Hemuppgift II

8/5

- 1 Calculate the coefficient of xyz in $(x + 2y + 3z)^3$
- **2** Compute the euler-number $\phi(999)$
- **3** Show that the eighteen powers of two $\{2, 4, 8, 16, 13...1\}$ are all distinct, thus show that the map $n \mapsto 2^n$ defines a permutation of the eighteen non-zero objects of \mathbb{Z}_{19} .
 - a) Write down the cycle representation of this
 - b) Determine whether the permutation is even or odd
 - c) Compute the number of permutation of S_{18} which commutes with it.
 - d) Find the inverse of 13 in \mathbb{Z}_{19} and the two square-roots of 7
- 4 Show that 17 divides $n = 10^8 + 1$ and compute the last two digits of m where $n = 17 \times m$ without performing any long division.
 - 5 Find the last digit of 2^{100} and try to find the last two.
- **6** Try to find three distinct primes p_1, p_2, p_3 such that if $n = p_1 p_2 p_3$ we have that if (a, n) = 1 then $a^{n-1} = 1(n)$. Such numbers are referred to as pseudo-primes or Carmichel primes.
 - 7 Let p be a prime and N the sum of all quadratic residues. Compute N
- **8** Compute the number of words of length 12 in the alphabet $\{a, b\}$ such that the combination ... bb... is prohibited.