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These notes are under construction. They constitute a combination of
what I have said in the lectures, what I will say in future lectures, and what
I will not say due to time constraints. Some sections are very brief, and this
is generally because they are not yet written. Some of the “problems and
exercises” describe things that I am actually going to write down in detail
in the text. This is because I have used the problems & exercises section in
this way to take short notes of things I should not forget to mention.

1 Introduction (23/9)

I started by mentioning the Beardwood-Halton-Hammersley theorem [13] on
euclidean TSP. Let Ln be the length of the minimum traveling salesman tour
through n uniform independent random points in the unit square. Then it
is known that for some β,

Ln√
n

p→ β.

Reminder: Convergence in probability to a constant β means that for every
ε > 0, P (|Ln/

√
n− β| < ε) → 1 as n → ∞. Through simulations it is

believed that β ≈ 0.71, but the best rigourous bounds are embarassingly far
apart, something like

0.625 < β < 0.922.

The situation is similar for the minimum spanning tree problem [39]. One
of the reasons I mention this is to contrast with the situation in the mean
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field model, where the distances between points (in an abstract geometry)
are taken as independent random variables. We will return to the euclidean
model later, when we discuss methods for proving concentration, in particular
the Talagrand isoperimetric inequality.

I listed some classical optimization problems on graphs:

• Minimum Spanning Tree (MST)

• Simple matching (simple = non-bipartite)

• Bipartite matching (=assignment problem)

• Traveling Salesman (TSP)

These problems have in common that we are required to find an edge
set of minimum total cost satisfying certain conditions (for instance in the
case of spanning tree, to contain a path between any pair of points). In the
mean field model (where the triangle inequality need not hold) we can add
one more problem to the list:

• Shortest Path

This does not make sense in the euclidean model because the shortest path
is always a straight line.

1.1 Elementary bounds on the cost in the mean field
model

For the moment, consider the bipartite matching problem (a. k. a. the
assignment problem) with edge costs taken from uniform [0,1] distribution.
What can we say about the cost of the optimal solution? First there is a
rather elementary lower bound on the expectation. The minimum cost edge
from a given node has cost

min(X1, . . . , Xn).

The expectation of this can be found by calculus:

E min(X1, . . . , Xn) =

∫ 1

0

P (min(X1, . . . , Xn) > t) dt

=

∫ 1

0

P (Xi > t)n dt =

∫ 1

0

(1− t)n dt =
1

n + 1
. (1)
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There is also a cute trick that gives this result without integration. It is not
necessary here, but a similar one will be needed (and therefore promoted to
method) in order to solve harder problems like finding the limit in the mean
field TSP. It goes like this, let Xn+1 be another random number generated in
the same way, that is, uniform in [0,1] and independent of the others. What
is

P (Xn+1 < min(X1, . . . , Xn))?

On one hand it is 1/(n+1) by symmetry, since Xn+1 has the same chance as
any of X1, . . . , Xn of being smallest. On the other hand it is (by definition
of uniform distribution) E min(X1, . . . , Xn).

It follows that (letting An denote the cost of the minimum assignment)

EAn ≥
n

n + 1
,

and in particular it is bounded away from zero. We now turn to the less
trivial upper bound.

Theorem 1.1 (Walkup 1979). There is a constant C independent of n
such that

EAn < C.

A couple of modifications will simplify the computations.

Modification 1: We consider exp(1)-distribution (exponential of rate 1).
This distribution stochastically dominates uniform[0,1], so it is sufficient to
prove Walkup’s statement in the exp(1)-setting.

Modification 2: We introduce multiple edges between each pair of ver-
tices. The potentially infinite sequence of edges have costs given by the
times of a Po(1)-process. Since the first event of such a process comes after
an exp(1)-distributed time, this modification obviously doesn’t change the
optimal solution.

We now give each edge a random orientation (by coin flipping) and con-
sider the set of edges obtained by choosing the five cheapest edges from
each vertex (on both sides of the graph). We want to show that with high
probability, this set contains a perfect matching. Let V1 and V2 be the two
vertex-sets.
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Theorem 1.2 (Hall’s criterion). A set of edges contains a perfect matching
iff for every subset S of V1,

|Γ(S)| ≥ |S| . (2)

Here Γ(S) denotes the set of neighbors of S, that is, the set of vertices in
V2 that have an edge to some vertex in S. I gave a handwaving argument for
Hall’s theorem. For a proof and more discussion of Hall’s theorem we refer
to the Wikipedia article on “Marriage theorem”.

If (2) fails for some S ⊆ V1, then for the minimal S for which it fails, we
must have |Γ(S)| = |S|− 1. Then let T = V2−Γ(S). Then |S|+ |T | = n+1,
and since Γ(T ) ⊆ V1− S, T is also a counterexample to (2). Therefore if (2)
fails, then it must fail for some S ⊆ V1 or T ⊆ V2 of size at most⌈n

2

⌉
.

In order to estimate the probability of (2) failing, we use the following
standard estimate:

Lemma 1.3. (
n

s

)
≤
(ne

s

)s

.

This is a quite rough but still useful inequality.

Proof. We have (
n

s

)
≤ ns

s!
,

and therefore it suffices to show that

s! ≥
(s

e

)s

,

or equivalently that

log s! = log 2 + log 3 + · · ·+ log s ≥ s log s− s.

Here

s log s− s =

∫ s

0

log x dx.

By drawing some boxes, we see that this is smaller than the right hand
side.

4



The merit of this lemma is just its simplicity. It is easy to get better
estimates from the Stirling formula (of which we will say more later).

P (Hall’s criterion fails) ≤ 2

dn/2e∑
s=2

(
n

s

)(
n

s− 1

)(
s− 1

n

)5s

≤ 2

dn/2e∑
s=2

(
n

s

)2 ( s

n

)5s

≤ 2

dn/2e∑
s=2

(ne

s

)2s ( s

n

)5s

= 2

dn/2e∑
s=2

e2s
( s

n

)3s

. (3)

Here the summand is log-convex:

d2

ds2

(
log

(
e2s
( s

n

)3s
))

=
3

s
≥ 0.

Therefore the largest term is either the first one or the last (which one it is
may depend on n). If we plug in s = 2, we get

e4

(
2

n

)6

= O

(
1

n6

)
.

If on the other hand s = n/2 or s = n/2 + 1/2, the term is at most

en+1

(
1

2
+

1

n

)3n/2

= e ·
( e

23/2

)n

·

[(
1 +

1

n/2

)n/2
]3

≤ e4 ·
( e

23/2

)n

.

Here the “3” is the number of edges from each node minus 2. It is chosen
very carefully so that e/23/2 < 1. Therefore the size of the last term decreases
exponentially, so that for large n, the first term (s = 2) will be largest. There
are O(n) terms in the sum, and therefore

P (Hall’s criterion fails) = O

(
1

n5

)
.

This is of course not the same thing as Walkup’s theorem. To finish the
proof, we use another trick, randomly coloring the edges. We let the edges
be red with probability p and blue with probability 1 − p, independently.
The blue edges between each pair of vertices form a Po(1 − p)-process, and
with the method above, we can, with probability 1−O(n−5), find a solution
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involving the five cheapest blue edges directed from each vertex. In the cases
of failure, we take the cheapest red edges matching the first vertex in V1 to
the first in V2 etc. This gives a method of obtaining an assignment. The blue
edges directed from a particular vertex form a Po((1 − p)n/2)-process, and
the five cheapest edges therefore have expected costs

2

(1− p)n
,

4

(1− p)n
, . . . ,

10

(1− p)n
.

The expected cost of an edge in this set is therefore 6/((1− p)n).
In the cases of failure we use edges of expected cost 1/p. Since there are

n edges in an assignment, we get

EAn ≤
6

1− p
+ O

(
1

n5

)
· n

p
.

To establish Theorem 1.1 it suffices to take p = 1/2, but if we choose p as a
function of n so that p → 0 but at the same time, pn4 →∞, we see that we
can take any C > 6.

Walkup’s theorem will later be superseded by the exact formula (valid in
the exp(1) setting):

EAn = 1 +
1

4
+

1

9
+ · · ·+ 1

n2
, (4)

of which we will have more to say. There is, however, one sense in which the
elementary argument outlined above gives more information than (4).

Theorem 1.4. There are positive constants c and C such that when n →∞,

P (c < An < C) → 1.

Proof. For the lower bound we took the sum of the cheapest edges from each
vertex in V1. Since the terms are independent it follows from the Law of
Large Numbers that their sum converges in probability to 1 (and therefore
any c < 1 will do). Actually, letting X1, . . . , Xn be independent uniform
in [0,1] and Y = min(X1, . . . , Xn), we can use the trick again to compute
var(Y ). This is because EY 2 is the probability that Xn+1 and Xn+2 are both
smaller than Y , and by symmetry, this probability is

1(
n+2

2

) =
2

(n + 2)(n + 1)
.
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Hence

varY = EY 2 − (EY )2 =
2

(n + 2)(n + 1)
− 1

(n + 1)2
≤ 1

n2
.

The variance of the sum of n independent Y ’s is therefore smaller than 1/n.
Of course this says nothing about varAn, that is another story.

For the high probability upper bound (C), we again take the five cheapest
edges from each vertex, and suppose that Hall’s criterion (2) holds. In that
case, An is upper bounded by the sum of the fifth cheapest edges from each
vertex (both in V1 and in V2 so there are 2n of them). The fifth cheapest edge
from a given vertex is of the form X1 + · · ·+ X5, where Xi are independent
exponentials of rate n/2. Summing over all vertices, we get a sum of 10n
exponentials of rate n/2. Each term has mean 2/n and variance 4/n2 which
means the sum has mean 20 and variance 40/n → 0. This rather sloppy
estimate thus shows that we can take any C > 20.

One way of combining Walkup’s theorem with the high probability upper
bound in one statement is to say that

E max(An, 20) → 20.

This is a strong form of what is sometimes called uniform integrability. It
shows that the limit distribution of An, if it exists, has compact support. It is
therefore hard to imagine any type of large n behavior other than convergence
in probability to some constant, but in the 1980’s, no methods were available
that would allow a proof of this.

2 Bounds on the cost of the TSP

Using some more tricks, we prove the analogous results for the bipartite
TSP. This implies the corresponding bounds for spanning tree, and for the
complete graph. The setting is again the same, n vertices on each side, and
Po(1) processes for the edge costs between each pair of vertices.

We color the edges red and blue with probabilities 1/2 − p each, and
save a fraction 2p of the edges (which we give random orientation) for other
purposes. Step 1 is to find the optimal assignments of red and blue edges
respectively. These matchings are independent, which means that relative to
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the red solution, the blue solution will describe a random permutation of n
elements, drawn uniformly among the n! possibilities.

If this permutation is cyclic, we have a tour. The bounds on the costs of
the red and blue assignments will then carry over and give a high probability
bound on the cost Ln of the tour. In case there are several cycles, we will use
the extra edges to “patch” the cycles into a tour. In order for this to work,
we have to show that with high probability there aren’t that many cycles.
To this end, we use the following quite clean result:

Lemma 2.1. In a uniform random permutation of n elements, let Zn be the
number of cycles. Then

E(2Zn) = n + 1.

Proof. The statement is obviously true if n = 1. We proceed by induction.
A permutation of n elements is constructed from one of n − 1 elements by
either mapping the element n to itself (probability 1/n) or inserting it in an
already existing cycle. Hence

E(2Zn) =
1

n
· E(2Zn−1+1) +

n− 1

n
E(2Zn−1) =

n + 1

n
E(2Zn−1).

It follows that

P (Zn > 4 log n) = P (2Zn > 24 log n) = P (2Zn > n4 log 2) ≤ n + 1

n4 log 2

= O

(
1

n4 log 2−1

)
. (5)

And 4 log 2− 1 ≈ 1.77.
If there are at most 4 log n cycles, then one of them must have size at

least n/(4 log n). We now take the remaining cycles, one by one, and patch
them to the main cycle in the obvious way by using the extra edges, and to
preserve independence we use edges directed from the small cycle to the main
cycle. In one step of patching, we choose arbitrarily two adjacent vertices
v1 and v2 of the small cycle, and consider the extra edges from v1 and v2

to adjacent pairs of vertices in the main cycle. We are therefore considering
the minimum of at least n/(4 log n) variables, each of which is a sum of two
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exponentials of rate p. It follows from Lemma 2.2 below that the expected
cost of such a patching is

O

(
(log n)1/2

pn1/2

)
.

There are at most 4 log n patchings to perform, so the expected total cost
of the patchings (given that there are at most 4 log n cycles) is

O

(
(log n)3/2

pn1/2

)
.

If there are more than 4 log n cycles, we use the extra edges to construct
a tour of expected cost n/p. In all, we therefore have

ELn ≤
2

1/2− p
· EAn + O

(
(log n)3/2

pn1/2

)
+ O

(
1

n4 log 2−1

)
· n

p
.

If for instance we choose p = n−1/4, it follows that ELn ≤ 24 + o(1). Again
an estimate of the variance of the upper bound (given at most 4 log n cycles)
will show that there is a C such that P (Ln < C) → 1 as n →∞.

The lemma that we promised to prove is the following:

Lemma 2.2. For 1 ≤ i ≤ m, let Zi = Xi + Yi, where Xi and Yi are exp(1)-
variables, all independent. Then

E min(Z1, . . . , Zm) = O

(
1√
m

)
.

Proof. Let 1 ≤ k ≤ m, we will optimize the choice later. Now suppose
without loss of generality that X1, . . . , Xk are the k smallest of X1, . . . , Xm.
The expected value of max(X1, . . . , Xk) is

1

m
+

1

m− 1
+ · · ·+ 1

m− k + 1
≤ k

m− k
.

Moreover, the expected value of min(Y1, . . . , Yk) is 1/k. Hence

E min(Z1, . . . , Zm) ≤ k

m− k
+

1

k
.

The statement follows by taking k =
√

m + O(1).

Another proof is sketched in Exercise 7.
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3 Matching and TSP with the statistical me-

chanics approach (30/9)

The following is a combination of ideas originating in the papers by Mézard
and Parisi, with the simplification by Aldous, and some refinements. It can
be described as the physics approach without physics. The replica and cavity
methods are often labeled non-rigorous, but to be fair, it should be pointed
out that a large part of the physics literature on combinatorial optimization
is devoted to the motivation of why the calculations should give the right
answer. This part, which is what is hard to understand, is here left out.
What remains is only a calculation leading from a certain equation of “self
consistency” directly to what we now know is the right answer. What is
presented here is therefore much less rigorous than the physics papers where
the ideas are originally described.

We begin with simple matching on the complete graph. A perfect match-
ing requires even n, but we consider a certain relaxation. We allow for leaving
a vertex out in a solution, but introduce a certain cost for doing so. In order
for this to make sense, the punishment for leaving out vertices must scale
like 1/n, and to facilitate notation, we rescale the entire problem so that the
edge costs are exponential of rate 1/n (mean n), and we therefore expect the
cost per edge in the solution to converge in distribution.

Let the cost of leaving out a vertex be c. Then only edges of cost smaller
than 2c are relevant, and this edge set will become very sparse for large n, so
that the graph becomes locally tree-like. Let T0 be the graph seen as a tree
rooted at a particular vertex v0, and let v1, v2, . . . be the neighbors of v0 in
order of increasing edge costs, which we denote by ξ1, ξ2, . . . . Let Ti be the
sub-tree rooted at vi. We will regard these sub-trees as disjoint, although in
reality they are of course connected somewhere. For a vertex set S, let C(S)
be the cost of the relaxed matching problem on the subgraph induced by S.

Now notice that

C(T0)− C(T0 − v0) = min(c, ξi − C(Ti − vi) + C(Ti)). (6)

To see this, think of the solution on T0 − v0 as given, and consider the
problem on T0, and where to connect v0. If we put Xi = C(Ti)− C(Ti − vi)
for i ≥ 0, then the equation can be written

X0 = min(c, ξi −Xi). (7)
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Here Xi, for i ≥ 1, are assumed to be independent variables of the same
distribution as X0. The ξi’s are, in the pseudodimension 1 case, a Poisson
process of rate 1. In this case it turns out that there is a simple explicit
solution, but the method applies also for other distributions, as has been
shown by Mézard, Parisi and others.

We first rewrite (7) in terms of its distribution. Let

F (u) =
1

2
P (X = u) + P (X > u),

where X has the distribution of Xi (clearly the only point where X has
nonzero probability is c). It is obvious from (7) that X0 ≤ c, and since the
ξi’s are nonnegative and Xi ≤ c, we also have X ≥ −c. The distribution of
X is a point mass at c plus a continuous distribution on [−c, c]. We focus on
the nontrivial case u ∈ [−c, c]. The statement that X0 > u is then equivalent
to saying that for every i,

ξi −Xi > u. (8)

For a given ξi, the probability that (8) does not hold is

P (ξi −Xi ≤ u) = P (Xi ≥ ξi − u) = F (ξi − u).

F (u) is the probability that there is no event at all in the Poisson process of
such ξi’s (for which (8) does not hold), which means that (7) is equivalent to

F (u) = exp

(
−
∫ ∞

0

F (ξ − u) dξ

)
= exp

(
−
∫ ∞

−u

F (t) dt

)
. (9)

3.1 Solving for F

For this problem, there is a certain symmetry which can be used in order to
obtain an explicit solution, but which is in general not necessary. Differenti-
ating (9), we obtain

F ′(u) = −F (u)F (−u). (10)

This implies that F ′(u) = F ′(−u), so that the continuous part of the distri-
bution of X is symmetric under changing u to −u. Therefore if −c < u < c,
then F (−u) = A− F (u), where A = 1 + P (X = c). Equation (10) can now
be written

F ′(u) = −F (u) · (A− F (u)). (11)
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The advantage is that (11) is a so-called ordinary differential equation, mean-
ing that it expresses F ′(u) in terms of F (u) only, not in terms of F (−u). It
can be solved by the standard technique of “integrating factor”:

− F ′(u)

F (u)(A− F (u))
=

d

du

(
1

A
log

(
A− F (u)

F (u)

))
= 1.

Hence for some constant B,

log

(
A− F (u)

F (u)

)
= Au + B.

Since F (0) = A/2, we get B = 0. Solving for F (u), we obtain

F (u) =
A

1 + eAu
.

Using the fact that F (−c) = 1, we get

1 =
A

1 + e−Ac
,

so that

c =
− log(A− 1)

A
.

If instead we express this in terms of the proportion p = 2 − A of vertices
that are used in the solution (for which we don’t pay the punishment), then

c =
− log(1− p)

2− p
.

The fact that c can be found in terms of p is quite interesting and gives
a very concrete conjecture about the behavior of incomplete matching prob-
lems. Suppose that for large n we find the minimum k-matching, that is,
k vertex-disjoiont edges, where k = pn/2 + O(1), so that a proportion p of
the vertices participate in the solution. Then this is roughly equivalent of
having a punishment of c. It is therefore reasonable to believe that the most
expensive edge in the solution will have cost about 2c = −2 log(1−p)/(2−p).
For instance, if p = 1/2 then 2c = 4 log(2)/3 ≈ 0.924.
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3.2 The total cost of the solution

Having found the distribution of X, the question is if we can find the expected
cost of the optimal solution. We therefore consider an arbitrarily chosen edge
e, and compute the expected contribution of e to the total cost. We think
of this edge as going between two vertices v1 and v2 that are roots of two
infinite trees. If the edge e has cost z, then e will participate in the minimum
solution if

z + C(T1 − v1) + C(T2 − v2) ≤ C(T1) + C(T2).

This is equivalent to
z ≤ X1 + X2,

where X1 = C(T1)−C(T1−v1) and X2 = C(T2)−C(T2−v2) are independent
variables of the distribution of X. The contribution of e can therefore be
computed as a scaling factor times

J =

∫ ∞

0

zP (X + Y ≥ z) dz.

The cost is exponential of mean n, and therefore the density of the cost can
be approximated by 1/n throughout the positive reals. The contribution
from a single edge to the total cost is therefore

1

n
· J,

and since there are ∼ n2/2 edges, the total cost is

∼ n/2 · J.

We have

J =

∫ ∞

0

zP (X1 + X2 ≥ z) dz = E

[
((X1 + X2)

+)2

2

]
=

∫ ∞

−∞
E ((X1 − u)I(−X2 < u < X1)) du

=

∫ ∞

−∞
P (X2 ≥ −u) · E((X1 − u)+) du

=

∫ ∞

−∞
F (−u) ·

∫ ∞

u

F (x) dx du. (12)
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In principle we can plug in the known expressions for F and compute this
double integral, taking into account that the expression we have found for F
is only valid in the interval [−c, c]. However, there is a simpler method that
introduces the function

f(u) =

∫ ∞

0

F (ξ − u) dξ =

∫ ∞

−u

F (t) dt. (13)

In the physics literature, f is sometimes called the order parameter function.
Differentiating (13) we get

f ′(u) = F (−u). (14)

The integral J is then simply

J =

∫ ∞

−∞
f ′(u)f(−u) du. (15)

First, the handling of the boundary conditions becomes simpler since
f(u) = 0 if u < −c: The integrand is zero outside the interval [−c, c].
Second, there is a simple interpretation of (15) as the area under the curve
(in the positive quadrant) when f(−u) is plotted against f(u).

Since we know F explicitly, we can find f . If −c ≤ u ≤ c, then

f(u) =

∫ c

−u

F (t) dt =

∫ − log(1−p)/(2−p)

−u

2− p

1 + e(2−p)u
dt = log

(
1 + e(2−p)u

2− p

)
.

(16)
Hence

J =

∫ c

−c

f ′(u)f(−u) du =

∫ − log(1−p)/(2−p)

log(1−p)/(2−p)

(2− p)e(2−p)u log
(

1+e−(2−p)u

2−p

)
1 + e(2−p)u

du.

The only reasonable way to handle such an expression seems to be to differ-
entiate it with respect to p. This is quite an exercise, but it can be verified
that the derivative is

−2 log(1− p)

2− p
.

Since J = 0 when p = 0, it follows that

J =

∫ p

0

−2 log(1− t)

2− t
dt. (17)
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However, a simpler way to proceed is to find directly an equation that
relates f(u) to f(−u). In fact this relation is

e−f(u) + e−f(−u) = 2− p. (18)

Once we have written down (18), it is easy to see that it follows from (16).
We return in a moment to how we could have found the relation (18). If we
plot f(−u) against f(u) in the x-y-plane, then the curve is given by

e−x + e−y = 2− p, (19)

or equivalently
y = − log(2− p− e−x).

The integral J is simply the area under this curve. Hence for p = 1,

J =

∫ ∞

0

− log(1− e−x) dx =
π2

6
.

For smaller values of p we must take into account that y becomes zero at the
point x = − log(1− p), so that

J =

∫ − log(1−p)

0

− log(2− p− e−x) dx.

Again it can be verified that this is equal to (17) by differentiating with
respect to p. This time it is actually doable.

3.3 A simpler solution

Starting from the equation (9), it is natural to first try to obtain an explicit
description of the distribution of X by solving for F . Having in mind that the
total cost of the solution is given by (15), we realize that it is only necessary
to find the relation between f(u) and f(−u). This relation is given by (18),
and since the rest is only a matter of routine calculus, we can regard (18) as
essentially being the solution to the problem.

Let us go back to equation (9). It can be written

F (u) = e−f(u), (20)
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and at the same time, as we already noted in (14), f ′(u) = F (−u). Therefore
an equivalent form of (9) in terms of f is

f ′(u) = e−f(−u). (21)

By replacing u with −u, we also have

f ′(−u) = e−f(u). (22)

With hindsight, we realize that (18) can be derived from (21) and (22),
without first obtaining a closed expression for f . We simply differentiate the
left hand side of (18), and verify that what we get is zero because of (21) and
(22). Once we know that the left hand side of (18) is constant, the constant
can be found by setting u = c in (20).

3.4 The TSP

After the success in calculating the spectacular π2/12 limit for the simple
matching problem, Mézard and Parisi took the method one step further,
attacking the famous traveling salesman problem. In a traveling salesman
tour, each vertex has degree 2, and the relaxation we consider consists in
requiring each vertex to have degree 2, with a punishment of c if the vertex
has degree 1, and 2c if it has degree 0. Hence we allow for solutions that
consist of several cycles, without punishment. We will not motivate here why
allowing such solutions does not decrease the asymptotic cost. This is a fact
that was proved by Alan Frieze in 2004 [36], but in view of the general lack
of rigour in the approach, this is currently a minor problem.

The equation corresponding to (6) is

C(T0)− C(T0 − v0) = min[2](c, c, ξi − C(Ti − vi) + C(Ti)).

Here Ti−vi does not mean that we remove vi. It means that we decrease the
required degree of vi to 1. Just as for the matching problem, this can work
either for or against a cheaper solution. On one hand we don’t have to pay
the punishment if vi has degree 1, on the other hand, we do not have the
right to use vi more than once, which means that the cost of handling other
vertices can increase.

min[2] means second-smallest. To see why the equation holds, again think
of the solution for T0−v0 as given, and consider what to do when the required
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degree of vi increases. Either we pay the punishment, or we use a second
edge from v0.

The TSP analog of (9) is

F (u) = (1 + f(u)) e−f(u), (23)

since F (u) is now the probability of having at most one point in the region
ξi−Xi ≤ u. Again f is defined by (13) and satisfies (14), so that the equation
can be written in terms of f only as

f ′(−u) = (1 + f(u))e−f(u). (24)

Since the total cost of the solution is still given by (15), we can try to
find a relation between f(u) and f(−u) similar to (18). Such a relation
is supposed to come from integrating an expression which is equal to zero
because of (24) and the accompanying equation

f ′(u) = (1 + f(−u))e−f(−u). (25)

By multiplying (24) and (25), we find that

f ′(u)(1 + f(u))e−f(u) − f ′(−u)(1 + f(−u))e−f(−u)

= f ′(u)f ′(−u)− f ′(u)f ′(−u) = 0. (26)

Integrating, and for convenience changing sign, we find that

(2 + f(u))e−f(u) + (2 + f(−u))e−f(−u)

is a constant, that we expect to depend on c.
For simplicity, we here only consider the case c = ∞. Then the boundary

condition is just that when one of f(u) and f(−u) goes to infinity, the other
will go to zero. Therefore the points (f(u), f(−u)) lie on the curve

(2 + x)e−x + (2 + y)e−y = 2. (27)

This is as explicit as the solution gets. There seems to be no way of expressing
y in terms of elementary functions of x. It can be verified by numerical
integration that for the TSP, the integral (15), that is, the area under the
curve given by (27), evaluates to approximately 4.083.
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4 Euler’s identity (not part of any lecture)

The evaluation of the integral∫ ∞

0

log(1− e−x) dx (28)

(and several similar integrals) boils down to evaluating the sum

1 +
1

4
+

1

9
+ · · · =

∞∑
k=1

1

k2
= ζ(2). (29)

The substitution t = e−x turns (28) into∫ 1

0

− log(1− t)

t
dt.

The last integrand has Taylor expansion

1 +
t

2
+

t2

3
+ . . . ,

and integrating termwise, we arrive at (29).

Theorem 4.1 (Euler).

ζ(2) =
π2

6
.

According to a widespread belief, Theorem 4.1 is a difficult (compared
to single variable calculus) result whose proof requires Fourier series, residue
calculus, or some equally sophisticated theory. There is a famous proof by
Apostol that uses only real two-variable calculus. Apostol’s proof is nice, but
after having seen the following (much less well-known) proof by Yaglom and
Yaglom, I no longer regard Apostol’s proof as spectacularly simple.

The Yaglom-Yaglom proof relies on the evaluation of the sum

SN =
1

sin2
(

π
4N

) +
1

sin2
(

3π
4N

) +
1

sin2
(

5π
4N

) + · · ·+ 1

sin2
(

(2N−1)π
4N

) .

Since sin(π/4) = 1/
√

2, S1 = 2. For N = 2 we have

S2 =
1

sin2
(

π
8

) +
1

sin2
(

3π
8

) ,
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and this can be evaluated to 4S1 = 8 by putting x = π/4 in the identity

1

sin2(x/2)
+

1

sin2(π/2− x/2)
=

4

sin2 x
. (30)

Similarly, by putting x = π/8 and x = 3π/8 in (30), we find that S4 =
4S2 = 32, and in general, S2N = 4SN . Inductively, it follows that if N is a
power of 2, then

SN = 2N2. (31)

Yaglom-Yaglom prove that (31) holds for all N , but to prove Euler’s identity,
we only need it for some infinite sequence of values of N . Since sin x ≤ x for
nonnegative x, we have

1

sin2 x
≥ 1

x2
, (32)

and

2N2 = SN ≥ (4N)2

π2
+

(4N)2

9π2
+

(4N)2

25π2
+ · · ·+ (4N)2

(2N − 1)2π2
. (33)

After dividing by N2, (33) simplifies to

1 +
1

9
+

1

25
+ · · ·+ 1

(2N − 1)2
≤ π2

8
.

To prove that this inequality is sharp in the N → ∞ limit, it suffices to
show that the error in (32) is bounded, so that the error in (33) is O(N).
The simplest way to do this is probably to note that by another standard
inequality, tan x ≥ x for 0 ≤ x < π/2. Therefore

1

sin2 x
≥ 1

x2
≥ cos2 x

sin2 x
,

and here t he difference between the left hand side and the right hand side
is 1. Therefore we have

1 +
1

9
+

1

25
+ · · · = π2

8
.

To finish the proof, notice that the remaining terms are

1

4
+

1

16
+

1

36
+ · · · = 1

4
·
(

1 +
1

4
+

1

9
+ . . .

)
,

19



so that
3

4
ζ(2) =

π2

8
.

Note: There is also a very nice proof of Euler’s identity by Mikael Passare
[83] which is based on evaluation of the integral (28).

5 Frieze’s ζ(3) limit (7/10)

There are two famous theorems concerning the number

ζ(3) = 1 +
1

8
+

1

27
+ · · · ≈ 1.202.

In 1977, Apéry proved that ζ(3) is irrational. And in 1985, Alan Frieze
showed that the expected cost of the minimum spanning tree on Kn, with
independent uniform [0, 1] edge costs, converges to ζ(3) when n →∞.

Apéry was first, and therefore ζ(3) is sometimes called “Apéry’s con-
stant”. If it wasn’t for Apéry’s theorem, we could very well have called it
“Frieze’s constant”.

5.1 The Galton-Watson process

Given a random distribution on the nonnegative integers, we start with a
root, and generate a tree by letting the number of children of each vertex
be taken independently from the given distribution. The most fundamental
question is the probability that the process becomes extinct.

Let f(x) = a0+a1x+a2x
2+. . . be the generating function for the number

of children. Then the probability that the process is extinct immediately is
a0. The probability that it becomes extinct after at most one generation is
f(a0). After at most two generations it is f(f(a0)) etc.

By drawing a graph of f and the iterations of f starting from a0 = f(0),
we see that there are essentially two possibilities: If f ′(1) < 1, then the
process will become extinct with probability 1, and this holds also when
f ′(1) = 1 except in the degenerate case f(x) = x. If f ′(1) > 1, then there is
a nontrivial solution to x = f(x), and this x is the probability of extinction.
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5.2 The Poisson Galton-Watson process

We are first of all interested in the case when the number of children is
Poisson distributed with a parameter s. In this case

ak =
sk

k!
e−s,

and the generating function f is given by

f(x) = e−s
∑ sk

k!
xk = e−sesx = e−s(1−x).

The probability p(s) of extinction is zero for 0 ≤ s ≤ 1, and for s > 1, we
have

p(s) = e−s(1−p(s)).

Inverting, we get

s =
− log(p(s))

1− p(s)
.

5.3 The ζ(3) calculation

The following calculation that leads to the number ζ(3) is based on Aldous-
Steele [5].

We will argue that with edge costs rescaled to exp(1/n), so that the edge
costs from a given node are approximately a Po(1) process, the expected
contribution to the MST from a single edge is given by∫ ∞

0

s · (2p(s)− p2(s)) ds. (34)

Here 2p − p2 is the probability that of two Poisson G-W processes, at
least one becomes extinct. The idea is that n is large and we consider an
edge e of cost s. This edge will participate in the MST iff there is no path
connecting its endpoints and consisting only of edges of cost < s.

If we start from the two endpoints and simultaneously search through
such paths, we will approximately be observing two Po(s) G-W processes, as
long as the number of vertices observed in the process is small compared to
n (it has to be << n1/2, but we return to the details).

If one of the processes quickly becomes extinct, then clearly e will belong
to the MST. If none of the processes becomes extinct within a reasonable
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horizon, then probably there is a connection between them, and e is not in
the MST.

By partial integration, and noting that p′(s) = 0 for 0 ≤ s ≤ 1, (34) can
be written as∫ ∞

0

s2(p(s)− 1)p′(s) ds =

∫ 1

0

s2(1− p) dp =

∫ 1

0

log2 p

1− p
dp

=

∫ 1

0

(
1 + p + p2 + . . .

)
log2 p dp =

∞∑
k=0

∫ 1

0

pk log2 p dp. (35)

By applying partial integration twice, we find that∫ 1

0

pk log2 p dp = −
∫ 1

0

pk+1

k + 1
· 2 log p · 1

p
dp = − 2

k + 1

∫ 1

0

pk log p dp

=
2

(k + 1)2

∫ 1

0

pk dp =
2

(k + 1)3
. (36)

Hence (35) is equal to 2ζ(3). Since there are ∼ n2/2 edges in the graph, the
total cost of the MST is nζ(3), and with exp(1) edge costs, it is ζ(3).

5.4 Rigorous argument

The idea of the rigorous argument is that we pick a set of edges that we
know belong to the MST because they have reasonably small cost, and one
of the search processes dies out quickly. We then show that the expected
total cost of this set (suitably rescaled) is at least ζ(3)− o(1). This provides
an asymptotic lower bound. For the upper bound, we show that the set we
have chosen has cost at most ζ(3) + o(1), and contains (1 − o(1))n edges.
Then we use the (by now standard) argument of coloring and orienting edges,
and patch the o(n) components into a single component at expected extra
cost o(1).

5.5 The Poisson G-W process again

Let pk(s) be the probability that the Po(s) G-W process becomes extinct
after generating exactly k individuals (not counting the root). There is a
miraculous exact formula, based on Cayley’s formula for the number of trees.
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It is

pk(s) =
(k + 1)k−1

k!
ske−(k+1)s.

By differentiating and solving p′k(s) = 0, one finds that the maximum of
pk(s) occurs for s = k/(k + 1), and the value is

kke−k

(k + 1)!
= O

(
1

k3/2

)
,

by Stirling’s formula. Summing from k + 1 to infinity, we see that

p(s)− pk(s) = O

(
1

k1/2

)
,

where the implicit constant is uniform in s.

5.6 Redoing the calculation

In Kn, with exp(1/n) edge costs, consider the search process from an endpoint
of an edge e of cost s. We look for the cheapest edges to n−2 or n−1 vertices:
all vertices except the vertex itself and its mother (if it has one). The costs
of these edges stochastically dominate the times of the first n − 1 or n − 2
events of a Po(1)-process, so since we want to lower-bound the extinction
probability, the fact that the edge costs are not really from a Poisson process
does not bother us. A minor problem though is the possibility of collisions.
If we examine a vertex from one search process, and it turns out to belong
to the set of vertices from the other search process, then e does not belong
to the MST even if the processes quickly become extinct. If we run the two
search processes simultaneously, and examine vertices one at a time until
at most k vertices have been found in each process, then there are at most
2k vertices to examine, and in each step the pro bability of a collision with
earlier vertices is at most

2k + 2

n
.

Therefore the expected number of collisions is O(k2/n), and so is the proba-
bility of a collision.
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We conclude that the probability of an edge of cost s participating in the
MST is at least

2pk(s)− p2
k(s)−O

(
k2

n

)
= 2p(s)− p2(s)−O

(
1√
k

)
−O

(
k2

n

)
= 2p(s)− p2(s)−O

(
1

n1/5

)
, (37)

if we put k = n2/5 + O(1).
Therefore the expected contribution to the MST from a single edge is at

least

1

n

∫ log n

0

e−s/n · s · (2p(s)− p2(s)−O(n−1/5)) ds

≥ 1

n
·
(

1− log n

n

)
·
∫ log n

0

s · (2p(s)− p2(s)−O(n−1/5)) ds

=
1

n
·
(

1− log n

n

)
·
[∫ log n

0

s · (2p(s)− p2(s)) ds−O

(
log2 n

n1/5

)]
. (38)

Next we use the fact that p(s) = O(p0(s)) = O(e−s), and that conse-
quently, 2p(s) − p2(s) = O(e−s). For large s, this says that if the process
dies (which is unlikely), then it is probably because the root has no children.
And if this holds for large s, then it obviously holds uniformly as well.

If we change the upper limit of integration from log n to ∞, we introduce
another error of order

∫∞
log n

se−s ds = O(log n/n), which is smaller than the

present error term O(log2 n/n1/5). Therefore (38) is

1

n
·
(

1− log n

n

)
·
[∫ ∞

0

s · (2p(s)− p2(s)) ds−O

(
log2 n

n1/5

)]
=

1

n
·
(

1− log n

n

)
·
[
2ζ(3)−O

(
log2 n

n1/5

)]
=

1

n
·
[
2ζ(3)−O

(
log2 n

n1/5

)]
.

(39)

This leads to the desired lower bound.

5.7 The upper bound

For the upper bound, we start with the set of edges above. The edge costs in
the search process are stochastically dominated by a Po((n− 2)/n)-process,
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and all other estimates work both ways. Therefore we have an edge set of
expected cost ζ(3) + O(log2 n/n1/5) which contains no cycles. We also want
to show that the expected number of edges in this set is (1− o(1))n, so that
it connects the vertices into o(n) components. In fact we get the expected
number of edges by an integral similar to the one above, but with the factor
s in the integrand deleted. The result is that the probability that a given
edge belongs to our set is

1

n
·
[
2−O

(
log n

n1/5

)]
.

Here we should verify that∫ ∞

0

(
2p(s)− p2(s)

)
ds = 2.

The expected number of components we need to patch together is there-
fore O(n4/5 log n). We use the standard method of introducing an infinite
sequence of edges between every pair of vertices, coloring edges red with
probability p, and giving them a random direction. Then we do the con-
struction above using the blue edges, and obtain an edge set of expected
total cost (and now we scale back to the original exp(1) setting)

ζ(3)

1− p
+ O(log2 n/n1/5).

Then as long as there is more than one component, we take a component
and patch it to some other component using the cheapest red edge, and
requiring it to have a certain direction in order to preserve independence.
The worst case is when we have to patch a component of size 1 or n−1, when
we only have n−1 edges available. In any case, each round of patching costs
(in expectation) at most 1/(np), and there are (independently of the costs)
O(n4/5 log n) rounds of patching. This gives a spanning tree of expected cost
at most

ζ(3) + O(p) + O

(
log2 n

n1/5

)
+ O

(
log n

pn1/5

)
.

If we put p = n−1/10, then this shows that

E(Tn) = ζ(3) + O

(
log n

n1/10

)
.
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6 A proof of the Parisi formula (14/10)

The following is taken from my article An easy proof of the ζ(2) limit in the
random assignment problem.

6.1 Introduction

We consider the following random model of the assignment problem: The
edges of an m by n complete bipartite graph are assigned independent expo-
nentially distributed costs. A k-assignment is a set of k edges of which no
two have a vertex in common. The cost of an assignment is the sum of the
costs of its edges. Equivalently, if the costs are represented by an m by n
matrix, a k-assignment is a set of k matrix entries, no two in the same row
or column. We let Ck,m,n denote the minimum cost of a k-assignment. We
are primarily interested in the case k = m = n, where we write Cn = Cn,n,n.

The distribution of Cn has been investigated for several decades. In 1979,
D. Walkup [104] showed that E (Cn) is bounded as n → ∞, a result which
was anticipated already in [24]. Further experimental results and improved
bounds were obtained in [18, 22, 40, 46, 52, 53, 57, 58, 77, 79]. In a series
of papers [65, 66, 68] from 1985–1987, Marc Mézard and Giorgio Parisi gave
strong evidence for the conjecture that as n →∞,

E (Cn) → π2

6
. (40)

The first proof of (40) was found by David Aldous in 2000 [6, 7].
In 1998, Parisi conjectured [82] that

E (Cn) = 1 +
1

4
+

1

9
+ · · ·+ 1

n2
. (41)

This suggested a proof by induction on n. The hope of finding such a proof
increased further when Don Coppersmith and Gregory Sorkin [22] extended
the conjecture (41) to general k, m and n. They suggested that

E (Ck,m,n) =
∑
i,j≥0
i+j<k

1

(m− i)(n− j)
, (42)

and showed that this reduces to (41) in the case k = m = n. In order to
establish (42) inductively it would suffice to prove that

E (Ck,m,n)− E (Ck−1,m,n−1) =
1

mn
+

1

(m− 1)n
+ · · ·+ 1

(m− k + 1)n
. (43)
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Further generalizations and verifications of special cases were given in
[10, 20, 23, 25, 59]. Of particular interest is the paper [20] by Marshall Buck,
Clara Chan and David Robbins. They considered a model where each vertex
is given a nonnegative weight, and the cost of an edge is exponential with
rate equal to the product of the weights of its endpoints. In the next section
we consider a special case of this model.

The formulas (41) and (42) were proved in 2003 independently by Chan-
dra Nair, Balaji Prabhakar and Mayank Sharma [75] and by Svante Linusson
and the author [60]. These proofs are quite complicated, relying on the ver-
ification of more detailed induction hypotheses. Here we give a short proof
of (43) based on some of the ideas of Buck, Chan and Robbins. Finally in
Section 6.4 we give a simple proof that var(Cn) → 0, thereby establishing
that Cn → π2/6 in probability.

6.2 Some results of Buck, Chan and Robbins

In this section we describe some results of the paper [20] by Buck, Chan
and Robbins. We include proofs for completeness. Lemma 6.1 follows from
Lemma 2 of [20]. For convenience we assume that the edge costs are generic,
meaning that no two distinct assignments have the same cost. In the random
model, this holds with probability 1. We say that a vertex participates in an
assignment if there is an edge incident to it in the assignment. For 0 ≤ r ≤ k,
we let σr be the minimum cost r-assignment.

Lemma 6.1. Suppose that r < min(m,n). Then every vertex that partici-
pates in σr also participates in σr+1.

Proof. Let H be the symmetric difference σr4σr+1 of σr and σr+1, in other
words the set of edges that belong to one of them but not to the other. Since
no vertex has degree more than 2, H consists of paths and cycles. We claim
that H consists of a single path. If this would not be the case, then it would
be possible to find a subset H1 ⊆ H consisting of one or two components
of H (a cycle or two paths) such that H1 contains equally many edges from
σr and σr+1. By genericity, the edge sets H1 ∩ σr and H1 ∩ σr+1 cannot
have equal total cost. Therefore either H14σr has smaller cost than σr, or
H14σr+1 has smaller cost than σr+1, a contradiction. The fact that H is a
path implies the statement of the lemma.

Here we consider a special case of the Buck-Chan-Robbins setting. We
let the vertex sets be A = {a1, . . . , am+1} and B = {b1, . . . , bn}. The vertex
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am+1 is special: The edges from am+1 are exponentially distributed of rate
λ > 0, and all other edges are exponential of rate 1. This corresponds in
the Buck-Chan-Robbins model to letting am+1 have weight λ, and all other
vertices have weight 1. The following lemma is a special case of Lemma 5 of
[20], where the authors speculate that “This result may be the reason that
simple formulas exist...”. We believe that they were right.

Lemma 6.2. Condition on the event that am+1 does not participate in σr.
Then the probability that it participates in σr+1 is

λ

m− r + λ
. (44)

Proof. Suppose without loss of generality that the vertices of A participating
in σr are a1, . . . , ar. Now form a “contraction” K ′ of the original graph K by
identifying the vertices ar+1, . . . , am+1 to a vertex a′r+1 (so that in K ′ there
are multiple edges from a′r+1).

We condition on the cost of the minimum edge between each pair of
vertices in K ′. This can easily be visualized in the matrix setting. The
matrix entries are divided into blocks consisting either of a single matrix
entry Mi,j for i ≤ r, or of the set of matrix entries Mr+1,j, . . . ,Mm+1,j, see
Figure 1. We know the minimum cost of the edges within each block, but
not the location of the edge having this minimum cost.

It follows from Lemma 6.1 that σr+1 cannot contain two edges from
ar+1, . . . , am+1. Therefore σr+1 is essentially determined by the minimum (r+
1)-assignment σ′r+1 in K ′. Once we know the edge from a′r+1 that belongs to
σ′r+1, we know that it corresponds to the unique edge from {ar+1, . . . , am+1}
that belongs to σr+1. It follows from the “memorylessness” of the exponen-
tial distribution that the unique vertex of ar+1, . . . , am+1 that participates in
σr+1 is distributed with probabilities proportional to the weights. This gives
probability equal to (44) for the vertex am+1.

Corollary 6.3. The probability that am+1 participates in σk is

1− m

m + λ
· m− 1

m− 1 + λ
. . .

m− k + 1

m− k + 1 + λ
=

1−
(

1 +
λ

m

)−1

. . .

(
1 +

λ

m− k + 1

)−1

=(
1

m
+

1

m− 1
+ · · ·+ 1

m− k + 1

)
λ + O(λ2),
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Figure 1: The matrix divided into blocks.

as λ → 0.

Proof. This follows from Lemmas 6.1 and 6.2.

6.3 Proof of the Coppersmith-Sorkin formula

We show that the Coppersmith-Sorkin formula (42) can easily be deduced
from Corollary 6.3. The reason that this was overlooked for several years is
probably that it seems that by letting λ → 0, we eliminate the extra vertex
am+1 and just get the original problem back.

We let X be the cost of the minimum k-assignment in the m by n graph
{a1, . . . , am} × {b1, . . . , bn} and let Y be the cost of the minimum (k − 1)-
assignment in the m by n − 1 graph {a1, . . . , am} × {b1, . . . , bn−1}. Clearly
X and Y are essentially the same as Ck,m,n and Ck−1,m,n−1 respectively, but
in this model, X and Y are also coupled in a specific way.

We let w denote the cost of the edge (am+1, bn), and let I be the indicator
variable for the event that the cost of the cheapest k-assignment that contains
this edge is smaller than the cost of the cheapest k-assignment that does not
use am+1. In other words, I is the indicator variable for the event that
Y + w < X.
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Lemma 6.4. In the limit λ → 0,

E (I) =

(
1

mn
+

1

(m− 1)n
+ · · ·+ 1

(m− k + 1)n

)
λ + O(λ2). (45)

Proof. It follows from Corollary 6.3 that the probability that (am+1, bn) par-
ticipates in the minimum k-assignment is given by (45). If it does, then
w < X−Y . Conversely, if w < X−Y and no other edge from am+1 has cost
smaller than X, then (am+1, bn) participates in the minimum k-assignment.

When λ → 0, the probability that there are two distinct edges from am+1

of cost smaller than X is of order O(λ2).

On the other hand, the fact that w is exponentially distributed of rate λ
means that

E (I) = P (w < X − Y ) = E
(
1− e−λ(X−Y )

)
= 1− E

(
e−λ(X−Y )

)
.

Hence E (I), regarded as a function of λ, is essentially the Laplace transform
of X − Y . In particular E (X − Y ) is the derivative of E (I) evaluated at
λ = 0:

E (X − Y ) =
d

dλ
E (I) |λ=0 =

1

mn
+

1

(m− 1)n
+ · · ·+ 1

(m− k + 1)n
.

This establishes (43) and thereby (42), (41) and (40).

6.4 A bound on the variance

The Parisi formula (41) shows that as n → ∞, E(Cn) converges to ζ(2) =
π2/6. To establish ζ(2) as a “universal constant” for the assignment problem,
it is also of interest to prove convergence in probability. This can be done by
showing that var(Cn) → 0. The upper bound

var(Cn) = O

(
(log n)4

n(log log n)2

)
was obtained by Michel Talagrand [96] in 1995 by an application of his isoperi-
metric inequality. In [110] it was shown that

var(Cn) ∼ 4ζ(2)− 4ζ(3)

n
. (46)
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These proofs are both quite complicated, and our purpose here is to
present a relatively simple argument demonstrating that var(Cn) = O(1/n).

We first establish a simple correlation inequality which is closely related to
the Harris inequality [43]. Let X1, . . . , XN be random variables (not necessar-
ily independent), and let f and g be two real valued functions of X1, . . . , XN .
For 0 ≤ i ≤ N , let fi = E(f |X1, . . . , Xi), and similarly gi = E(g|X1, . . . , Xi).
In particular f0 = E(f), fN = f , and similarly for g.

Lemma 6.5. Suppose that for every i and every outcome of X1, . . . , XN ,

(fi+1 − fi)(gi+1 − gi) ≥ 0. (47)

Then f and g are positively correlated, in other words,

E(fg) ≥ E(f)E(g). (48)

Proof. Equation (47) can be written

fi+1gi+1 ≥ (fi+1 − fi)gi + (gi+1 − gi)fi + figi.

Notice that fi+1 − fi, although not in general independent of gi, has zero
expectation conditioning on X1, . . . , Xi and thereby on gi. It follows that
E ((fi+1 − fi)gi) = 0, and similarly for the second term. We conclude that
E(fi+1gi+1) ≥ E(figi), and by induction that

E(fg) = E(fNgN) ≥ E(f0g0) = f0g0 = E(f)E(g).

The random graph model that we use is the same as in the previous
section, but we modify the concept of “assignment” by allowing an arbitrary
number of edges from the special vertex am+1 (but still at most one edge from
each other vertex). This is not essential for the argument, but simplifies some
details. Lemmas 6.1 and 6.2 as well as Corollary 6.3 are still valid in this
setting.

We let C be the cost of the minimum k-assignment σk (with the modified
definition), and we let J be the indicator variable for the event that am+1

participates in σk.

Lemma 6.6.
E (C · J) ≤ E (C) · E (J) . (49)
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Proof. Let f = C, and let g = 1− J be the indicator variable for the event
that am+1 does not participate in σk. As the notation indicates, we are
going to design a random process X1, . . . , XN such that Lemma 6.5 applies.
This process is governed by the edge costs, and X1, . . . , XN will give us
successively more information about the edge costs, until σk and its cost are
determined. A generic step of the process is similar to the situation in the
proof of Lemma 6.2.

We let M(r) be the matrix of “blocks” when σr is known, that is, the
r + 1 by n matrix of block minima as in Figure 1. Moreover we let θ1, . . . , θk

be vertices in A such that for r ≤ k, σr uses the vertices θ1, . . . , θr.
When we apply Lemma 6.5, the sequence X1, . . . , XN is taken to be

the sequence M(0), θ1, M(1), θ2, M(2), . . . , θk. Notice first that the cost f
of the minimum k-assignment is determined by M(k− 1), and that of course
θ1, . . . , θk determines g, that is, whether or not am+1 participates in σk.

In order to apply the lemma, we have to verify that each time we get a
new piece of information in the sequence, the conditional expectations of f
and g change in the same direction, if they change. By the argument in the
proof of Lemma 6.2, we have

E (g|M(0), θ1, . . . , θr) = E (g|M(0), θ1, . . . , θr, M(r))

=

{
0, if vn+1 ∈ {θ1, . . . , θr},

m−r
m−r+λ

· m−r−1
m−r−1+λ

· · · · · m−k+1
m−k+1+λ

, if vn+1 /∈ {θ1, . . . , θr}.

Therefore when we get to know another row in the matrix, the conditional
expectation of g does not change, which means that for this case, the hy-
pothesis of Lemma 6.5 holds. The other case to consider is when we already
know M(0), . . . ,M(r) and θ1, . . . , θr, and are being informed of θr+1. In this
case the conditional expectations of f and g can obviously both change. For
g, there are only two possibilities. Either θr+1 = am+1, which means that
g = 0, or θr+1 6= am+1, which implies that the conditional expectation of g
increases.

To verify the hypothesis of Lemma 6.5, it clearly suffices to assume that
{θ1, . . . , θr} = {1, . . . , r}, and to show that if θr+1 = am+1, then the condi-
tional expectation of f decreases. Since we know M(r), we know to which
“block” of the matrix the new edge belongs, that is, there is a j such that we
know that exactly one of the edges in the set E ′ = {(ai, bj) : r+1 ≤ i ≤ m+1}
will belong to σr+1.
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We now condition on the costs of all edges not in E ′. Since we know
M(r), we also know the minimum edge cost, say α, in E ′. We now make the
very simple observation that if the minimum cost edge in E ′ is (am+1, bj),
then no other edge in E ′ can participate in σk, for in an assignment, any
edge in E ′ can be replaced by (am+1, bj). It follows that the value of f given
that Mm+1,j = α is the same regardless of the costs of the other edges in E ′.
In particular it is the same as the value of f given that all edges in E ′ have
cost α, which is certainly not greater than the conditional expecation of f
given that some edge other than (am+1, bj) has the minimum cost α in E ′.
It follows that Lemma 6.5 applies, and this completes the proof.

The inequality (49) allows us to establish an upper bound on var(Cn)
which is of the right order of magnitude (it is easy to see that var(Cn) ≥ 1/n,
see [10]).

Theorem 6.7.

var(Cn) <
π2

3n
.

Proof. We let X, Y , I and w be as in Section 6.3, with I being the indicator
variable of the event Y + w < X. Again C denotes the cost of σk, and J is
the indicator variable for the event that am+1 participates in σk.

Obviously
E (C) ≤ E (X) . (50)

Again the probability that there are two distinct edges from am+1 of cost
smaller than X is of order O(λ2). Therefore

E (J) = nE (I) + O(λ2) = nλE (X − Y ) + O(λ2). (51)

Similarly
E (C · J) = nE (I · (Y + w)) + O(λ2). (52)

If we condition on X and Y , then

E (I · (Y + w)) =

∫ X−Y

0

λe−λt(Y + t) dt

= Y (X − Y )λ +
(X − Y )2

2
λ + O(λ2) =

1

2

(
X2 − Y 2

)
λ + O(λ2). (53)
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If, in the inequality (49), we substitute the results of (50), (51), (52) and
(53), then after dividing by nλ we obtain

1

2
E
(
X2 − Y 2

)
≤ E (X)2 − E (X) E (Y ) + O(λ).

After deleting the error term, this can be rearranged as

var(X)− var(Y ) ≤ (E (X)− E (Y ))2 .

But we already know that E (X) − E (Y ) is given by (43). Therefore it
follows inductively that

var(Cn) ≤
n∑

i=1

1

i2

(
1

n
+ · · ·+ 1

n− i + 1

)2

≤
n∑

i=1

1

i2
(log(n + 1/2)− log(n + 1/2− i))2 .

If we replace the sum over i by an integral with respect to a continuous
variable, then the integrand is convex. Hence

var(Cn) ≤
∫ n+1/2

0

(log(n + 1/2)− log(n + 1/2− x))2

x2
dx

=
1

n + 1/2

∫ 1

0

log(1− x)2

x2
dx =

2ζ(2)

n + 1/2
<

π2

3n
.

7 Concentration and universality (28/10)

In earlier lectures, there have been questions about whether the costs con-
verge in probability to their limit expectations, and whether these results
hold for other distributions of the edge cost. Several questions of this type,
relating to the degree of universality of the limiting value, boil down to show-
ing that with high probability no extremely expensive edge participates in
the solution. In order to establish these universality results, we have to be
a bit careful about exactly what we mean by “high probability” and “ex-
tremely expensive”. In this section we show how some results can be derived
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by elementary methods, and in the next section, how a famous inequality of
Talagrand can be applied to harder problems.

We showed in in the previous section (though I didn’t talk about this in
the lecture) that the variance of the cost in the n by n exp(1) assignment
problem tends to zero as n →∞. There are also other ways to prove this:

• The exact formula

var(An) = 5 ·
n∑

k=1

1

k4
− 2

(
n∑

k=1

1

k2

)2

− 4

n + 1

n∑
k=1

1

k3
. (54)

• The Talagrand inequality.

Let A′
n denote the cost of the minimum assignment under uniform [0,1]

edge costs.

Proposition 7.1. When n →∞,

A′
n

p→ ζ(2).

Proof. The coupling u → − log(1−u) immediately shows that A′
n is stochas-

tically dominated by An. Since An converges in probability to ζ(2), all that
remains to prove is that with high probability, A′

n is not very much smaller
than An.

Since
− log(1− u)

u
→ 1,

when u → 0, it suffices to show that with high probability, all edges in the
minimum assignment have costs close to zero. Since the optimal assignments
are not necessarily the same under exponential and uniform edge costs, we
have to start from the uniform assignment, and show that whp all edges are
cheap. If this is the case, then the coupling to exponential edge costs will
give one assignment of cost not much greater than A′

n, say A′
n + ε. Now the

inequality goes the right way, and An is squeezed:

A′
n ≤ An ≤ A′

n + ε.

So how do we prove that whp all edges in the optimum solution are cheap?
Again there are several possibilities. Working from scratch, the most natural
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approach is to use expander properties of random graphs, in the spirit of the
proof of Walkup’s theorem in Section 1. We come back to these methods in
the section on Talagrand’s inequality. But there is also a simple way based
on the explicit formula (Coppersmith-Sorkin formula) (42) for incomplete
matching.

The difference in cost of the minimum n-matching and the minimum (n−
1)-matching is obviously an upper bound on the cost of the most expensive
edge in the n-matching (since removing this edge gives an (n− 1)-matching
which is competing for the minimum).

It follows from (42) that

E(Cn,n,n − Cn−1,n,n) =
2

n + 1
·
(

1 +
1

2
+ · · ·+ 1

n

)
= O

(
log n

n

)
.

To complete the proof, we need to carry this over to the uniform setting.
Unfortunately, if we remove just the single most expensive edge from the
optimal matching in the uniform case, then we cannot immediately conclude
that the remaining matching transforms into a matching of cost considerably
smaller than ζ(2), through the coupling, since the optimal uniform matching
may transform into something which is not nearly optimal in the exponential
setting.

The trick to overcome this difficulty is to decide on a threshold δ, and
remove all edges of cost above δ from the optimal uniform matching. Trivially
there cannot be essentially more than ζ(2)/δ of them, so for large n what
remains is an almost complete matching. Therefore the cost of this matching
in the exponential setting is with high probability not much smaller than
ζ(2). On the other hand, it is at most

A′
n ·
− log(1− δ)

δ
.

This shows that A′
n is with high probability not much smaller than ζ(2),

which completes the proof.

In fact the statement can be proved under the weaker assumption that
the distribution of the edge costs satisfy

P (X < t)

t
→ 1,

as t → 0+. For the proof of this, we refer to Section 11 of [115].
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8 Flow problems, the friendly model, and the

Buck-Chan-Robbins urn process (4/11)

We will discuss the content of the first part of [115], emphasizing definitions
and examples. The main theorem (expected cost of optimization problem =
area of region defined by the urn process) is proved by introducing an extra
vertex of degree tending to zero. I will not give the details of this proof in
the lecture.

9 The random matching problem on Kn

(18/11). The following is taken from [112].
The edges of the complete graph on n vertices v1, . . . , vn are assigned

independent costs from exponential distribution with rate 1. A k-matching
is a set of k edges of which no two have a vertex in common. We let Ck,n

denote the minimum total cost of the edges of a k-matching. In 1985 Marc
Mézard and Giorgio Parisi [65, 68] gave convincing evidence that as n →∞,

E
(
Cbn/2c,n

)
→ π2

12
. (55)

This was proved in 2001 by David Aldous [6, 7]. He considered the related
assignment problem on the complete bipartite graph, which is technically
simpler. It is known that (55) follows from the results of [7] by a slight
modification of Proposition 2 of [6].

We give a simple proof of (55) by establishing explicit upper and lower
bounds on E (Ck,n) valid for arbitrary k and n. For perfect matchings, that
is, when n is even and k = n/2, we prove that

π2

12
< E

(
Cn/2,n

)
<

π2

12
+

log n

n
. (56)

Notice that the difference between the upper and lower bounds in (56) is
much smaller than the random fluctuations of Cn/2,n. It is not hard to show
that the standard deviation of Cn/2,n is at least of order n−1/2.

9.1 The extended graph

In the extended graph there is an extra vertex vn+1, and the costs of the edges
from this vertex are exponentially distributed with rate λ > 0. In the end,
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λ will tend to zero. We say that a vertex v participates in a matching if the
matching contains an edge incident to v.

In the following, we shall assume that the edge costs are such that no two
distinct matchings have the same cost (this holds with probability 1), and
we let σk be the minimum cost k-matching in the extended graph. We let
Pk(n) denote the normalized probability that vn+1 participates in σk. More
precisely,

Pk(n) = lim
λ→0

1

λ
P (vn+1 participates in σk).

Lemma 9.1.

E (Ck,n)− E (Ck−1,n−1) =
1

n
Pk(n), (57)

and consequently

E (Ck,n) =
1

n
Pk(n)+

1

n− 1
Pk−1(n− 1)+ · · ·+ 1

n− k + 1
P1(n−k +1). (58)

Proof. The right hand side of (57) is the normalized probability that a par-
ticular edge from vn+1, say the edge e = (vn, vn+1), belongs to σk. Naturally,
Ck,n denotes the cost of the minimum k-matching on the vertices v1, . . . , vn.
We couple Ck,n and Ck−1,n−1 by letting Ck−1,n−1 be the cost of the minimum
(k − 1)-matching on the vertices v1, . . . , vn−1.

Let w be the cost of the edge e. If e participates in σk, then we must
have w ≤ Ck,n − Ck−1,n−1. Conversely, if w ≤ Ck,n − Ck−1,n−1 then e will
participate in σk unless there is some other edge from vn+1 that does. This
can happen only if both e and some other edge from vn+1 have costs smaller
than Ck,n. As λ → 0, the probability for this is O(λ2). Hence

1

n
Pk(n) = lim

λ→0

1

λ
P (w ≤ Ck,n − Ck−1,n−1)

= lim
λ→0

1

λ
E
(
1− e−λ(Ck,n−Ck−1,n−1)

)
= E (Ck,n)− E (Ck−1,n−1) . (59)

We therefore wish to estimate Pk(n) for general k and n. For this purpose
we design a random process driven by the edge costs. A convenient way to
think about this process is to imagine that there is an oracle who knows all
the edge costs. We ask questions to the oracle in such a way that we can
control the conditional distribution of the edge costs while at the same time
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being able to determine whether vn+1 participates in σk or not. The following
lemma is well-known in matching theory, but for completeness we include a
proof.

Lemma 9.2. Every vertex that participates in σr also participates in σr+1.

Proof. Let H be the symmetric difference σr4σr+1 of σr and σr+1, in other
words the set of edges that belong to one of them but not to the other. Since
no vertex has degree more than 2, H consists of paths and cycles. We claim
that H consists of a single path. If this would not be the case, then it would
be possible to find a subset H1 ⊆ H consisting of one or two components of H,
such that H1 contains equally many edges from σr and σr+1. By assumption,
the edge sets H1 ∩ σr and H1 ∩ σr+1 do not have equal total cost. Therefore
either H14σr has smaller cost than σr, or H14σr+1 has smaller cost than
σr+1, a contradiction.

The fact that H is a path clearly implies the statement of the lemma.

9.2 The lower bound

The lower bound on E (Ck,n) is the simpler one and we establish it first.
In Section 9.3, a modification of the method will yield a fairly good upper
bound as well.

9.2.1 The process

The following protocol for asking questions to the oracle looks like an algo-
rithm for finding the minimum k-matching, but what we are interested in is
the probability that vn+1 participates in the minimum matching.

At each stage of the process, we say that a certain set of vertices are
exposed, and the remaining vertices are unexposed. We have the following
information:

1. We know the costs of all edges between exposed vertices.

2. For each exposed vertex v, we also know the minimum cost of the edges
connecting v to the unexposed vertices.

3. Finally, we know the minimum cost of all edges connecting two unex-
posed vertices.

39



Another way to put this is to say that for every set A of at most two ex-
posed vertices, we know the minimum cost of the edges whose set of exposed
endpoints is precisely A. By well-known properties of independent exponen-
tial variables, the minimum is located with probabilities proportional to the
rates of the corresponding exponential variables, and conditioning on a cer-
tain edge not being the one of minimum cost, its cost is distributed like the
minimum plus another exponential variable of the same rate.

We also keep track of a nonnegative integer r which is such that σr con-
tains only edges between exposed vertices. Moreover, we shall require that it
can be verified from the information at hand that this matching is indeed the
minimum r-matching. This is the reason why possibly some more vertices
have to be exposed.

Initially, r = 0 and no vertex is exposed. At each stage of the process,
the following happens:

• We compute a proposed minimum (r +1)-matching under the assump-
tion that for all exposed vertices, their minimum cost edges to an un-
exposed vertex go to different unexposed vertices.

By Lemma 9.2, σr+1 will use at most two unexposed vertices. Hence
either it contains the minimum cost edge connecting two unexposed
vertices, or at most two of the minimum cost edges connecting an ex-
posed vertex to an unexposed one.

• If the proposed minimum (r +1)-matching contains the minimum edge
connecting two unexposed vertices, then it must indeed be the mini-
mum (r+1)-matching. The two endpoints of the new edge are exposed
(that is, we ask for the information required for them to be exposed).
Finally, the value of r increased by 1.

• Otherwise the proposed matching includes up to two edges from ex-
posed vertices to unexposed ones. Then the unexposed endpoints of
these edges are revealed and exposed. Unless there are two such edges
and they happen to have the same endpoint, the proposed matching is
indeed the minimum (r + 1)-matching, and the value of r is increased.
If there are two edges to unexposed vertices and it turns out that they
“collide”, that is, they have the same unexposed endpoint, then the
proposed matching is not valid. We have then exposed only one more
vertex, and we complete the round of the process without updating the
value of r.
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9.2.2 A lower bound on Pk(n)

We wish to estimate the probability that vn+1 participates in σk. Suppose
that at a given stage of the process there are m ordinary unexposed vertices
(that is, not counting vn+1). There are two cases to consider.

Suppose first that an edge between two unexposed vertices is going to be
revealed. The total rate of the edges between unexposed vertices is(

m

2

)
+ O(λ)

and the total rate of the edges from vn+1 to the other unexposed vertices is
λm. Hence the probability that vn+1 is among the two new vertices to be
exposed is

λm(
m
2

)
+ O(λ)

=
2λ

m− 1
+ O(λ2).

For convenience we suppose that the vertices are revealed one at a time,
with a coin toss to decide which vertex to be revealed first. Then the prob-
ability that vn+1 is exposed is

λ

m− 1
+ O(λ2)

for both the first and the second vertex.
Secondly, suppose that the unexposed endpoint of an edge from an ex-

posed vertex is going to be revealed. If at one stage of the process there are
two such edges, then again we reveal the endpoints one at a time, flipping
a coin to decide the order. In case there is a collision, this will be apparent
when the first new vertex is exposed. If there are m ordinary remaining un-
exposed vertices, then the total rate of the edges from a particular exposed
vertex v to them is m + λ, and consequently the probability that vn+1 is
exposed is

λ

m
+ O(λ2).

This will hold also for the second edge of two to be exposed at one stage of
the process, provided m denotes the number of remaining unexposed vertices
at that point.

If vn+1 is among the first 2k vertices to be exposed, then it will participate
in σk. We have neglected the possibility that there is a collision at vn+1, since
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this is an event of probability O(λ2). When m ordinary unexposed vertices
remain, the probability that vn+1 is the next vertex to be exposed is at least
λ/m. Hence

Pk(n) ≥ 1

n

(
1

n
+

1

n− 1
+ · · ·+ 1

n− 2k + 1

)
.

We can improve slightly on this inequality by noting that the normalized
probability that vn+1 is one of the two first vertices to be exposed is exactly

n(
n
2

) =
2

n− 1
.

Taking this into account, we get

Pk(n) ≥ 1

n

(
2

n− 1
+

1

n− 2
+ · · ·+ 1

n− 2k + 1

)
. (60)

9.2.3 A lower bound on E (Ck,n)

From (58) and (60) it follows that

E (Ck,n) ≥ 1

n

(
2

n− 1
+

1

n− 2
+ · · ·+ 1

n− 2k + 1

)
+

1

n− 1

(
2

n− 2
+

1

n− 3
+ · · ·+ 1

n− 2k + 2

)
...

+
1

n− k + 1

(
2

n− k

)
. (61)

It is straightforward to prove by induction on n that when n is even and
k = n/2, (61) becomes

E
(
Cn/2,n

)
≥ 1

2

(
1 +

1

4
+

1

9
+ · · ·+ 1

(n/2)2

)
+

1

n
.

By a simple integral estimate,

E
(
Cn/2,n

)
≥ 1

2

(
π2

6
−
∫ ∞

n/2

dx

x2

)
+

1

n
=

π2

12
. (62)
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9.3 The upper bound

By modifying the argument given in the previous section, we can also estab-
lish an upper bound on E (Ck,n). For this purpose, we are going to design
the process differently.

9.3.1 The process

We modify the process described in Section 9.2. This time, only the vertices
that participate in σr will be exposed. At each stage, we have the following
information:

1. The costs of all edges between exposed vertices. In particular, σr is
known.

2. For each exposed vertex v, we know the minimum cost of the edges
from v to unexposed vertices.

3. For some exposed vertices, we may also know to which vertex this
minimum cost edge goes, and the cost of the second cheapest edge to
an unexposed vertex.

4. We also know the minimum cost of the edges connecting two unexposed
vertices.

As in the previous section, we assume that the information we have is
sufficient to verify that the given r-matching is indeed of minimum cost.
We also assume that for the exposed vertices for which the minimum cost
edge to an unexposed vertex is known, this edge never goes to vn+1. As will
become clear below, this assumption is justified by the fact that such an edge
is revealed only in case of a collision. The event of a collision at vn+1 has
probability O(λ2), which is negligible since we are estimating a probability
of order λ.

We of course assume that 2r + 2 ≤ n, so that there are at least two
ordinary unexposed vertices. Given the information we have, we compute
a proposed minimum cost (r + 1)-matching under the assumption that no
collision takes place. Then we ask whether or not the proposed matching is
valid. If it is invalid, that is, if there is a collision, then this must be between
the minimum cost edges to unexposed vertices from two of the exposed ver-
tices. This endpoint is revealed, and we can assume that it is not vn+1, since
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the probability for this is negligible. We repeat this until we find that there
is no collision, and that therefore the proposed matching is valid. It must
then be the minimum (r + 1)-matching.

9.3.2 An upper bound on Pk(n)

We analyze a particular stage of the process and we wish to obtain an upper
bound on the probability that vn+1 is one of the two new vertices that are
used in σr+1. We let m = n − 2r be the number of ordinary unexposed
vertices.

If σr+1 has an edge between two unexposed vertices, then by the analysis
of Section 9.2, the probability that it uses the vertex vn+1 is

λm(
m
2

) =
2λ

m− 1
,

neglecting a term of order λ2.
Suppose instead that σr+1 contains two edges from exposed vertices vi and

vj to unexposed vertices. First assume that we do not know the minimum
cost edge to an unexposed vertex for any of them (that is, none of them falls
under (3) above). Then the probability that vn+1 participates in σr+1 is

λm + λm

m(m− 1)
=

2λ

m− 1
,

since we are conditioning on no collision occurring.
If on the other hand for at least one of vi and vj the minimum cost edge

to an unexposed vertex is known according to (3), then the probability that
vn+1 participates in σr+1 is even smaller, at most λ/(m− 1).

This gives the following upper bound on the probability that vn+1 partic-
ipates in σk:

Pk(n) ≤ 2

n− 1
+

2

n− 3
+ · · ·+ 2

n− 2k + 1
.

9.3.3 An upper bound on E (Ck,n)

Inductively we obtain the following upper bound on the expected cost of σk:

44



E (Ck,n) ≤ 1

n

(
2

n− 1
+

2

n− 3
+ · · ·+ 2

n− 2k + 1

)
+

1

n− 1

(
2

n− 2
+ · · ·+ 2

n− 2k + 2

)
...

+
1

n− k + 1

(
2

n− k

)
.

We give a slightly weaker but simpler upper bound, valid for even n and
k = n/2, in order to establish (56). If we replace all the terms of the form
2/(n− i) except the first one in each pair of parentheses by 1/(n− i)+1/(n−
i− 1), we obtain

E
(
Cn/2,n

)
≤ 1

n
+

1

2(n− 1)
+ · · ·+ 1

(n/2)(n/2 + 1)

+
1

n

(
1 +

1

2
+ · · ·+ 1

n− 1

)
+

1

n− 1

(
1

2
+ · · ·+ 1

n− 2

)
+

...

+
1

(n/2)((n/2) + 1)

=
1

2

(
1 +

1

4
+ · · ·+ 1

(n/2)2

)
+

1

n + 1

(
1 +

1

2
+ · · ·+ 1

n

)
≤ 1

2

(
π2

6
−
∫ ∞

n/2+1

dx

x2

)
+

1 + log n

n + 1
=

π2

12
− 1

n + 2
+

1

n + 1
+

log n

n + 1

=
π2

12
+

log n

n
−

log n− n
n+2

n(n + 1)
≤ π2

12
+

log n

n
, (63)

since log n ≥ n/(n + 2) for n ≥ 2. Together with (62), this establishes (56).

9.4 Concluding remarks

We have inductively established lower and upper bounds on Ck,n from lower
and upper bounds on the normalized probability Pk,n that an extra vertex
participates in the minimum matching. For the corresponding problem on
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the complete m by n bipartite graph (the so called assignment problem), the
expected cost of the minimum k-matching is known [60, 75], and is given by
the simple formula (42), conjectured in [22] as a generalization of the formula
(4) suggested in [82] for the special case k = m = n. For the complete graph,
no such formula has even been conjectured.

We can now see why finding the exact value is harder for the complete
graph. The probability that the extra vertex is included when we pass from
σr to σr+1 depends on whether σr+1 is obtained by adding an edge between
two vertices that do not participate in σr, or by an alternating path that
replaces edges in σr by other edges. For the bipartite graph, the probability
that an extra vertex is included is the same in the two cases, and thereby
known. A proof of (42) based on this method is given in [111].

10 The Talagrand inequality (11/11)

In the lecture, we discussed the proof of Talagrand’s inequality given in Alon
and Spencer [11].

This is a proof of the inequality

P (A)(1− P (At)) ≤ e−t2/4.

Here At is defined in terms of Talagrand’s distance.

11 Application of the Talagrand inequality

We show how to apply the Talagrand inequality to the sort of minimization
problems that we consider.

12 Stirling’s formula (not part of any lecture)

The famous formula of Stirling is often useful for estimating factorials and
binomial coefficients. We give a simple and self-contained proof.

We wish to estimate

log n! =
n∑

k=1

log k.
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By a simple integral estimate we see that∫ n

1

log x dx ≤ log n! ≤
∫ n+1

1

log x dx.

This is often sufficient, but it is interesting to obtain a better estimate. Con-
sider the graph y = log x, and draw line segments between points correspond-
ing to x = k and x = k + 1 for every positive integer k. Compare this with
the set of rectangles of base [k, k + 1] and height [0, log(k + 1)]. Since the
log-function is concave, we have

log n! ≤
∫ n

1

log x dx +
1

2
log n.

For large n, the error in this estimate will converge to the total area
between the line segments and the graph of log x. Let δk be the area of the
region between the line segment from x = k to x = k + 1, and the graph of
log x. It is easy to see that

δ =
∞∑

k=1

δk

is finite. Actually we can take the regions of areas δk for k ≥ n, and translate
them so that their leftmost corners coincide. Then they will not overlap, and
since the derivative of log x at x = n is 1/n, they will all fit into a triangle
of base 1 and height 1/n. Hence

∞∑
k=n

δk ≤
1

2n
.

Therefore we get the following estimate of log n!:∫ n

1

log x dx +
1

2
log n− δ ≤ log n! ≤

∫ n

1

log x dx +
1

2
log n− δ +

1

2n
.

Since ∫ n

1

log x dx = n log n− n + 1,

this shows that

log n! =

(
n +

1

2

)
log n− n + (1− δ) +

θ

2n
,

47



where 0 ≤ θ ≤ 1. By exponentiating, we can also write this as

n! = nn+1/2 · e−n · C ·
(

1 +
θ′

n

)
,

where θ′ too is between 0 and 1.
It remains to determine the constant C, and this can be done with the

Wallis product formula.
Let an be the nth coefficient of the Taylor expansion of

1√
1− x

=
(
1 + x + x2 + . . .

)1/2
= 1 +

1

2
x +

3

8
x2 +

5

16
x3 +

35

128
x4 + . . . .

It is easily verified that

an = (−1)n

(
−1/2

n

)
=

1 · 3 · 5 · · · · · (2n− 1)

2 · 4 · 6 · · · · · (2n)
.

Now let

W =
2

1
· 2

3
· 4

3
· 4

5
· · · .

This is the Wallis product, and it is well-known that W = π/2. For a simple
proof, see [114].

From the Wallis product, it follows that

a2
n =

1 · 1 · 3 · 3 · · · · · (2n− 1)(2n− 1)

2 · 2 · 4 · 4 · · · · · (2n)(2n)

=
1

2n
· 1 · 3 · 3 · · · · · (2n− 1)(2n− 1)

2 · 2 · 4 · 4 · · · · · (2n)
∼ 1

2n
· 1

W
=

1

nπ
. (64)

At the same time we have

an =
1

22n
·
(

2n

n

)
=

1

22n
· (2n)!

(n!)2

=
1

22n
· (2n)2n ·

√
2n · e−2n · C · (1 + θ1/2n)

n2n · n · e−2n · C2 · (1 + θ2/n)2

=

√
2√

n · C
· (1 + O(1/n)) . (65)
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From (64) and (65) it follows that

C =
√

2π.

We can therefore state Stirling’s formula as

n! =
(n

e

)n

·
√

2πn ·
(

1 +
θ

n

)
,

where 0 ≤ θ ≤ 1.

13 Problems and exercises

1. If x1, . . . , xn are independent uniform[0, 1], then what is the expectation
of min(x1, . . . , xn)? What if x1, . . . , xn are exponential? What about
the higher moments?

2. How do you generate an exponentially distributed (pseudo-) random
variable from a uniform[0, 1] variable? (Actually John von Neumann
has published a paper on this, but his solution, to add uniform [0,1]
variables until you get one which is larger than the previous one, is not
needed with today’s computers.)

3. Prove that von Neumann’s method is correct, and prove that the ex-
pected number of uniform [0,1]’s that you need to generate is e.

4. Let Xn be a sequence of nonnegative real random variables. Consider
the statements

(i) EXn is bounded.

(ii) There is a constant C such that when n →∞, P (Xn ≤ C) → 1.

Show by example that none of the statements implies the other.

5. (a) What is the probability that a uniformly chosen permutation of n
elements is cyclic?

(b) What is the probability that there is a cycle of length exactly,
say, n − 7? (Hint: What is the probability that the first element
belongs to such a cycle?).
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(c) What is the limit probability that there is a cycle of length at
least n/2?

6. If Zn is the number of cycles of a uniform random permutation of n
elements, then what is E(3Zn)?

7. (a) Show that if Z is the sum of two independent exp(1) variables,
then P (Z > t) = (1 + t)e−t. Notice that P (Z > t) is the same
thing as the probability that a Po(1) process has at most one event
in the interval [0, t].

(b) Consider the minimum αm = min(Z1, . . . , Zm) of m independent
variables of the same distribution as Z. Show that

P (αm > t) = ((1 + t)e−t)m.

(c) Show that

Eαm =

∫ ∞

0

((1 + t)e−t)m dt.

(d) Show that the inequality

(1 + t)e−t ≥ e−t2/2

holds for all t ≥ 0.

(e) Conclude that

Eαm ≥
∫ ∞

0

e−mt2/2 dt =

√
π

2
·
√

m.

(f) Show that if ε > 0, then there is some interval 0 ≤ t ≤ t0 in which
(1 + t)e−t ≤ e(1/2−ε)t2 , and some c > 0 such that the inequality

(1 + t)e−t ≤ e−ct

holds whenever t ≥ t0.

(g) Show that

Eαm ≤
∫ t0

0

e−m( 1
2
−ε)t2 dt +

∫ ∞

t0

e−mct dt

≤
√

π

2
√

1
2
− ε

· 1√
m

+ O(1/m), (66)
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and conclude that
√

m · Eαm →
√

π/2.

(h) What is the asymptotics of the minimum of m sums of three inde-
pendent exp(1)’s? What if exponentials are replaced by uniform
[0,1]?

8. Find the derivative of the expression

−
∫ ∞

−u

F (t) dt

with respect to u. Obviously it is either F (−u) or −F (−u), but which
one is it?

9. Evaluate the integral ∫ ∞

0

− log(1− e−x) dx

by making the substitution t = e−x, taking the Taylor expansion of the
new integrand, and integrating termwise.

10. Consider the (conjectured) cost

µ(p) =
−2 log(1− p)

2− p

of the most expensive edge in the solution to the incomplete matching
problem where a proportion p of the vertices participate in the solution.

(a) Show that µ(p) = p + O(p2) as p → 0. Explain why this is what
we should expect.

(b) Imagine that the matching problem could be solved by a greedy
algorithm, so that a solution for larger p would consist in adding
a set of edges to a solution for smaller p. Suppose n/2 edges were
added in this way, and the cost of the most expensive one (the one
that was last added) is all the time given by µ(p). Show that in
this case the cost would asymptotically be a scaling factor times∫ 1

0

µ(p) dp.
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(c) Evaluate the integral.

11. Let Ck and Ck−1 be the costs of the minimum k-matching and (k− 1)-
matching respectively. There is an obvious inequality between Ck −
Ck−1 and the cost of the most expensive edge in the minimum k-
matching. What does the result of Exercise 10 suggest about the degree
of sharpness of this inequality? Actually the inequality is off by roughly
a factor 2 for near-maximal k, but quite sharp for intermediate values
of k.

12. Compute ∫ 1/2

0

−2 log(1− t)

2− t
dt

numerically. Does it seem reasonable that this is the cost of an assign-
ment that uses half of the vertices? Find a similar expression for the
much easier limit cost of a set of n/2 edges in an n by n bipartite graph
such that no two have a common vertex in V1.

13. Evaluate ∫ 1

0

(− log t)n

t
dt

for general n.

14. What is the asymptotics of the cost of the MST with pseudodimension
2 edge costs?

15. Solve the following problem numerically with the non-rigorous method:
Given an n by n bipartite graph. Consider the minimum total cost of
a set of n edges under the constraint that each vertex can be incident
to at most two of them. What is the limit as n → ∞? What if the
vertices in V1 must have exactly one edge, and those in V2 can have at
most two?

16. Study the 2 by 2 random assignment problem with uniform [0, 1] edge
costs. Find the expected cost, or give reasonably good bounds. Check
by computer simulation that your answer seems correct. Another op-
tion is to argue that the answer has to be a rational number with a
certain denominator, and then to find the numerator by simulation.
Try the 3 by 3 case (here I don’t know the answer). Don’t try too hard
though.
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17. Prove that for every positive integer N ,

1

sin2
(

π
4N

) +
1

sin2
(

3π
4N

) +
1

sin2
(

5π
4N

) + · · ·+ 1

sin2
(

(2N−1)π
4N

) = 2N2.

18. (a) Show that the degree 4 analog is

1

sin4
(

π
4N

) +
1

sin4
(

3π
4N

) +
1

sin4
(

5π
4N

) + · · ·+ 1

sin4
(

(2N−1)π
4N

)
=

8

3
N4 +

4

3
N2.

(b) Is there a simple explanation why this should be an even function
of N (that is, why the odd degree coefficients are zero)?

(c) Evaluate ζ(4).

19. Read Parisi’s 1998 paper (a two-page note). Repeat his experiment:
Study the random assignment problem with exponential edge costs for
n = 1, 2, 3, 4, 5. For small n, we don’t need a general polynomial time
algorithm for the optimization problem, we can solve it by ad hoc
methods. Verify that the expected cost seems to be 1, 5/4, 49/36 etc.

20. Do the same thing for the LP-relaxation of matching on the complete
graph. Verify that the expected cost seems to be 1, 3/4, 31/36 etc.

21. Given the Parisi formula for exponential edge costs, what bounds can
you establish for the expected cost of the assignment problem with
uniform [0, 1] edge lengths? In one of the directions there is an easy
inequality. What are the obstacles when trying to establish a reason-
able inequality in the other direction? More precisely, why isn’t it easy
to conclude that the expectation converges to π2/6? Can you establish
this anyway? If not, then make some explicit and reasonable assump-
tions, and show that convergence to π2/6 follows from them.

22. Consider the n by n exponential assignment problem.

(a) Using the Coppersmith-Sorkin formula, find the asymptotics of
the expected difference ECn,n,n − ECn−1,n,n between the cost of
an n-assignment and an (n− 1)-assignment.
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(b) Show that whp, the cost of the most expensive edge in the mini-
mum n-assignment is

(1 + o(1)) · log n

n
.

Hint: Use Aldous 2i-result for the probability of using the ith
smallest edge, together with a simple analysis of the coupon col-
lector’s problem.

(c) Compare the two previous results, and try to find an intuitive
explanation.

23. Let n = 3 and consider the minimum spanning tree problem with
exp(1) edge costs.

(a) Show that an edge of cost s has probability 1 − (1 − e−s)2 of
participating in the MST.

(b) Show that the expected contribution from a single edge to the cost
of the MST is given by∫ ∞

0

e−s · s · (1− (1− e−s)) ds

(c) Evaluate the integral.

(d) Let the edge costs be a, b and c. Show that min(a+ b, a+ c, b+ c)
can be expressed as a linear combination of min(a, b), min(a, c),
min(b, c) and min(a, b, c).

(e) Use this to evaluate the expected cost of the MST.

24. Prove that for the complete graph with exp(1) edge costs, the expected
cost of the minimum spanning tree is bounded as n →∞.

25. Choose three points A, B and C uniformly and independently in the
unit square. What is the expected area of the triangle they determine?
What is the expected area of the intersection of the unit square with
the cone outside one of them (say A) determined by the lines to B and
C?

26. Choose two points A and B as in the previous exercise.
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(a) What is the expectation of the square of their distance? This is
of course much simpler than the expectation of their distance.

(b) Hence what is the expectation of the area of the circle with center
in A and with B on the perimeter?

(c) What is the expected area of the intersection of this circle (disk)
with the unit square?

(d) Here is a harder one: What is the expected area of the intersection
of the unit square with the disk on which AB is a diameter? You
should be able to prove that it is smaller than 1/3 (hint: If three
points are chosen, then what is the probability that a given angle
in the triangle is larger than 90◦?)

(e) By the way, what is the expected distance between A and B?
We have all the moments of the difference in a given coordinate
from exercise 1. Then we add two independent random variables,
which means we still know all the moments . Is this enough? The
square root of the answer to (a) is of course a bound, since the
square-function is convex. Is this bound upper or lower?

27. If n points are chosen on a circle, what is the expectation of the smallest
distance between them? What is the expectation of the largest gap?
This can be solved in terms of barycentric subdivision of a simplex, but
also by replacing the sizes of the gaps with exponential variables.

28. What is the probability that n points lie on one semicircle? Equiva-
lently that the center of the circle is not in the convex hull of the n
points? Two solutions, one geometrical based on splitting the choice,
one in terms of gap sizes and exponential distribution.

29. In view of the previous exercises, suppose that the pairs of numbers
n, n + 2 that are both coprime to (product taken over the primes)

N =
∏
p≤x

p

are distributed “randomly” on ZN for large x. Show that if the largest
gap between such pairs is not much greater than expected, then the
twin primes conjecture holds, i. e. there are infinitely many primes p
such that p+2 is also prime (this requires some basic knowledge of the
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distribution of primes). Similarly argue that the Goldbach conjecture
is very likely true.

In fact evidence suggests that the pairs n, n + 2 considered above are
more evenly distributed than the obvious random model predicts, but
the twin primes conjecture is still unsolved.

30. Consider the numbers n which are coprime to N , and assume that
the maximum gap is not much larger than the random model predicts.
Under this assumption, show that if θ > 1/2, then for every sufficiently
large x, there is a prime between x and x + xθ (this is also predicted
by the Riemann hypothesis).

31. Show that there is no interval of length N/2 in which the number of
numbers coprime to N deviates by more than 2π(x) from φ(N)/2. Here
π(x) is the number of primes not exceeding x, and φ is the Euler φ-
function.

Conclude that the numbers coprime to N are, on a global scale, much
more evenly distributed than would be predicted from the obvious ran-
dom model.

But this is not a course on sieve methods in number theory!

32. Let X be exponential of rate 1.

(a) What is the median of X?

(b) Prove that E |X − ζ| is minimized when ζ is the median of X.

(c) Let ζ be the median of X, and calculate E |X − ζ|. Is there a
simple explanation for the answer?

(d) Consider the “random optimization problem” min(X, ζ), and use
the participation probability-lemma.

(e) Consider a sum X1 + X2 of two independent exponentials. Let ζ
be the median of this sum. Prove that

E |X1 + X2 − ζ| = ζ2

ζ + 1
.

(f) Generalize in the obvious way to several variables, for instance
establish that for three variables,

E |X1 + X2 + X3 − ζ| = ζ3

ζ2 + 2ζ + 2
.
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33. Read Peter Winkler’s paper Games people don’t play (you find it on
his web page). Solve the problem with the gladiators in the easy case
by considering the expectation of min(x, y1 + · · ·+ yn) for independent
exponential variables.

34. Two variable optimization: How to turn a minimum of sums into a
sum of minima. Example: Find the expectation of min(3x, x + y, 3y),
where x and y are independent exp(1)-variables. Solution: min(3x, x+
y, 3y) = min(2x, y) + min(x, 2y). If x and y are independent exp(1),
this shows that the expectation is 4/3. Generalize to minima of more
than three sums (involving only two variables). What if x ∼ exp(α)
and y ∼ exp(β)?

35. Study the derivations of the limits for matching and TSP using the
cavity method. Study the following problem with the same method:
Given a bipartite graph with n red and 2n blue vertices. Each edge
has exponential(1) cost. The objective is to match each red vertex to
two blue vertices so that each blue vertex is used exactly once.

(a) Solve this exactly for n = 1 and n = 2 (or by simulation).

(b) Find the limit non-rigorously with the cavity method. Express
the answer as an integral of an elementary function, and evaluate
this integral numerically. Think about the answer, does it seem
reasonable?

(c) Generalize.

36. Evaluate the TSP limit L? numerically by using Maple (or some other
program). How many digits can you get in a reasonable time?

37. Prove that the Coppersmith-Sorkin formula specializes to the Parisi
formula in the case k = m = n. Show that if we collect terms for which
n− i and n− j have gcd d, then the sum of these terms equals 1/d2.

38. Let n be a positive integer and let 0 ≤ p ≤ 1. Choose m as the sum of n
independent Bernoulli(p)-variables (0-1-variables with probability p of
being 1). Show that the expected cost of the minimum m-assignment
in an m by n matrix of independent exp(1)-variables is

p +
p2

4
+

p3

9
+ · · ·+ pn

n2
.

57



39. If N points are chosen independently and uniformly in the unit square,
what is the order of the distance between “nearby” points? What about
in d dimensions?

40. The average distance to the nearest neighbor can be estimated by
rescaling to a point set of density 1 in an infinite region (R2). This
is simply a 2-dimensional Poisson process. What is the probability
that a disk of radius r contains no point of the process?

41. Show that the average distance to the nearest neighbor is given by∫ ∞

0

e−πr2

dr,

and evaluate the integral.

42. Show that in three dimensions, the average distance to nearest neighbor
is

21/3π2/3

37/6Γ(2/3)
.

43. Can you give a rigorous lower bound on the β in the theorem of
Beardwood-Halton-Hammersley?

44. Given that the volume of the d-dimensional unit ball is

πd/2

(d/2)!
,

how does the distance to the nearest neighbor behave for large d? What
is the highest dimension for which it is smaller than 1?

45. In dimension d = 106, estimate numerically the probability that the
nearest neighbor is at distance smaller than 241 and smaller than 242
respectively.

46. Using the formula for the volume of the sphere in combination with
Stirling’s formula, make a guess at the asymptotics of β(d) for large d.

47. In fact it was proved by Wansoo Rhee in 1992 that β(d)/
√

d converges.
Guess what the limit is.
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48. For this problem, you need the correspondence between the assignment
problem and the aircraft passenger model. Consider the n by n expo-
nential assignment problem. Let a set S of edges have zero cost, while
the remaining edges still have independent exponential costs.

(a) What is the maximum participation probability that a nonzero
edge can have?

(b) Assume the very reasonable conjecture that there is always (unless
S is the set of all edges) some nonzero edge whose participation in
the minimum assignment is not positively correlated to the cost.
Show that this gives a O(log n/n) bound on the variance of the
cost.

49. For general minimization problems of sums of independent exp(1)-
distributed variables, formulate a similar conjecture that there is al-
ways a variable whose participation is non-positively correlated with
the value of the minimum.

(a) Explain why this conjecture is “obviously true”.

(b) Explain why the argument in (a) is flawed.

(c) Show that it would imply a general bound on the variance of
the value of the minimization problem. There is more than one
way of stating such an inequality, and it has to involve something
like for instance the expectation of the largest value of a variable
participating in the minimum.

(d) Prove the conjecture for some infinite class of such problems (as
general as you can).

50. The mean field model can be thought of as an approximation of a
euclidean (geometric) model. The only difference is that in the mean
field model the inter-point “distances” are independent. Will this work
for or against shorter solutions to the classical optimization problems,
spanning tree, matching, TSP?

51. Take the space to be a circle of perimeter 2. What is the distribution of
the distance between two independent uniform points? Distance taken
along the perimeter of the circle, that is, shortest of the two arcs. What
are the limits of spanning tree, matching, TSP? Compare to the mean
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field limits. Take n red and n blue points and consider the bipartite
problems (this is not that trivial). Again compare.

52. Study matching of 2n points as follows: Suppose we choose two more
points randomly on the circle, what is the probability that they divide
the first 2n points in two sets of even size (a symmetry argument is
available)? What is your conclusion?

53. Papers that compare mean field and euclidean models usually come to
the conclusion that the mean field approximation is better in higher
dimensions. Does this seem reasonable? Is there a simple explanation?

54. Given the n by n exponential random assignment problem. Given a
number c > 0. What is the average number of assignments of cost at
most c? What is your comment to the fact that this number is zero
whp if c < ζ(2) and nonzero whp if c > ζ(2)?

55. Read Viktor Dotsenko’s paper [25] which claims to prove the Parisi
conjecture. The paper is quite interesting, and was the first that gave
a natural conjecture (that is, not containing a formula that came out of
nowhere) that would have implied Parisi’s conjecture. Unfortunately
Dotsenko incorrectly claimed to have a proof of the conjecture, and the
paper was therefore ignored by mathematicians. Find the mistake.

56. With the recursive equation for the higher moments of the cost in the
assignment problem, recursively compute E sin(Cn) for n = 1, 2, 3.

57. For uniform [0, 1] edge costs, consider the problem of maximizing the
product of the edge costs in an assignment. What is the expected value
of this for n = 1, 2, 3? Compute this using the Laplace transform (or
equivalent) of the cost of the usual assignment problem.

58. For a complete graph on 3n vertices and exponential edge costs, con-
sider the problem of covering the graph with n triangles. What is the
limit cost?

59. Consider a 4 by 4 bipartite graph on vertex sets U = {u1, . . . , u4} and
V = {v1, . . . , v4}, exponential edge costs, and the problem of finding
the minimum 2-assignment that uses one vertex of even label and one
of odd label from each of U and V . What is the expected cost?
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60. In an n by n matrix of exp(1) variables, pick, for 1 ≤ i ≤ n, the element
of row i which belongs to the minimum i-assignment in the submatrix
consisting of the first i rows. What is the expected sum of the elements
we have picked?

61. In an n by n matrix of exp(1) variables, let the edges be e1, . . . , en2 ,
ordered by increasing cost. Pick the set of edges ei such that the largest
(in the sense of number of edges) matching in {e1, . . . , ei} is larger than
the largest matching in {e1, . . . , ei−1}. Find the asymptotic expected
total cost of this edge set.’

62. Consider the following two-person game played on the complete graph
Kn with exp(1) edge costs, and a randomly chosen starting point: The
first player moves along an edge to a new vertex, and pays the cost of
the edge to the other player. The second player now moves along an
edge to another vertex, and pays the cost of this edge, and so on. A
player cannot move to a vertex that has already been visited, and the
game ends when all vertices have been visited.

(a) Compute the expected payoff for n = 2, 3, 4.

(b) Show by example that when n = 4, the best first move can be
along the most expensive edge, and at the same time the one that
belongs to the most expensive perfect matching.

(c) Let φ(v) be the vertex to move to if the game starts at v. Show
that when n →∞, P (φ2(v) = v) → 1. I don’t know how to solve
this one, it is only a conjecture.

(d) Let x be the cost of the optimal first move. Show that n · Ex →
π2/6. The same remark here, I don’t know the answer.

(e) Study the twisted version of this game: The player to move chooses
two other vertex to go to, and the opponent then picks one of them.
Equivalently, at each turn, the opponent can forbid one potential
move.

63. Consider the Exploration game played on the square grid Z2, with edge
cost which are 0 or 1 with equal probability. For what values of M does
this game have a well-defined game theoretical value?
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64. Let G be a finite graph with two distinguished vertices a and b. Suppose
that the edges of G are given independent exp(1) costs. Show that the
following operation computes the expected distance from a to b along
the edges: Construct a matrix M whose rows are indexed by all vertex
sets containing a but not b, and whose columns are indexed by all vertex
sets containing b but not a. Let the entries of M be zero if the row
and column respresent sets that intersect, and if they are disjoint, the
number of edges connecting them. Then the expected distance from a
to b is the sum of the entries of M−1.

65. Consider the square grid Z2, with edge costs given as in the previous
exercise. Find upper and lower bounds on the distance between (0, 0)
and (1, 0).

66. If n = 3, then what are the possible values of Talagrand’s distance
ρ(A, x)?

67. Consider the following 2-person game: A counter is placed on square 0.
There are squares numbered 1, . . . , N , and to each square is associated
a random variable Xi. The variables Xi are i.i.d, say uniform in [0, 1].
The players take turns moving the counter one or two steps, and the
player who moves to square i pays Xi to the opponent. Analyze the
game. What if the player receives Xi (equivalently, if Xi is uniform in
[−1, 0])?
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tations for Random Graphs and Assignments, Combinatorics, Probabil-
ity and Computinf 12 (2003), 401–412.

[29] Fischer, K. H., and Hertz, J. A., Spin Glasses, Cambridge University
Press 1991.

[30] Flaxman, Abraham D., Frieze, Alan M. and Krivelevich, Michael, On
the Random 2-Stage Minimum Spanning Tree, Random Structures and
Algorithms (2005?).

[31] Frieze, Alan M., On the value of a random minimum spanning tree prob-
lem, Discrete Appl. Math. 10 (1985), 47–56.

[32] Frieze, Alan M. and Grimmett, G. R., The shortest path problem for
graphs with random arc-lengths, Discrete Appl. Math. 10 (1985). 57–77.

[33] Frieze, Alan M. and McDiarmid, Colin, On random minimum length
spanning trees, Combinatorica 9 (1989) 363–374.

[34] Frieze, Alan M. and Sorkin, Gregory B., The probabilistic relationship
between the assignment and asymmetric traveling salesman problems,
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, Baltimore MD (2001), 652–660.

[35] Frieze, Alan M. and Yukich, J., Probabilistic analysis of the Traveling
Salesman Problem, in: The traveling salesman problem and its varia-
tions, G. Gutin and A.P. Punnen (Eds.), Kluwer Academic Publisher
(2002), 257-308.

[36] Frieze, Alan M., On random symmetric travelling salesman problems,
Mathematics of Operations Research, Vol. 29, No. 4, November 2004,
878–890.

[37] Gamarnik, David, The expected value of random minimal length span-
ning tree of a complete graph, SODA05.

65



[38] Garey, M. R., Graham, R. L. and Johnson, D. S., Some NP-complete
geometric problems, Proc. of the 8th ACM Symposium on Theory of
Computing (1976), 10–29.

[39] Gilbert, E. N., Random Minimal Trees, Journal of the Society for Indus-
trial and Applied Mathematics, Vol. 13, No. 2 (Jun., 1965), pp. 376–387.

[40] Goemans, M. X., and Kodialam, M. S., A lower bound on the expected
cost of an optimal assignment, Math. Oper. Res., 18 (1993), 267–274.

[41] Guerra, F., Replica Broken Bounds in the Mean Field Spin Glass Model,
Communications Math. Phys. 233 (2003), 1–12.

[42] Held, Michael and Karp, Richard M., The traveling-salesman problem
and minimum spanning trees, Operations Research 18 Issue 6, Nov/Dec
1970, 1138–1162.

[43] Harris, T. E., Lower bound for the critical probability in a certain per-
colation process, Proc. Cambridge Phil. Soc. 56 (1960), 13–20.

[44] van der Hofstad, Remco, Hooghiemstra, Gerard and Van Mieghem,
Piet, Size and weight of shortest path trees with exponential link weights.
To appear in Combinatorics, Probability and Computing. Available at
http://www.win.tue.nl/~ rhofstad/.

[45] van der Hofstad, Remco, Hooghiemstra, Gerard and Van Mieghem,
Piet, The Weight of the Shortest Path Tree. Preprint 2005, available
at http://www.win.tue.nl/~ rhofstad/.

[46] Houdayer, J., Boutet de Monvel, J. H. and Martin, O. C. Comparing
mean field and Euclidean matching problems, Eur. Phys. J. B. 6 (1998),
383–393.

[47] Janson, Svante, The minimal spanning tree in a complete graph and a
functional limit theorem for trees in a random graph, Random Structures
& Algorithms 7 (1995), 337-355.

[48] Janson, Svante, One, two and three times log n/n for paths in a complete
graph with random weights, Combin. Probab. Comput. 8 (1999), 347–
361.

66
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[110] Wästlund, J., The variance and higher moments in the random assign-
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14 Laboration

1. Generera en exponentialfördelad pseudoslumpvariabel och testa dess
medelvärde och varians. Om man startar med en likformigt förde-
lad variabel U i [0, 1], f̊ar man en exponentialfördelad variabel X =
− log(1 − U). Givetvis skulle − log U g̊a lika bra, men det finns tv̊a
fördelar med − log(1−U). Dels ger detta en koppling där exp-variabeln
alltid är större än den likformiga, dels undviker man en krasch om
U = 0, vilket kan hända i vissa implementeringar.

2. Verifiera att E min(X1, . . . , Xn) = 1/n. Vad är variansen?

3. Gör Parisis experiment [82], för n = 2, 3, . . . . Testa ocks̊a att variansen
stämmer med formeln (54).

4. Simulera den LP-relaxering av matchning p̊a K3 som beskrivs i avsnitt
4.3 i [115]. Hur ofta utgör respektive konfiguration minimum?

5. Implementera en generell (effektiv) algoritm för bipartit matchning.
Testa matchningsproblem med exp(1)-variabler. Hur stort n klarar
algoritmen p̊a rimlig tid? Stämmer det att gränsvärdet blir π2/6, dvs
ungefär 1.64?

Ungefär hur ofta används det minsta elementet i en rad i matrisen, dvs
den billigaste kanten fr̊an en given nod? Hur ofta används den näst
minsta?

Hur dyr är den dyraste kanten som ing̊ar i den optimala lösningen?

Koppla likformiga och exponentialfördelade variabler. Testa hur stor
avvikelsen i allmänhet blir, dvs hur mycket mindre blir kostnaden för
den minimala matchningen d̊a variablerna är likformiga i stället för
exp-fördelade?

Hur mycket skiljer sig de tv̊a optimala matchningarna åt, dvs hur
många kanter byts ut d̊a man byter kostnaderna Ui,j mot− log(1−Ui,j)?

6. Modifiera algoritmen s̊a att den klarar LP-relaxerad matchning p̊a kom-
pletta grafen, inklusive loopar. Hur vanligt är kanter med koefficient
1/2 i den optimala lösningen? Hur verkar variansen bete sig som funk-
tion av n?
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