
PostScript Manual

%!1

Any entry into a magical word starts with a code word to make the gates open. In the case
of PostScript the magic password is the one above. Thus a PostScript code should always start
with %! on the first line, and this means literally. No nothing before, not even a space. (And it
is also a good practice that a new line should start as everything behind a % is like in tex
(conveniently) ignored by the compiler.) The reason is that when a file is sent to the printer via
the unix command

lpr -Pmathps* file.ps
the printer is then told that it is a PostScript file, otherwise it will only treat the code as

text and may in some cases churn out some 400 pages of code (this has indeed happened to
me).

Also every code should end on the last line with showpage otherwise the printer will churn
out nothing. The command showpage tells the printer that the page has been formatted and is
ready to be printed.

However, when viewed via a previewer one may be more lax, the initial code as well as
the concluding ’showpage’ are not necessary. Among the previewer gs is the best, although not
quite as good as its old version. It does give error messages invaluable to the programmer (the
old one also presented the picture up to the confusing command greatly faciliating diagnosis,
while the new one simply dumps the picture as soon as it runs into problem). The most modern
previwers like ggv are useless. If there is some mistake, however trivial, it only returns ’invalid
PostScript code’ and quits. This is clearly not intended for PostScript programmers, a rare breed
indeed, we are told, of unusually peculiar people.

Objects and procedures and stack manipulation2

A program basically consists in writing down sequentially objects and procedures. Objects
are things like numbers 3 4.0 3.14159 or strings (please) (do) (not) (read) (this) or more special
things like fonts /ZapfChancery-MediumItalic , while procedures or functions act on the objects.
The objects are arranged sequentially in stacks. When you write down an object it is
automatically put on top of the stack. And whenever a function or procedure is being used, it
applies itself on the objects of the stack sequentially starting with the most recent (topmost). In
stacks, as we will notice, all kinds of objects may be mixed.

The result of a procedure is usually not visible to you, only a few procedures result in
things that can be printed out. But of course the purpose of the game is to produce at the end
things you can see on screen, or better still view on paper.

The first things we have to do is to familiarize ourselves with some simple procedures that
manipulate stacks, providing the basic internal machinery so to speak. To add an object to a
stack we only write say 5 then we recall that this number will be the topmost object. So the
basic procedures are the following

12 45 67 pop ⇒ 12 45
5 7 43 dup ⇒ 5 7 43 43
2 7 1 8 exch ⇒ 2 7 8 1
Note that those only involve the topmost objects of a stack (of course repeated application

of pop will kill the entire stack producing nothing). For a more intrusive rearrangement we need
the roll operator, which affects a cyclical permutation

5 7 43 8 3 1 roll ⇒ 5 8 7 43
The first number 3 tells us how deep into the stack we want to penetrate, while roll 3 1

means putting the topmost object on the third place affecting a cyclic permutation moving
everything to the right of the cutoff one (1) step rightwards, similarly roll 3 2 means moving it

1

two (2) steps rightwards. Thus e.g
1 2 3 4 5 6 5 3 roll ⇒ 1 3 4 5 6 2 3
Thus N 0 roll will do nothing at all, while N N roll will work but in the end

accomplishing nothing. Also of course 2 1 roll is the same thing as exch . All the above could
be used on any kinds of objects. Then there are arithmetical procedures only meant for numbers
with the predictable results.

4 5 add ⇒ 9
4 5 mul ⇒ 20
4 5 div ⇒ 0.8
4 5 idiv ⇒ 0
24 7 mod ⇒ 3
where the last two only works on integers. It is also a good thing to only involve positive

integers, computer languages are notoriously bad as handling negative numbers in modular
aritmetic. Incidentally idiv and mod are good converting pairs of numbers to single numbers and
back in a way the reader can easily figure out.

Note, and this may have to be emphasized. Procedures only works to the left, i.e. on the
’past’ anything in the future is unknown to it. Also procedures are of course not placed on the
stack thus the command

roll 3 1 exch
would be impossible.

Drawing lines and curves3

The paper on which we draw comes with a co-ordinate system. The left hand lower corner
corresponds to (0,0) while the height of the paper is approximately 800 and the width 600 . The
precise depends on the setting of the printer and can easily be experimentally checked. (On the
screen the limits are (610,800) while on the paper we have (580,830) with nothing to the left or
below of 10 does not print out). It is a good idea to have some safety of margin. The units of
measurements may appear somewhat haphazard, in fact 72 corresponds to one inch.

The drawing of a line involves a few procedures. The first being newpath which informs
that a new line is about to be drawn. A line has a starting point given by regular co-ordinates,
and an ending point, likewise given by co-ordinates. The procedure is completed by telling the
machine when to stop and draw. Thus the code is as follows

% draws a line from (40,60) to (300,500)
newpath 40 60 moveto 300 500 lineto stroke
We could also have done it as follows
newpath 40 60 moveto 260 440 rlineto stroke
where rlineto refers to ’relative’.
A simple rectangle is drawn by
newpath 100 100 moveto 0 50 rlineto 50 0 rlineto 0 -50 rlineto -50 0

rlineto stroke
or slightly simpler by
newpath 100 100 moveto 0 50 rlineto 50 0 rlineto 0 -50 rlineto closepath stroke
An arc of a circle is specified by the center of the circle, its radius

and the initial angle and the final angle. Thus
newpath 100 100 50 0 120 arc stroke
and hence a (full) circle can be coded as
newpath 100 100 50 0 360 arc stroke
Those procedures with arc

2

are handy, but strictly speaking not necessary. In fact curves can always been drawn using
polygons, which when sufficiently finely meshed, are indistinguishable to the human eye from a
smooth curve. PostScript actually comes with a full tool-set of curve-fitting procedures, as well
as various dotted lines, which I have never used. The point is that with a few simple procedures
you can do almost anything. Drawing a line between two points is the most basic graphic
operation you can think of. There is also another, not quite as basic, but not derivable from the
basic procedures, namely fillings, which is fundamental for more serious graphing work. In fact
when closed curves are drawn one may also fill them, a very useful device in 3-D imaging
producing hidden lines. Also if you want to draw very small figures, it is much better to fill
them, than to draw their contours, as the thickness of the line will be too dominant. (As we will
see you can also vary the thickness of lines, but in extreme cases this might be more of a
theoretical exercise than a practical one, as there seems to be limits to the printers ability to
draw very thin lines, to say nothing about the screen; yet small fillings the printer seems to be
able to do down to the cut-off limit of the human eye. The printed image is always superior to
the one on the screen.) The command to use then is fill . It fills the enclosed area with black. If
you want another shade than charcoal black you set

x setgray
where x is a any real number from 0 (pitch black) to 1 (bleached white). (Negative

numbers are treated like zero.) After that the greytone is set at x until you change it. (The
default setting is always 0 drawing black lines). Thus if you set the grayscale to 1 (white), be
sure to revert back to 0(black) as soon as possible, otherwise your text and figures will be
invisible, causing you much consternation and confusion.

It is also possible to do color. Color is introduced by a simple command namely
h s b hsbcolor
where h,s,b are numbers between 0 and 1, where b stands for brightness, exactly as in

setting the greyscale, and s for saturation, while finally h stands for hue. Roughly speaking 0
stands for red growing orange into yellow at 0.16 then getting greener, reaching is apogee at
0.3-0.4 then blending into blue at around 0.5 and from then on turning towards violet reaching
at 0.7. From 0.8 onwards it is getting more and more red again. A complete color chart is
easily programmed, either to be looked at on the sceen or printed on a colorprinter. The
drawback of color is of course that it is not easily copied and multiplied.

In order to do more serious graphic work, we need to be able to to the usual things in
programming, namely recursion, conditionals and doing macros, or subroutines.

Recursions4

The simplest recursion is of type
0 1 100{ command } for
It produces numbers starting from 0 to 100 on which the

chosen command is expected to act.
Thus
% ten vertical lines of length 100
newpath 100 10 200{100 moveto 0 100 rlineto } for

stroke
or
% a grid of one hundred 10 ×10 squares
newpath 100 10 200{100 moveto 0 100 rlineto } for
100 10 200{100 exch moveto 100 0 rlineto } for stroke
Or using the trigonometric function sin cos which act on

3

degrees rather than radians we can draw a trigonometric curve
newpath 0 0 sin 100 mul 0 1 360{ dup sin 100 mul lineto } for stroke
This sine-graph will be inconveniently placed, half of it outside the paper, but we will learn

to deal with such things later. Note also that the general set-up works equally well for any
defined function of one variable (producing just one number). In particular by adding different
frequencies we can do graphing of fourier series, a crude example would be something like

newpath 0 0 sin 100 mul 0 1 360{ dup dup dup dup sin 100 mul exch 2 mul sin 50
mul 3 2 roll 3 mul sin 30 mul 4 3 roll 4 mul sin 10 mul add add add lineto } for stroke

This clearly is going out of hand and we need to learn how to classify and compactify,
which will be the subject of the next section.

Macros5

This is indispensible, not only are some commands long to write out (like say newpath)
but often you will use the same chain of commands over and over again.

As to drawing I usually prefer the following set up, which I actually either reconstruct
(from memory) whenever I write a new program, or which I (more conveniently) have included
in an initializing file (which incidentally should always start with the magic password, so you
never need to worry about it). Of course this is by no means canonical, every author should feel
to use his own set, but as I have been using them (almost daily?) for many years, they are
indeliably engraved in memory, and I will make use freely of it in the text, as otherwise the
writing of code would be too tedious. The reader is warned though, that many of the code
fragments do not make sense in isolation, but need to be embedded in the context below.

/n { newpath } def
/m { moveto } def
/rm { rmoveto } def
/l { lineto } def
/rl { rlineto } def
/cp { closepath } def
/s { stroke } def
/f { fill } def
We can also define objects, not just procedures. As examples /pi 3.14159 def
/JA (Jockum) def
/font /Times-Roman def
So we can define the procedue of drawing a line as
/Line { n m l s } def

Thus setting from now on
0 0 60 40 Line
will produce a line drawn from (60,40) to (0,0)
(Note that I usually do not bother with defining such simple procedures, they are anyway

not part of my usual macro library).
Another procedure is

/c { dup cos exch sin } def
Thus
30 c ⇒ cos(30 o) sin(30 o)
In particular
n 0 c m 0 60 360 { c l } for
draws a hexagon, and

4

n 0 c m 0 1 360 { c l } for
draws for all intents and purposes a circle.
Thus defining objects correspond to introducing variables (and fixing their values) in

ordinary programming, just like intricate procedures are more than simple notations but
corresponds to sub-routines. But the salient feature of PostScript is that there is no need for
structuring. New variables and objects do not need to be defined ahead of time but can be
introduced whenever convenient, the same thing with subroutines, which can be redefined at
whim, and also allows to be arbitrarily nested (in practice of course, if not in theory, there
always being hidden limits to all things), however not self-referentially. Thus e.g. if we have
defined a procedure P say that can be applied to itself (e.g. a matrix operating on pairs of
numbers) we are not able to redefine it by /P { P P } def and we are not able to sneak through
the inhibition by denoting P by say P1 with P1 defined in terms of P . However,
self-referentiality works well with objects, thus we may with no problem redefine /a { a 1 add }
def . In this way we can easily get around the problem, say with P being a matrix, by
recursively redefining its numerical entries. (This turned out handy when graphing the
fundamental domains of the modular group, which are generated by two basic matrices S,T)

One important thing is that when you define a procedure, you may use undefined
procedures, it is only when the actual procedure is called up for action, the compiler needs at
that moment know everything it calls. Thus it is perfectly workable code to write e.g. the
following nonsense

/P1 { P2 Q } def
/P2 { A } def
/A { pop dup } def
/Q { add add } def
P1
This means that the writing of PostScript code is very unstructuerd, as already noted above,

and in particular this means that you can import code from other programs easily. Also that
PostScript codes, like the genetic codes, tends to be unedited, and when used for a long time
includes mostly garbage, namely code that has nothing to do whatsoever with the apparent
purpose.

However, one note of warning. Unlike subroutines in ordinary programming like ’C’,
internal variables are not invisible, thus great care has to be taken not to accidentally redefine a
globally used variable. Often it does not actually matter, but occasionally some inexplicable bug,
which can keep you busy for hours, may be reduced to an accidental slip of using the same
letter twice.

Conditionals and loops6

Certain commands like eq gt lt produce as output true or false (which are actually objects
on the stack). As examples of true statements are 5 2 gt and -0.1 0 lt while false statements are
(5) 5 eq or 3 3 lt . Depending on the truth-value a certain procedure can be done the syntax
being { P } if meaning P will be executed if following a truth value (uppermost on the stack)
otherwise not. (Obviously if this is applied to a stack not topped by a truth-value object, the
program will crash, as it always will when asked to do something inappropriate.) A variation,
which is almost always used is { P } { Q } ifelse which means of course P is executed if true,
otherwise Q will be executed.

Needless to say truth values can be combined with the obvious commands or or and thus
x 5 lt x -2 gt or { P } if
will perform P whenever the value x satisfies -2<x<5 .

5

The recursion previously considered presupposed that we knew in advance how long it
would be, if not we have the other alternative of the open-ended loop { P } loop which will
perform P ad infinitum . How to stop it? Simply in it implement an exit procedure e.g. { P x {
exit } if } loop . (Where x is a truth-value obtained some way or another).

As an illustration we may consider a general ordering procedure. Say that we want to order
the numbers 0,1,2 …N

0
in ascending order on a stack with respect to certain numerical values

produced by a certain function T .
/Order { 0 /N 1 def { /nn N T def /count 0 def { dup T nn gt { N 1 roll /count count 1

add def count N eq {N exit } if }{N exit } ifelse } loop /N N 1 add def N N count sub roll N
N0 gt { exit } if } loop } def

The procedure should be clear. Whenever a number N is compared with the topmost
member of the stack it will either be added on top, in case it is bigger, or the stack is rotated
one member for another try. This is repeated up to the number N

0
.

Scaling and translation7

As noted above the standard set up of a rectangle with the lower left hand corner at (0,0)
and the upper right hand corner at (600,800) (approximately, the quotient y/x should be close to √2
) is often inconvenient, but is the default setting at the beginning of each new page (i.e. after
the command showpage has ended a previous one. To reformate the page we have

x y translate
which does the obvious thing, i.e. moving the position of the origin to the point (x,y) .

Then we have the equally transparent procedure of scaling
a b scale
which scales the x direction with a and the y -direction with b . Normally we have a=b

and I usually use the notation Sc for the common scalingfactor. Note that those two operations
do not commute. When doing a scaling it is important to remember that everything scales,
including the text (see below) and the thickness of the lines, thus it is paramount to do
something like this

1 Sc div setlinewidth
which will produce the standard width of 1 of a line, which is actually default. This

incidentally points out the possibility of using different linewidths (something to which we have
already alluded). Those are set in the obvious way by the command above.

When doing circles and spheres it is nice to center them in the middle of the paper by 300
400 translate and do an appropriate scaling say by /Sc 250 def thus being able to work with
the normalized radius of one. Incidentally, which is less crucial, but intermittently useful is the x
rotate

which rotates around the origin a given angle x given in degree o .
Finally, although one learns after a while to get a feel for the measurements, they can all

be converted to familar centimeters by after each length measure add cm in the form of a
simple procedure, namely

/cm { 72 div 2.54 mul } def
Thus
n 3 cm 3 cm 3 cm 0 rl 0 3 cm rl -3 cm 0 rl cp s
does exactly what you think it does. Note that there is no need to add cm to 0.

6

Producing text8

First we need to initialize a font, and the paradigm is as follows
/Times-Roman findfont 30 scalefont setfont
Which can be nicely put into a macro like
/F { font findfont sc scalefont setfont } def
which is convenient if you plan to do frequent changes of font and scales.
Thus we can do e.g.
/font /Helvetica-Bold def /sc 20 def F
Note that this is a fairly big font, the letters of this page correspond to about 12. (If we

have done a significant scaling by say Sc it is imperative to scale down sc simply by /sc 20 Sc
div def otherwise you will be up for an unpleasant surprise.)

To print something out we need a string co-ordinates and where it should be put thus, after
we have initialized some font we can write

(Jockum) 100 700 m show
Which will display ’Jockum’ in the left upperhand corner (unless we have done some

scaling and translating beforehand)

Jockumisaniceboy

The following will give the strings printed after
each other

(Jockum) 100 700 m show (is) show (a) show
(nice) show (boy) show

thus as on the left
To avoid it we can either insert spaces within the

strings
(Jockum) 100 700 m show (is) show (a) show

(nice) show (boy) show
Or to do
/mm { 4 0 rm } def
(Jockum) 100 700 m show mm (is) show mm (a) show mm (nice) show mm (boy) show
Clearly we can if we prefer absorb mm into a new definition say of showm
To do a centering of text we can use the following routine
/cshow { dup stringwidth pop -0.5 mul 300 add 3 2 roll m show } def
Which works on a stack
700 (Jockum is a nice boy) cshow
A more frivolous exercise would be the following

 y
o

b

e
c

i
n

 a s
i

m

u
k

c

o
J

/Sc 100 def 300 350 translate
Sc Sc scale
/font /Palatino-Roman def /sc 30 Sc div def F
()(y)(o)(b)()(e)(c)(i)(n)()(a)()(s)(i)(

)(m)(u)(k)(c)(o)(J) 1 1 21{ pop 0 1.2 m show 360 21
div neg rotate } for

One should also keep in mind that when you write
a parenthesis it is best to write \050 and \051
respectively because expressions like ()) greatly
confuses PostScript. Thus if you want to write ((mean
boy)) the string (\050mean boy \051) is to prefered,
although in this particular instance PostScript would be
able to handle matters as the parenthesis are locally

7

nested.
Another useful thing to know is the possibility of converting numbers to strings (invaluable

if you want to do some hunting down of recaltricant bugs). In order to do so we need to
prefigure by a

/str 20 string def
Then
15 str cvs ⇒ (15)
which then can be printed out.

RRCC
We can also do some playing-around, like shading letters and such

things. More interesting though is the possibility of doing so called
blackboardbolding. Here is a simply routine

/bold { dup dup show stringwidth pop /ss exch def -0.8 ss mul 0
rm show } def

where the parameter -0.8 is a matter of taste and experimentation.
Then we can go ahead and do

(R) 100 500 m bold
Finally we would also find it useful to print out Greek letters and mathematical symbols.

For this there is the font /Symbol whose coding is to be found in the appendix. Suffices it to
point out that (\160) corresponds to π.

Arrays and such things9

Sometimes it could be handy to stock the contents of a stack in memory. The object that
handles such things is the array. We can either define one by hand, like /Arr [(2) 3
/Times-Roman] def

which places three objects in the array Arr . In fact we can even insert things like 5 3
mod because this after all produces a number 2 or truth-values like 3 2 gt into an array. If we
want to take out an object we simply do

Arr 2 get ⇒ /Times-Roman
Thus, not surprisingly the objects are counted from zero and up.
We can also define an array as
/Arr 10 array def
which we now can start to fill by the put command. Thus
Arr 2 (Boel) put
puts in position two the string (Boel) and actually replaces the object /Times-Roman in case

we apply it to the old Arr . There are also commands that puts on the stack all the objects of
an array along with the array itself. Such routines can easily be implemented and there is no
reason to load your memory with such things.

Just as there are limits to the depths of stacks (too long and there will be overflows) thus
in programs that work with many steps it is a good thing to continually clean out the stack with
the judicious use of pop , there are also of course limits on the capacities of arrays, the exact
numbers probably differing for different implementations and something the system-man should
be able to anser, but most likely will not. (Anyway experimentations may reveal the actual
limits.)

8

3D-pictures10

Points in space are given by 3 coordinates (i.e. three numbers x y z in the stack). By
suppressing the last (i.e. doing pop) we simply project it to the x-y plane. This is a rather
stupid thing to do unless we do some rotations of the plane of projection. To do so we need to
construct some routines.

/dup2 { dup 3 2 roll dup 4 1 roll exch } def % xy to xyxy
/add2 { exch 4 1 roll mul 3 1 roll mul add } def %abxy to ax+by
%x y t to xcost-ysint xsint+ycost
/vrid { dup cos exch sin exch dup2 exch neg 6 4 roll dup2 6 2 roll add2 5 1 roll add2

} def
/vridx {vrid} def
/vridy {3 2 roll 4 1 roll vrid 3 1 roll exch 3 2 roll } def
/vridz {4 2 roll 3 2 roll vrid 3 2 roll } def
The reader who finds the mental arithmetic of stack manipulation tedious may ’cheat’ by

simply defining the handy
/ed { exch def } def
and then do /z ed /y ed /x ed
translating the contents of a stack into simple variables x,y,z and then do straightforward

manipulations on them. (However, the advantage of the stack yoga is that one does not
introduce new variables, which may in fact be old and interfere with the process)

We may then draw a perspective of a cube by simply specifying its vertices (say by
combinations of 1,-1) and draw the appropriate edges, one of which would be

newpath 1 1 1 U pop moveto 1 1 -1 U pop lineto stroke
Where U would specify some particular rotations (as a combination of different vrid). The

reader who would find the writing down of the twelve lines odious could think up some way of
generating the eight vertices and deciding when two vertices should be joined by an edge. Here
is a suggestion.

%generating vertices
/V { /v ed 1 1 3 { pop v 2 mod 0 eq {1}{-1} ifelse /v v 2 idiv def } for } def
%making variables (this is really cheating)
/XYZ { /z1 ed /y1 ed /x1 ed /z ed /y ed /x ed } def
%computing distance between two points
/dist {x x1 sub dup mul y y1 sub dup mul z z1 sub dup mul add add } def
%drawing a line
/L {n x y z U pop m x1 y1 z1 U pop l s} def
We are then ready to set it up
cube {0 1 7{/v1 ed 0 1 v1{/w ed v V w V XYZ dist 4 eq { L } if } for } for } def
(Why did we use v1 instead of the simpler v ?) The picture will be as on the left

Now we may want to show a non-transparent cube.
This means that we are going to hide lines. This is
naturally effected by the filling out of polygons, and thus
the strategy is to first paint the most distant polygons and
then proceed to the closest. One measure of distance is to
look at the distance to the center of gravity of each
polygon. (Clearly if we are going to have many polygons
we need to subdivide them in smaller ones in order not to
get unplanned surprises, but in the simple situation of a

9

cube we need not worry about it. Now we have before defined an ordering routine which we
can use. Thus a suggestion for a program would be the following.

/face { n -1 -1 A m -1 1 A l 1 1 A l 1 -1 A l cp z } def
/A {1 V U pop } def
%The following generates the faces of the cube
/Vd { dup 4 lt { 90 mul /v ed /V {v vridy } def }{2 mul neg 9 add 90 mul /v ed /V {v

vrid } def } ifelse } def
%This function is used for ordering the faces
/T { Vd 0 0 1 V U 3 1 roll pop pop neg } def /N0 5 def
Order
/cc 0 def
{ Vd 1 setgray /z { f } def face 0 setgray /z { s } def face /cc cc 1 add def cc 5 gt {

exit } if } loop
The result can be seen below . A simpler case of

actually using the technique of hiding is given by the
graphing of a function, when the angle U is chosen with
some care, as to be able to predict beforehand the ordering.
So let us consider the graph over a rectangle in which we
are going to graph the most distant first. If the corners of
the square are given by ±1 ±1 and the grid has mesh d we
may set up the following

/d 0.1 def
/da {d add } def
/Ff { Fun U pop } def
/ff { n xx yy Ff m xx da yy Ff l xx da yy da Ff l xx

yy da Ff l cp z } def
/Box {1 setgray /z { f } def ff 0 setgray /z { s } def

ff } def
/Fun { dup /yf ed exch dup /xf ed exch function } def
1 d neg -1 {/yy ed -1 d 1 {/xx ed Box } for } for
Where we can use the viewing angle gioven by /U {30 vridz 60 vridx } def . It only

remains to choose the function one example may be the Monkey-saddle, i.e. the harmonic
polynomial given by the real part of z 3 i.e the function below

/function { xf xf xf mul mul 3 xf yf yf mul mul mul neg add } def
The result can be viewed in the picture

is invited to experiment with other choices of functions.
We may also ’jazz’ up the function graph, e.g. we

can paint every other square black (for some inscrutable
reason), or being more sophisticated introducing a
light-source and thus shading each square appropriately.
(Simply computing the cosine between the normal and the
direction of the light, through the standard inner product),
There is a serious problem though. It is hard (although
not in principle impossible) to determine which rectangles
are hidden from the light of the light-source, because
unlike us, the code is blind. We have no difficulty from
our vantage point by simply looking. In the case of
spheres it has a simple solution a special but important
case of 3-D graphing that justifies its own section.

10

The Sphere11

The sphere is a useful and easy thing to implement. It can be done in a variety of different
ways. One obvious entry into the possibilities is to recall the procedure /c {dup cos exch sin }
def which defined the circle of radius one by

/circle { n 0 c m 0 1 360 { c l } for } def
With some obvious modifications we can make this circle a latitude at height h namely do
/c {dup cos r mul exch sin r mul } def
/circle { n 0 c h U pop m 0 1 360 { c h U pop l } for } def
Where we put /r h h mul neg 1 add sqrt def and then do a sequence of different h , the

details by now safely left to the reader. Note that h=0 corresponds to the equator. The command
U is clearly defined, as usual, by a short sequence of rotations, determining from which angle
we aree viewing the sphere.

This taking care of the latitudes. A longitude can be thought of the equator rotated arund
some axis in the x-y plane, say the x-axis. Thus

/circle { n 0 c 0 90 vrid U pop m 0 1 360 { c 0 90 vrid U pop l } for } def
To get the other longitudes we simply rotate around the z-axis, thus
/circle { n 0 c 0 90 vrid ang vridz U pop m 0 1 360 { c 0 90 vrid ang vridz U pop l }

for } def
for different angles ang .
Now if we do not want a transparent sphere but an opaque one, certain lines will be

hidden, but which ones? For spheres the answer is wonderfully simple. Looking at a sphere
from infinity, the horizon coincides with a great circle cutting the sphere in half. Only the
positive half can be seen, i.e. those with positive z -value. Thus we simply replace the fragment
U pop l by U 0 gt { l }{ m } ifelse and we present only the visible half. If we are doing a real
perspective show, being located at a finite distance, there is a slight modification to be done,
safely left to the reader.

The ease with which opaqueness can be handled for spheres should be contrasted with the
difficulty for ellipsoids, even rotationally invariant such. It can of course be figured out
mathematically and implemented but it is not entirely trivial, illustrating one of the nice features
of PostScript programming, giving you elementary, yet intriguing, mathematical problems to
solve, rather than leafing through a manual.

There are of course other ways of producing
spheres, one is to use the spherical
co-ordinates as given by the latitudial and
longitudial grid directly exploiting the
standard formulas to give the 3-dimensional
x,y,z co-ordinates which are easily
implemented. The figure below plots the
visible longitudal/latitudal rectangles shaded
by a light-source not coinciding with the
direction of the observer. The shading is
simply given by setting the greyscale equal to
the z -value under V (the direction of the
light source) noticing that z setgray returns
black also for negative values of z .

As is well-known we can to each skew
3 ×3 matrix M associate an element exp(M) of

11

SO(3) whose axis of rotation is given by the kernel of M . This can be done simply by the
following formula, (in which M has been normalized so that Tr(M 2)=-2

exp(θM)=I+sin θM+(1-cos θ)M 2

and hence be straightforwardly be implemented in PostScript. This has been done, and in
fact it gives a nice routine for drawing the great circle arc between two given points on the
sphere, and thus in particular to draw spherical triangles.

Finally no treatment of the sphere is complete without some mention of the presentation of
map-projections. In principle a map-projection is given by a function F(θ, ϕ) of the spherical
co-ordinates, and once the function has been implemented it should be straightforward, once we
have documented polygons of the major connected components of the landmasses. There are,
however, some snags. Sometimes we have the problem of monodromy, as when we have a
cylindrical projection, like Mercator, or only certain parts of the globe is visible, like in the
orthographic (the earth seen from infinitely afar) or the gnomic, when only half of the earth is
visible. In the first case we can simply do hidden lines, but if we want to fill out polygons, we
run into problem. Then the hidden point, normally to be mapped inside the circumference of the
(circular) horizon, is pushed onto the boundary. This map is only well-defined outside the center,
and for points close to the center, the procedure will result in ugly results. Needless to say such
things can be taken care of by a variety of methods, but it once again illustrates how
mathematical phenomena (like retraction to the boundary) can be made tangible in PostScript
programming.

Implementing PostScript in tex12

It is possible to insert PostScript pictures into tex-documents. At least it works in amstex
using an input of \epsf. The commands used are \epsfysize, giving the vertical size of the picture
and the calling procedure \epsfbox{*.ps} inserting the address of the file. For this to work
reasonably well one needs to supply the code with so called bounding boxes, i.e. giving the
corners of a rectangle in which the picture resides. Without it, it usually works nevertheless, but
sometimes unpredictably. This has forced me to design my own software to put pictures exactly
where I want them.

Final advice13

Experiment! There is no substitute for hands-on experience.

12

