1 left which along with 1
have to make up K. Thus the latter is normal. Finally if K is a normal group
then the conjugations = — azxa~! make up automorphisms of K. Thus the group
is determined by the homomorphism H — Aut(K) In our case it means a map
Zy — Zy = Zg_1. In order to get a non-trivial map (leading to a non-commutative
group, we need that p|g—1. Note that in this case the map is unique, so in particular
all the non-commutative examples are isomorphic.)

As a special case we note that for prime p > 2 there are two kinds of groups of
order 2p, the cyclic ones Z,, and also the dihedral D,, corresponding to Z, being

a normal subgroup and the involution given by z — z 1.

Now we can strengthen this to the following classical theorem of Sylow. Let p"
be the highest power of p divisble in the order of a group G. then

(i) G contains a subgroup H of order p™, a so called Sylow p-group

(ii) All Sylow p-groups are conjugate, in particular isomorphic

(iii) Given any p-group P, it is contained in some Sylow group.

(iv) The number of Sylow groups is of the form 1 + kp.

Proof: Let us proceed by induction to prove (1). If G contains a subgroup H
whose index is prime to p, then H satisfies the induction hypothesis. If not this



would mean that all conjugacy classes, except those associated to elements in the
center, would have a number of elements divisible by p, hence in particular there
would be a center of order divisible by p. By induction we can assume that the
center contains a Sylowgroup P as does G/P (P normal as being central). The
pullback of a Sylow group of G/P gives one of G.

Let S be a Sylow p-group of G and @ a given p-group. @ acts on the set G/S
whose cardinality is prime to p by left translations. All the orbits have cardinalities
divisible by p, except the singletons. The latter must hence exist. Let aP be one
such. We have that for each z € Q that zaP = aP i.e. a~'za € P or Q C aPa™".
This shows (iii). If @ is another Sylow p-group it shows (ii).

Special families of groups

The Symmetric group

The symmetric group on n elements consists of all the permutations of the same.
It is thus a group with n! elements. Any permutation 7 can be written as a product
of disjoint cycles, simply by considering the orbits of the cyclic group generated by
m. Each cycle of length k corresponds to a cyclic permutation of k elements, leaving
the other fixed. Disjoint cycles commute. the cycle structure of a permutation is
the collection of the lengths of its cycles. This corresponds to a partition of n. The
basic fact is that cycle structures are invariant under conjugation, and conversely
any two permutations with the same cycle structure are conjugate. This is easy
to see on the level of cycles, as a cycle (x,y,...z) is transformed into the cycle
(92,9y . ..gz). Given the same cycle structure, we can by rearranging the order of
the commuting cycles, effect a permutation conjugating one to the other.

It can be instructive to write down the conjugacy classes of S,, for low n, by
listing the partitions. It is also relatively easy to compute the number ofelements
in each conjugacy class, by keeping in mind that there are (k — 1)! possible ways of
cyclically permuting k£ elements.

We have (note that 1+1+---+1 always denotes the identity, keeping all elements
fixed)

Sa(Z2) : 2(1),14+1(1)

S3(Dg) :3(2)2+ 1(3)1+ 1+ 1(1)

Sy:4(6)34+1(8)2+2(3)24+1+1(6)1+1+1+1(1)

S5 :5(24)4+1(30)34+2(20)3+1+1(20)24+2+1(15)24+1+14+1(10)1+1+14+1+1(1)

The sign s(m)(= £1) of a permutation is given by the transformation

[[(i — =) = s(m) [ [(@n(s) — 2xi)

1<J 1<J

and called even or odd accordingly. (Whenever 7(j) < pi(i) for i < j we say
that we have a transposition, a permutation is even if it has an even number of
transpositions). The map S,, — Za(= (S2) given by the sign is a homomorphism,
(i.e. the product of two odd permutations is an even permutation etc). The kernel
of this morphism defines a normal subgroup A,, of index two called the alternating
group. Its order is obviously n!/2 =3 x 4...n. Note that the subgroups of S,, are
pof two types, those that are bisected by A,, and those which are entirely contained
in A,,.



Being a normal subgroup it is a union of conjugate classes. A cycle is even iff it
is of odd length. Thus the condition of a cycle structure to correspond to an even
permutation is that it is a partition with an even number of even summands. Thus
we get

Aa(1) : 14+ 1(1)

As(Z3) : 3(2)1+1+1(1)

Ag:34+1(8)2+2(3)1+14+1+1(1)

A5 :5(24)3+1+1(20)2+2+1(15)1+1+14+1+1(1)

Note that a conjugacy class may split up when considered in the smaller group.
There is a split up exacly when the group of elements in S,, commuting with a given
element in the group is entirely contained in A,,. Given a 5-cycle, the only elements
commuting with it are powers of the cycle, thus all even. In the remaining cases
it is easy to find a transposition commuting with the type. Thus in As we have
five conjugacy classes of orders 12,12,20,15,1. Every normal subgroup has to be
a union of such, containing the identity. There is no way of achieving this and get
a sum that divides 60. Hence Ajs is simple, i.e. containing no non-trivial normal
subgroups. As is the simplest example of such a group. In general A,, withn > 5
are simple.

Modbius transformations on finite fields.

Given the 2 x 2 matrix with non-vanishing determinant. They form a group
under multiplication. If the coefficients are complex numbers or real numbers,
we get continous groups, but the definition makes sense for any kind of field, in
particular finite fields.

The finite fields are classified, but let us restrict ourselves at first to the simple
fields Z,(= F,) for p prime. We consider numbers modulo p but also using multi-
plication as well as addition. Then it is well-known that any non=trivial element
has a multiplicative inverse. The simplest field is the prime field F5 with just two
elements {0,1}. It is easy to list the elements of GL(2, F3), they are

1 0 1 0 0 1 0 1 1 1 1 1

(0 2)- (900 1)- (o))
Thus we have a group of six elements, and it is easy to see that it must be Ss
by classification. It is easy to identify the three involutions as those with trace
zero, and by exclusion the elements of order three. But how can we see directly
that it is the permutation group? The elements of Fj are given by (0,0) and
three elements outside namely (1,0), (1,1), (0, 1) those being permuted by the linear
transformations.

Note that only six of the sixteen possible matrices are non-singular. This can be interpreted
as follows. Write down a 2 x 2 matrix with random integers. What is the probability that its
determinant will be even? According to this analysis 10/16 = 0.625

Now we may first compute the number of elements in the group GL(2, F},). the
first row of the matrix can be any non-sero vector, thus p? — 1 choices, the second
should be chosen linearly independent from the first, thus this leaves p? — p choices.
Thus the result is p(p — 1)?(p + 1) thus in particular for p = 3 we get order 48.

In order to investigate those groups it is necessary to do some linear algebra
over finite fields. Recall that two linear transformations are conjugate, i.e. similar,
iff they have the same characteristic polynomials. (This is only roughly true, one



needs to consider the case with multiple roots a bit more closely, the exact statement
being that the minimal polynomial is the invariant we are looking for.) In our case
the situation is as follows

minimal +# # matrix
polynomial ofcases cardinality
A0
(z — A) p — 1 1 ( 0 )\)
A0
@ o= M p -1 e-ery (7))
22 + az + b (p—l)z(p—2) plp + 1) (8‘ 2)
a? —4b=0+#0 A # o
_ A
22 + ax + b =1)®+2) 1)2(p+2) plp — 1) (O )(\)p)
0#a%2—4b#0 A € Fp

Some explanations may be necessary: The second degree polynomials come in two types,
depending on whether they are irreducible or not over Fj,. To check that one needs to look at the
discriminant a2 — 4b whether it is a square or not. (In the case of p = 2 completing the square is
no longer possible, and another approach is needed). By sz is meant a quadratic extension of
Fp.

Now we could do some linear algebra. Observe that if A has distinct eigenvalues, it will have a
basis of eigen-vectors. The condition on B that AB = BA is that it respects those eigenspaces. (If
Ae = Xe then ABe = BAe = ABe thus Be is an eigenvector with the same eigenvalue.) Thus B
can be built up from the powers of A. On the simple 2-dimensional case it means that B = AT+ uA.
Because A% = Tr(A) — det(A)I elements of this form are closed under multiplication. We have
thus identified the maximal abelian subgroups in GL(2, F). The condition that AI + uA belongs
to the group is that 0 # det(A + pA) = uz(%l +A) = A2 + A\uTr(A) + p2 det(A). Two cases can
now occur, either the characteristic equation of A has no roots, i.e. it is irreducible. Then (0, 0)
is the only exception, and the elements AI + puA actually form a field (the quadratic extension
of the characteristic equation) and its non-sero elements form a cyclic group of order p? — 1. In
the other case we have critical values for (A, u) in fact they form two lines in FI? and hence the
group has p2 —2p+1 = (p— 1)2 elements and in fact will be equal to a sum of two cyclic groups
of order p — 1. (If A1, A are singular matrices corresponding to the two different eigenvectors,
then any element can be written as a linear combination of those. Furthermore A; A2 = 0 and by
multiplying them with suitable scalar factors we may arrange that A% = A1, A% = Az). Thus if we
consider the conjugacy class corresponding to an element with reducible characteristic equation,
its cardinality will be p(p — 1)2(p + 1)/(p — 1)2 = p(p + 1) while for the irreducible case we will
have p(p — 1)*(p +1)/(p* = 1) = p(p — 1).

We can of course go one step further. What are the normalizers to those maximal abelian sub-
groups? If we have an element that does not commute, it must be one which switches eigenspaces.

. 0 0 c
Thusif A= [ ¢

us e <0 b d 0

izers are also diagonal matrices, thus the normalizer will form a subgroup in which the maximal

abelian sits as a subgroup of index two.

) the normalizer needs to be of the form ( > . Squares of such normal-

A good exercise for the reader at this stage would be to identify the Sylow 2-groups of the
group GL(2, F5) which has 480 elements.

Matrices such as AI obviously make up a subgroup (in fact a cyclic one) contained
in the center (and in fact make up the center). The quotient is refered to as
PGL(2,F,) it has p(p—1)(p+1) elements. It is refered to as the group of Moebius
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transformations (or broken linear), and is usually written as

. az+b
cz+d
Note that ad DA give the same transformation as @ b . In this form it
cA dA c d

is well-known from elementary studies of one complex variable, but it makes sense
for coefficients in any field. In the complex case it is thought of operating on the
Riemann sphere, i.e. C with a point co added at infinity. Thus the expression
also has a value even when the denominator vanishes, and the value of oo is the
obvious one (a/c). This can be made more rigorous by the following considerations.
Consider K2\ {0} for any field K. By K P! we will mean all the lines in the space.
Those are defined by any point (p,q) in K2\ {0} and two different points (p, ¢) and
(p',q') define the same line iff p = Ap/, ¢ = A\¢’. Which simply means that we have
% = %: for the fractions giving the slope. Now if ¢ # 0 we can parametrize all the
lines, except the horizontal (the infinity). Now consider linear maps

(p,q) — (ap + bq, cp + dq)

By dehomogenizing (i.e. dividing by ¢q) we get

P
BHaq+b
q cb+d

and we have recaptured the original broken linear expression.

Thus PGL(2, F,) acts naturally on the projective line F,P' = F, U {oo}. This
action is triply transitive, given any distinct points a, b, c the Moebius transforma-
tion

b—cz—a
A

b—az—c
maps them to 0, 1, co respectively. Also, this is the unique Moebius transformation
with this property, which explains the count of p(p — 1)(p + 1) of the order of the
group.

In particular we see that PGL(2, F3) acts triply transitively on four elements,
thus it has to be the symmetric group Sy.

We also note that we have a natural homomorphism det : GL(2,F,) — F.
Itgiven by the determinant. The kernel of index p — 1 is denoted by SL(2, F}) it is
a normal subgroup and has likewise p(p — 1)(p + 1) elements. (Note for p = 2 all
the groups we have defined coincide.). Finally we can combine the two operations
and consider PSL(2, F,) by dividing out by +1. If p > 2 we then get a group of

pi(p—lg(p 1 ¢lements. If p = 3 we get A4 and if p = 5 we get As. In general for
p > 5 the groups PSL(2, F,) are simple.

Linear representations

The group C* under multiplication is a simple example of a non-compact con-
tinous group. A subgroup is given by the complex numbers A on the unit-circle.
This group is the simplest example of a compact continuos group, and is isomorphic
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to S, the group of the circle. Clearly C* = Ry x S!, where the first factor is
the positive real numbers under multiplication. The simple circle group S* can
be thought of as R/Z groups under addition, and the isomorphism is given by the
exponential map t — 2™, The subgroup %Z /Z is isomorphic to the cyclic group

Zn, and each element \F = ™% is an n-th root of unity. They form a regular

n-gon on the unit-circle and multiplication by AF are given by rotations keeping
the regular n-gon invariant. In addition to that we have reflections, those can be
represented by complex conjugation followed by a rotation.

In the figure to the left we look at the particular case n = 7.
Note how the polygon is split up into 14 triangles, the num-
ber of elements of the dihedral group Di14. Those triangles
are being permuted by the action of the group, and each
group element can be identified with a particular triangle,
once we have fixed one as a reference. Thus in a sense we
have a visual picture of the group.

The group A4 can be represented by rotations in 3-space leaving a regular tetra-
hedron invariant. A rotation in 3-space is given by fixing an axis. There are four
axi of a tetrahedron, each of them giving rise to rotations 2w /3. There are also
three normals to three pairs of skew-lines. through which we can do roations of
. In total T have presented 1 + 4 x 2 + 3 = 12 operations. Those form a group,
actually isomorphic to A4, even permutations of the four vertices. It is called the
tetrahedral group

Likewise we have a representation of the group S4 by rotations in space leaving
a regular cube, or by duality, a regular octahedron invariant. We have first three
axi going through the midpoints of opposite faces. This gives rise to rotations of
order four. We have four long diagonals by which the eight vertices are paired off.
This gives rise to 3-fold symmetries, and finally we have six lines going through the
midpoints of opposite edges, giving rise to involutions, by rotating halfway. Thus
the count gives 1+ 3 x 3+ 4 x 24 6 = 24. This group isomorphic to Sy is referred
to as the octahedral group.

The two groups are related because we can inscribe a regu-
lar tetrahedron in a cube in two different ways by suitably
chosing four of the eight vertices (see the figure on the left
for one of the cases, note that the edges of the tetrahedron
are paired off with the faces of the cube, and the faces of
the tetrahedron are paired off with the remaining vertices,
which form the so called dual tetrahedron). The subgroup
of even permutations keep the tetrahedra invariant, while
odd permutations permute the two.

In fact we can consider all orthogonal matrices with integer coefficients. As the
squares of the coefficients add up to 1 the only possibilities are 0, +£1 with only one
non-zero coefficient in each row and column. Thus we are taling about permutation
matrices, except that we allow different signs. The count will be easy, there are 6
permutation matrices, and for each we have a choice of 23 different sign patterns.
This makes 48. Now half of those will have determinant —1 and correspond to
reflections in planes, the other half will consist of the rotations we have discussed
above.
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Finally the most exciting thing being the isomorphism group
of the icosahedron, or alternatively its dual, the dodecahe-
dron. The count for the icosahedron gives ten axi corre-
sponding to 3-fold symmetry, 6 axi giving 5-fold and finally
15 giving involutions. This adds up to 1+10x2+6x4415 =

60. This group is not surprisingly called the Icosahedral
group.

Infinite countable groups

The simplest infinite group is the cyclic group Z under addition. All the finite
cyclic groups are quotients of it. In fact those are the only quotients. It can be
thought of as a free group of one generator, and every group generated by just one
member (that is a cyclic group) will be a quotient of it. Its subgroups are all of the
form nZ for some n.

Similarly we can think of the free group F'? on two elements formed by all the
words built on the letters a,b,a™ !, b~! with the convention that when whenever
aa~! are adjacent (and similarly for b, b=1, they will be cancelled. The empty word
is the identity. Typical words are aba, a?ba®b=2. We can also think of the group
as the free product (Z * Z) of two copies of Z. There is an obvious notion of
length, i.e. the two words above have lengths 3, 8 respectively. Length is obviously
sub-additive, the concotation of two words such as aba, a1 leads to cancellation.
As cancellations come in pairs we note that words of even lengths are closed under
multiplication (and taking of inverses) and thus make up a subgroup G of index four,
the quotient F2/G is isomorphic to Zy X Zo generated by the images of a, b. Every
group that is generated by two elements is a quotient of F2. The kernel is known
as the subgroup of relations. F2 is a huge group, it contains within itself other free
groups such as F'3, F. .. in fact by considering the elements X,, = a™b", X,;1,n > 1
we see that any ’legal’ product (i.e. we never allow X, X, !) of those can never
cancel out and become the identity, and thus the free group of a countable infinite
number of generators can be represented as a subgroup of F2.

If we introduce the relations a? = b2 = 1 i.e. we consider the free product
Zo x Z5 we can give a very explicit description of it. Let us now use the additive
notation so 0 will denote the identity. Set 1 = ab to be the generator of the
additive cyclic group Z (thus not an additive identity). We then get al = a?b = b.
As (ab)(ba) = 0 we should have ba = —1. Now set n = (ab)(ab)...(ab) (n-times).
We then get an = a(ab)(ab) ... (ab) = (ba)(ba)...(ba)b= (n — 1)(—1)b from which
we conclude an = (—n)a. Thus a operates on Z by taking the (additive) inverse.
Any element can be written as either n or an and the addition rule is easily written
down. (Note that if we only consider legal words, they divide into those starting
with a and those starting with b, the former can be thought of as the positive ones,
and the latter as the negative.) What we have here is the infinite dihedral group.
All the elements an are involutions. And all the finite dihedral groups are quotients
of this infinite. In particular any group that is generated by two involutions has
to be dihedral. Either (ab) has finite order ((ab)™ = 1) and we then have Dy,
(Dividing out by the subgroup nZ.) or it has infinite order, and then we simply
have our Dao, (= Za * Z3)
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Continuous groups

We are now considering the case of a mixing of strcutures, namely topology being
made compatible with the group structure. The notion is that of a topological
group, meaning that the group G is a topological space and that the map M :
G x G — G defined by M(z,y) = zy~! is continuous. A natural condition on the
topology is that it is Hausdorff, which implies that each point is closed. Conversely
if the identity is closed, then so is verey point because of translation. And by taking
the inverse we see that the diagonal is closed, which is an equivalent condition of
Hausdorff. Furthermore homomorphisms between topological groups are of course
assumed to be continuous. Thus normal subgroups are always closed. An open
subgroup has all of its cosets open, hence the complement is open, so the group is
automatically closed. The quotient of such a group will necessarily be discrete, i.e.
every subset is open ((and closed).

We have already encountered some topological groups such as C*,R* and S?!
the latter being a compact version of the cyclic groups, and as we have already
noted containing all finite cyclic groups as subgroups. (In fact the union of all
finite subgroups make up a countable subgroup isomorphic to Q/Z the group of
all roots of unity. (An alternative description is that of points on the unit corcle
corresponding to angles given by rational degrees.) We will return to this later.

Now given S we can consider arbitrary products of if S* x ... S so called tori.
In addition to S! there will be another sphere which is a group, namely S3. Just as
the group structure on S! is induced by multiplication by complex numbers, that
on S3 is induced by the quaternions. It is a non-commutative group.

Given a finite dimensional vector space V with scalars K = R,C we can talk
about GL(V, K) the group of non-singular matrices. Those of determinant 1 make
up a subgroup SL(V, K). If we fix a non-singular quadratic form @ we have all
the matrices preserving it, denoted the orthogonal group O(K), which contains a
subgroup SO(K) of index two, consisting of those with determinant one. Now in
the case K = R a non-singular quadratic form is determined by its index a — b
(with @ positive squares and b negative squares and a + b = n the rank. We thus
talk about groups S(a,b; R) which are compact iff ab = 0. SO(2,R) is S while
SO(3,R) is the group of orthogonal 3 x 3 matrices, given by identifying antipodal
points on S3. The group SO(3,1,R) is called the Lorentz group and is important
in relativity theory. In fact many of those groups defined by matrices are important
in physics as they describe various symmetries and equivalently various invariants.

Finally we may return to the example Q/Z. By @, we can denote all rational
numbers given by fractions whose denominators are powers of a prime p. They form
an additive subgroup and Q is the direct sum of all the p-components QQ,. Each
such component contains all the cyclic subgroups of orders powers of p. In fact

we have p"xz = 0 iff z can be written with a denominator p™. Thus each number
a1p" " "+asp” " ’+-4an

z € @, has a unique expression as where the constant term
a, # 0. Thus each such number gives rise to a finite sequence a1, az---a,,0,0,....
What if you would allow infinite sequences? How should we add them? We have
here a system Z, C Z,» C Zps C --- where Q, is simply the union. As it is a
nested union, once an element belongs to one set, and will automatically belong
to all the subsequent. We also have the notion of truncation. If x € Z,,1; we can

drop its constant term, i.e. choose a appropriately as to make z — # € Zn.
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Thus an element z can be thought of as an infinite sequence z1, x5, x3--- where
the truncation of =, is x,. The sequences we get are stable ones, i.e. for some
n we have =, = Tp41 = Tpy2--+. But what if we would allow infinite sequences?
This would correspond to infinite sequences %1 + Z—% = g—g + +-+ which is nothing
but a real number succesively approximated, not by what usually is done, negative
powers of ten, but negative powers of an arbitrary prime p.

But now we can turns things around and look at infinite series like this ag +
a1p + a — 2p% + asp® + - - -. How should we make sense of them? If the series are
trubcated they obviously denote integers, but if we let them continue for ever? First
what should we think of a,, as being. To have a unique representation we ned that
0 < a; < p, but then we can think of them as members of Z,. Thus ag € Z,, while
ap + a1p € Zy2. What we have here is a sequence of surjective homomorphisms
- Zys — Zyp — Zp and an infinite sequence of elements a, € Z,» such that
Gn+1 > an. Two sequences are said to be close if their initial parts agree up to
a high order. This means that we have a topology on the integers Z such that
two integers are close if the difference is divisible by a high power of p. One may
formalize this by introducing a norm, i.e. a distance from 0 by dp(ap™,0) = p™"
where (a,p) = 1. This is the p-adic metric on Z and we are talking about its
completion Z, of p-adic integers. This is clearly an uncountable set. It is not a
field, but it can easily be turned into a field, by considering Laurent expansions
instead, or equivalently, allowing arbitrary powers of p in the denominators. The
observation to make is that if ag # 0 then ag+ a1p + - -- is invertible. This follows
from 1+p+p>+p>+--- = ﬁ (multiply both sides with (p — 1)) and the fact
that if you add subsequent powers of p(a+bp+- - -) you will have no problems with
convergence. Now you could do everything you have done before for R and C with
those p-adic fields which are denoted by Q,.



