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Abstract

The edges of the complete bipartite graph Kn,n are assigned inde-
pendent lengths from uniform distribution on the interval [0, 1]. Let
Ln be the length of the minimum travelling salesman tour. We prove
that as n tends to infinity, Ln converges in probability to a certain
number, approximately 4.0831. This number is characterized as the
area of the region

x, y ≥ 0, (1 + x/2) · e−x + (1 + y/2) · e−y ≥ 1

in the x-y-plane.

1 Introduction

1.1 The travelling salesman problem

The travelling salesman problem, or TSP for short, is perhaps the most
famous of all computational problems. For a set of n “cities”, all pairwise

∗This research was carried out in part while the author visited the Mittag-Leffler insti-
tute in spring 2005.
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distances are known, and the task is to find the minimum length tour, that
is, the shortest cycle that visits each city. The TSP is NP-hard [17], which
indicates that there is little hope of finding an efficient algorithm that solves
it completely. Work on search heuristics like branch-and-bound and local
improvement has motivated the investigation of various stochastic models of
the TSP.

1.2 The Euclidean model

A model that has been studied thoroughly is the so called euclidean or ran-
dom point model. Here n points are chosen at random inside the unit square
(or more generally, a bounded region of volume 1 in d-dimensional space).
Since the distance between “neighbouring” points is of order n−1/d, we expect
the length Ln of the minimum tour to be proportinal to n1−1/d. In fact it is
known that for every d ≥ 2,

Ln

n1−1/d

p→ β(d),

as n → ∞, where β(d) is a constant depending only on d (and not on the
shape of the region). This theorem goes back almost fifty years to the classic
paper [6] by J. Beardwood, H. J. Halton and J. M. Hammersley.

Further results on algorithms and estimates of the rate of convergence
have been obtained by Richard Karp [19], Michael Steele [39], and Wansoo
Rhee and Michel Talagrand [37, 38]. However, there seems to be no hope of
characterizing the limit constant β(d) analytically, even in two dimensions.

1.3 Statistical mechanics and the mean field model

In the 1980’s it was recognized that random models of optimization problems
such as minimum matching, minimum spanning tree and the TSP have many
features in common with the statistical mechanics of so called disordered
systems.

S. Kirkpatrick and G. Toulouse [21] used methods from the theory of
spin glasses to study the TSP in the so called mean field (or random link)
model. Here the distances between pairs of points are taken as independent
identically distributed random variables. This means that dependencies (such
as the triangle inequality) arising from the geometry are eliminated. In [21],
the distances are taken from uniform distribution on [0, 1] for simplicity,
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although this would geometrically correspond to the trivial one-dimensional
case. Kirkpatrick and Toulouse motivated their choice with the hope that
this model would be analytically solvable: “This model is appealing for its
simplicity and freedom from geometry. We hope that it may eventually
prove, as has the S. K. model of spin glasses ... to be analytically tractable
and provide a ’mean field’ limit of the statistical mechanics of a travelling
salesman.”

Several other optimization problems had already been studied in the mean
field model. In 1979, D. Walkup [42] showed that the expected cost of the
minimum perfect matching in a complete bipartite graph with uniform [0, 1]
edge costs is bounded as n → ∞. In 1985 Alan Frieze [12] proved that
the cost of the minimum spanning tree in the complete graph converges in
probability to ζ(3).

Marc Mézard and Giorgio Parisi [27, 28] and later W. Krauth and Mézard
[22] used the (non-rigorous) replica and cavity methods and arrived at an ap-
proximate value of the limit of Ln in the mean field model. The “theoretical”
value (as opposed to values obtained by simulation) of 2.0415 obtained in [22]
is consistent with the less precise results in [21, 28]. Allon Percus and Olivier
Martin [35] give a relatively recent survey of these results, and of simulations
supporting the cavity predictions.

For the minimum matching problem, Mézard and Parisi conjectured [26,
28, 29] that the limit should be π2/12 for the complete graph and π2/6 for
the complete bipartite graph. These conjectures were proved by D. Aldous
in 2001 [3, 4]. In these articles he introduced the so called Poisson-weighted
infinite tree (PWIT), which can be regarded as a reformulation of the sta-
tistical physics viewpoint. In [4], he arrived at the recursive distributional
equation (RDE):

X
d
= min

i
(ξi − Xi), (1)

where ξ1 ≤ ξ2 ≤ . . . are the times of the events in a rate 1 Poisson process
and X1, X2, X3, . . . are independent variables of the same distribution as X.
The limit cost is obtained as

∫ ∞

0

x · Pr(X1 + X2 > x) dx, (2)

where X1 and X2 are independent variables taken from the distribution given
by (1). It was proved in [4] that the unique solution to (1) is the logistic
distribution. In [4] Aldous conjectured that the limit cost of the random
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TSP can be obtained in the same way. For the TSP, the corresponding
equation is

X
d
= min

i
[2](ξi − Xi), (3)

where min[2] denotes second-smallest. The conjectured limit cost is again
obtained by (2). Unfortunately this approach has so far not been made
rigorous for the TSP, and it is not known whether there is a unique solution
to (3) or whether the solution can be described explicitly.

1.4 The complete versus the bipartite graph

For the matching and spanning tree problems, it is known that the limit for
the complete bipartite graph is twice the limit for the complete graph. This
feature is believed to hold quite generally, but is not very well understood.
A simple explanation is that in the complete graph, there are roughly twice
as many edges to choose between. If we compare Kn,n to K2n (so that the
solutions require the same or roughly the same number of edges), then the
costs of the cheapest edges incident to a particular vertex are asymptotically
a Poisson process of rate n in the former case, and of rate 2n in the latter.

It is not obvious why this should imply that the limit cost on the bipartite
graph is exactly twice that of the complete graph, but strong evidence is
provided from the local weak convergence to the PWIT [2, 3, 4].

If this holds also for the TSP, then the limit in the mean field bipar-
tite TSP with uniform [0, 1] costs is twice the number obtained by Krauth,
Mézard and Parisi, that is, approximately 4.083. In the present article we
obtain a rigorous proof of this limit.

1.5 Statement of our main result

We work in the bipartite mean field model. Suppose that the edges of the
complete bipartite graph Kn,n are assigned random independent lengths from
uniform distribution on [0, 1]. For n ≥ 2, let Ln denote the cost of the
minimum travelling salesman tour, that is, the minimum sum of the edge
lengths in a cycle that passes through each vertex exactly once. We prove
that Ln converges in mean, and thereby in probability, to a certain number
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that we denote τ . This number is defined by

τ =

∫ ∞

0

y dx,

where y(x) is the positive solution to the equation

(

1 +
x

2

)

e−x +
(

1 +
y

2

)

e−y = 1,

see Figure 1. The number τ has been evaluated numerically to

τ ≈ 4.08309637282426483609098032.

Our result, with an (admittedly quite weak) estimate of the rate of conver-
gence, is

Theorem 1.1. In the limit n → ∞,

E |Ln − τ | = O

(

log log n

(log n)1/4

)

.

We have not been able to extend our results to the complete graph, nor
have we found a solution to the distributional equation (3). Hence there are
at present three numbers which we conjecture to be equal, but for which we
cannot yet prove equality of any two: The number τ/2, the number given
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by the solution to (3), and the limit in the mean field TSP on the complete
graph. Actually there does not seem to be any proof available that the two
latter numbers are well-defined.

It has been recognized that it is more convenient to work with the expo-
nential distribution rather than uniform distribution on [0, 1]. In this article
too we work with exponential edge lengths. However, we want to show that
the use of the exponential distribution is not just a way of simplifying the
problem, but actually a method for solving it in the uniform setting as well.
We have therefore chosen to formulate our main theorems for uniform dis-
tribution, although we prove them by first establishing the same results for
exponential edge costs.

1.6 Outline of the method of proof

In 1998, G. Parisi conjectured that for the bipartite matching problem, if the
edge costs are taken from exponential distribution, the expected minimum
cost Cn of a perfect matching is given by the exact formula

E (Cn) = 1 +
1

4
+

1

9
+ · · ·+ 1

n2
. (4)

This formula was proved in 2003 independently by Chandra Nair, Mayank
Sharma and Balaji Prabhakar [32] and by Svante Linusson and the author
[24].

In their recent survey [1], D. Aldous and Antar Bandyopadhyay remarked
on the Parisi formula (4) and its proofs in [24, 32] that “It seems unlikely
that the applicability of exact methods extends far into the broad realm of
problems amenable to asymptotic study”.

We agree that it seems unlikely that further progress will be based on
explicit formulas like (4) (and the related formula for the variance given in
[47]). However, this does not mean that the scope of the so-called exact
methods is limited to the assignment problem.

Although the method employed in this paper has little in common with
the methods used in [24] and [32], they share a basic feature: They are
based on “exact” (as opposed to asymptotic or approximate) statements,
which are proved by induction. More precisely, these exact statements relate
certain random optimization problems to another type of random process,
the Buck-Chan-Robbins urn model. This process was introduced in [8] and
further developed in [44, 45]. So far, it seems that the Buck-Chan-Robbins
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urn model can be defined only for a special class of optimization problems
on bipartite graphs, although it is not yet clear what the scope is.

Our approach is based on finding a “friendly cousin” of the TSP. This
friendly cousin is the Poisson(1) bipartite 2-factor problem (to be defined
below). This problem is of the type that permits an “exact” solution in
terms of the B-C-R urn process. At the same time, it is asymptotically close
to the TSP. A 2-factor is a decomposition of the graph into vertex-disjoint
cycles. Hence locally, a 2-factor looks like a tour.

Although the urn process is in principle much simpler than the original
optimization problem, there does not seem to be a simple formula like (4) for
the 2-factor problem. Instead we estimate the behaviour of the B-C-R urn
process using simple probabilistic techniques. We prove that the expected
cost of the minimum 2-factor is

τ + O

(

(log n)3/2

n1/2

)

.

We conjecture that the true error term is O(1/n), as it is for the assignment
problem (this follows from (4)). We also obtain an upper bound on the
variance of the cost of the minimum 2-factor:

var(Cn) = O

(

(log n)3/2

n1/2

)

.

Here too we believe that a O(1/n) bound can be achieved by a more detailed
analysis of the urn process.

We then use methods from the paper [16] by Alan Frieze to turn the 2-
factor into a tour by changing only a small (compared to n) number of edges.
We show that with high probability, the number of cycles in the minimum
2-factor is small compared to n. We prove a O(n log log n/ log n) bound,
although the methods of [16] would give a bound of O(n/ logn). We then
use two different techniques to turn this collection of cycles into a tour at o(1)
expected cost. In a first phase, we use cheap edges to build a path connecting
almost all vertices. In the second phase, we show that the remaining cycles
can be absorbed into the path, and the path turned into a tour, using an
operation called rotation.

Here all we really have to do is to show that the results of Frieze [16]
hold also in the bipartite setting. In principle, it would suffice to go through
Frieze’s paper and just replace some of the constants in the calculations, since
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all the ideas work also in the bipartite setting. In practice, we have also been
able to simplify some of the arguments by making use of the knowledge of
the 2-factor problem gained through the connection to the urn process.

2 Random flow problems

In this section, we define and investigate a class of “friendly” random opti-
mization problems that we call flow problems. We prove that the moments of
the value of these problems can be expressed in terms of their corresponding
B-C-R urn process.

2.1 Flows and flow problems

If V is a finite set, then by a multiset on V we mean a function V → N∪{∞}.
If S is a multiset on V and v ∈ V , then S(v) is the multiplicity of v in S.
We allow for infinite multiplicities in order to make the algebra of multisets
closed under arbitrary unions.

If S and T are multisets on V , then we say that S is a subset of T if
S(v) ≤ T (v) for every v ∈ V . The size of S is the number

∑

v∈V

S(v),

in other words the number of elements of S counted with multiplicity. The
union S ∪ T is given by (S ∪ T )(v) = max(S(v), T (v)), and the intersection
S ∩T by (S ∩T )(v) = min(S(v), T (v)). The sum S +T is the pointwise sum
given by (S + T )(v) = S(v) + T (v).

Let A be a multiset on V . We use language from matroid theory and
say that a multiset S on V is independent with respect to A if S ⊆ A. This
independence concept gives a special case of an integral polymatroid [11, 43].
For an introduction to matroid theory from the perspective of combinatorial
optimization, we refer to [23].

The size of S ∩ A, the maximal independent subset of S, is called the
rank of S. Since we have allowed for infinite multiplicities, there is a unique
largest superset of S that has the same rank as S. This set is called the span
of S and is denoted σ(S). The span can also be defined by
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σ(S)(v) =

{

S(v), if S(v) < A(v),

∞, if S(v) ≥ A(v).

If σ(S) = S, then we say that S is a subspace. A minimal dependent set
is called a circuit.

We let V and W be finite sets. We construct an infinite bipartite graph
which we simply denote (V, W ), with vertex sets V and W . For every pair
(v, w) ∈ V × W , there is a countably infinite sequence of edges

e1(v, w), e2(v, w), e3(v, w), . . .

connecting v and w. We let E = E(V, W ) denote the set of all these edges.
If F ⊆ E is a set of edges, then the projections FV and FW of F on V and

W respectively are the multisets on V and W that count the number of edges
of F incident to each vertex. Let A be a multiset on V and B a multiset
on W . If FV is independent with respect to A and FW is independent with
respect to B, then we say that F is a flow (with respect to (A, B)). A flow
consisting of k edges is called a k-flow.

A cost function is a function c : E → R satisfying, for every v ∈ V and
w ∈ W ,

0 ≤ c(e1(v, w)) ≤ c(e2(v, w)) ≤ c(e3(v, w)) ≤ . . .

If a cost function is given, and k is a nonnegative integer not larger than the
size of either of A and B, then we can ask for the minimum cost k-flow, that
is, the set F ⊆ E that minimizes

c(F ) =
∑

e∈F

c(e)

under the constraint that F must be a k-flow. As we shall see next, this
combinatorial optimization problem can be regarded as a special case of
the weighted matroid intersection problem [23], for which polynomial time
algorithms have been known since the 1970’s.

2.2 Combinatorial properties of the flow problem

In this section we establish the necessary combinatorial properties of the flow
problem. These properties are direct generalizations of the results of Section
3 of [47].
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We assume that a cost function is given. We can regard the independence
concept as defining two matroids on the set of edges. A set F of edges is
independent with respect to A if FV ⊆ A, and independent with respect to
B if FW ⊆ B. Let σA and σB be the closure operators with respect to these
two matroids on the edge set.

Theorem 2.1. Suppose that F ⊆ E is an r-flow which is not of minimum
cost. Then there is an r-flow F ′ of smaller cost than F which contains at
most one edge outside σA(F ).

Proof. We let G be a minimum cost r-flow, and let H = F△G (the symmetric
difference of F and G). We orient the edges of H so that edges in F are
directed from W to V , and edges in G are directed from V to W .

Now H can be partitioned into alternating paths and cycles in such a
way that no path ends with an edge in G which belongs to σB(F ), that is,
which goes to a vertex in W with degree in F equal to its multiplicity in B.
Similarly, no path starts with an edge in G which belongs to σA(F ).

This partition is obtained as follows: At each vertex v ∈ V , if there are
A(v) edges in F incident to v, then the edges of G − F incident to v are
matched to the edges of F − G incident to v (there are necessarily at least
as many of the latter). Similarly, at each vertex w ∈ W , if there are B(w)
edges in F incident to w, then the edges of G−F incident to w are matched
to the edges of F − G incident to w.

The components obtained in this way are either balanced in the sense
that they have equally many elements from F as from G, or they have one
more element from one of these sets than from the other. The components
which are not balanced can be paired, so that H is partitioned into a number
of balanced sets. Since G is a minimum flow and F is not, the elements of
G − F have smaller total cost than the elements of F − G. Hence one of
these balanced sets P must be such that the cost of F△P is smaller than
the cost of F . It is clear that F△P is a flow, and that it contains at most
one element outside σA(F ).

If b ∈ W and B(b) > 0, then we define the contraction B/b of B by

B/b(w) =

{

B(w) − 1, if w = b,

B(w) otherwise.

In other words, a multiset S is independent with respect to B/b iff S + b
is independent with respect to B. The following is a corollary to Theorem
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2.1. To simplify the statement, we assume that the edge costs are generic
in the sense that no two different flows have the same cost. In the random
model introduced in the next section, the edge costs are independent random
variables of continuous distribution, which implies that genericity holds with
probability 1.

Theorem 2.2. Let b ∈ W and suppose that B(b) > 0. Let F be the minimum
r-flow with respect to (A, B/b), and let G be the minimum (r + 1)-flow with
respect to (A, B). Then G contains exactly one edge outside σA(F ).

Proof. In order to apply Theorem 2.1, we introduce an auxiliary element a.
We let V ⋆ = V ∪ {a} and let A⋆ = A + a.

We let the first edge (a, b) have nonnegative cost t, and let all other edges
from a have infinite cost. If we put t = 0, then the minimum (r+1)-flow with
respect to (A⋆, B) consists of the edge (a, b) together with F , the minimum
r-flow with respect to (A, B/b). If we increase the value of t, then at some
point the minimum (r + 1)-flow with respect to (A⋆, B) changes to G. If we
let t have a value just above this threshold, so that the minimum (r+1)-flow
in (A⋆, B) is G, but no other (r +1)-flow with respect to (A⋆, B) has smaller
cost than F +(a, b), then it follows from Theorem 2.1 that G contains exactly
one edge outside σA(F ).

2.3 The random flow problem

We let λ and µ be discrete measures on V and W respectively. In other
words, each element of V and W is given a nonnegative weight. A random
cost function is chosen by letting the costs ci(v, w) = c(ei(v, w)) be the times
at which the events occur in a Poisson process of rate λ(v)µ(w), and so that
these Poisson processes for different pairs of vertices are all independent. We
let

Ck(A, B)

denote the minimum cost of a k-flow with respect to (A, B).
Our aim is to obtain methods for computing the distribution of Ck(A, B).

The following is a key theorem that in principle summarizes what we need to
know about the random flow problem. The characterization of the distribu-
tion of Ck(A, B) in terms of the urn processes on V and W described below
is then deduced by calculus.
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As before, let F be the minimum r-flow with respect to (A, B/b), where
b is an element of nonzero multiplicity in B, and let G be the minimum
(r + 1)-flow with respect to (A, B). Moreover let vG be the element of V
incident to the unique edge of G which is not in σA(F ).

We make the following definition: If S is a multiset on V , then we let S⊥

demote the set of v ∈ V such that S + v has greater rank than S.

Theorem 2.3 (The independence theorem). If we condition on σ(FV ) and
the cost of F , then the cost of G is independent of vG, and vG is distributed
on F⊥

V with probabilities proportional to the weights.

Proof. We condition on (1) the costs of all edges in σA(F ), and (2) for each
w ∈ W , the minimum cost of all edges to w which are not in σA(F ). By
Theorem 2.1, we have thereby conditioned on the cost of G. The vertex
w0 ∈ W to which the edge in G − σA(F ) is incident is also determined. It
now suffices to prove that vG is still distributed on the possible vertices in V
according to the weights given by λ. The edges from F⊥

A to w0 are a priori
produced by Poisson processes of rates proportional to the weights of the
vertices in F⊥

A . We now disregard those of these edges that belong to F ,
and condition on the minimum of the remaining edges. It is a well-known
property of the Poisson process that the first event occurs in a particular
process with probability proportional to the rate, even conditioning on the
time at which the first event occurs.

2.4 The extension method and the normalized limit

measure

We use a method that was introduced in [46], that we call the extension
method. We extend the set V by introducing an auxiliary special element
a in the same way as in the proof of Theorem 2.2. The multiset A⋆ on the
ground set V ⋆ = V ∪ {a} is defined by letting A⋆(a) = 1, and A⋆(v) = A(v)
for v ∈ V .

The idea, introduced in [46], is to let the weight λ(a) of the element a
tend to zero. We let λ(a) = h. When h → 0, the edges from a become
very expensive and we essentially get the original problem back. Somewhat
surprisingly, crucial information can be obtained by studying events involving
the inclusion of an edge from a in the minimum flow. The probability of this
is proportional to h, and hence tends to zero as h → 0. What is interesting is
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the constant of proportionality. If φ is a random variable whose distribution
depends on h, then we let

E⋆(φ) = lim
h→0

1

h
E (φ).

We can informally regard E⋆ as a measure, the normalized limit measure.
This measure is obtained by noting that the probability measure defined by
the exponential distribution with rate h, scaled up by a factor 1/h, converges
to the Lebesgue measure on the positive real numbers as h → 0.

Hence the normalized limit measure can be obtained as follows: We first
define the measure space of cost functions on the edges from the auxiliary
vertex a. This measure space is the set of all assignments of costs to these
edges such that exactly one edge from a has nonnegative real cost, and the
remaining edges from a have cost +∞. For each w ∈ W , the cost functions
for which the first edge e1(a, w) has finite cost are measured by µ(w) times
Lebesgue measure on the positive reals. The measure space of all cost func-
tions for the edges from a is the disjoint union of these spaces over all w ∈ W .
The normalized limit measure, which we denote by E⋆, is the product of this
space with the probability space of cost functions on the ordinary edges given
by the independent Poisson processes as described earlier.

We use the notation E⋆ both for events (sets of cost functions) and ran-
dom variables (functions defined in terms of the costs of the edges). However,
we only use the normalized limit measure as an informal tool. E⋆ is defined as
a limit, and when using the normalized limit measure, we have to make sure
that we can interchange the limit h → 0 with the integration with respect to
the normalized limit measure.

2.5 A recursive formula

If T is a subspace with respect to A, then we let Ik(T, A, B) be the indicator
variable for the event that T is spanned by the projection on V of the mini-
mum k-flow with respect to (A, B), in other words the event that there is a
basis U of T such that for each v ∈ V , the minimum k-flow contains at least
U(v) edges from v.

In this section we prove the analogues of Theorems 4.1 and 4.2 of [47].

Theorem 2.4. Let N be a positive integer, and let S be a rank k−1 subspace
of A. For every b ∈ W , let Ib be the indicator variable for the event that the
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minimum k-flow with respect to (A⋆, B) contains an edge (a, b) and that the
projection on V of the remaining edges spans S. Then for every b ∈ W ,

E
(

Ck(A, B)N · Ik−1(S, A, B/b)
)

=

E
(

Ck−1(A, B/b)N · Ik−1(S, A, B/b)
)

+
N

µ(b)
E⋆

(

Ck(A
⋆, B)N−1 · Ib

)

. (5)

Proof. We compute N/µ(b) · E⋆
(

Ck(A
⋆, B)N−1 · Ib

)

by integrating over the
cost, which we denote by t, of the first edge between a and b. We therefore
condition on the costs of all other edges.

The density of t is he−ht, and we therefore get the normalized limit by
dividing by h and instead computing the integral with the density e−ht. For
every t this tends to 1 from below as h → 0, and by the principle of dominated
convergence, we can interchange the limits and compute the integral using
the density 1. This is the same thing as using the normalized limit measure.

We have

d

dt

(

Ck(A
⋆, B)N · Ik−1(S, A, B/b)

)

= N · Ck(A
⋆, B)N−1 · Ib.

According to the normalized limit measure, since we are conditioning on
the edge (a, b) being the one with finite cost, E⋆ is just µ(b) times Lebesgue
measure. Hence the statement follows by the fundamental theorem of calcu-
lus, since putting t = ∞, we get

Ck(A
⋆, B)N · Ik−1(S, A, B/b) = Ck(A, B)N · Ik−1(S, A, B/b),

while if we put t = 0, we get

Ck(A
⋆, B)N · Ik−1(S, A, B/b) = Ck−1(A, B/b)N · Ik−1(S, A, B/b).
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Theorem 2.5. Let T be a rank k subspace of A. Then

E
(

Ck(A, B)N · Ik(T, A, B)
)

=
∑

S⊆T
rank(S)=k−1

λ({v ∈ V : σA(S + v) = T})
λ(S⊥)

∑

b∈W
B(b)>0

µ(b)

µ({w ∈ W : B(w) > 0})E
(

Ck−1(A, B/b)N · Ik−1(S, A, B/b)
)

+
N

µ({w ∈ W : B(w) > 0})
∑

S⊆T
rank(S)=k−1

λ({v ∈ V : σA(S + v) = T})
λ(S⊥)

· E⋆
(

Ck(A
⋆, B)N−1 · Ik(S ∪ a, A⋆, B)

)

. (6)

Proof. We multiply both sides of (5) by µ(b) and sum over all b ∈ W such
that B(b) > 0. This way we obtain

∑

b∈W
B(b)>0

µ(b) · E
(

Ck(A, B)N · Ik−1(S, A, B/b)
)

=

∑

b∈W
B(b)>0

µ(b) · E
(

Ck−1(A, B/b)N · Ik−1(S, A, B/b)
)

+ N · E⋆
(

Ck(A
⋆, B)N−1 · Ik(S + a, A⋆, B)

)

. (7)

We now use Theorem 2.3. Suppose that T is a rank k subspace of A, and
that b ∈ W and B(b) > 0. If the projection on V of the minimum k-flow with
respect to (A, B) spans T , then the projection of the minimum (k − 1)-flow
in (A, B/b) must span a rank k − 1 subspace of T . By summing over the
possible subspaces, we obtain

E
(

Ck(A, B)N · Ik(T, A, B)
)

=
∑

S⊆T
rankA(S)=k−1

λ({v ∈ V : σA(S + v) = T})
λ(S⊥)

· E
(

Ck(A, B)N · Ik−1(S, A, B/b)
)

. (8)
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Now we choose b randomly according to the weights, in other words, we
multiply (8) by µ(b)/µ({w′ ∈ W : B(w) > 0}) and sum over all b ∈ W such
that B(b) > 0. This leaves the left hand side intact, and we get

E
(

Ck(A, B)N · Ik(T, A, B)
)

=
∑

S⊆T
rankA(S)=k−1

λ({v ∈ V : σA(S + v) = T})
λ(S⊥)

∑

w∈W
B(w)>0

µ(b)

µ({w ∈ W : B(w) > 0}) · E
(

Ck(A, B)N · Ik−1(S, A, B/b)
)

. (9)

Now we use equation (7) divided by µ({w ∈ W : B(w) > 0}) to rewrite
the right hand side of (9). This establishes the theorem.

2.6 Interpretation in terms of the Buck-Chan-Robbins

urn process

The Buck-Chan-Robbins urn process was introduced in [8] and further de-
veloped in [44, 45, 47]. Here we generalize this process to multisets. We
still refer to this process as the B-C-R urn process, although the process we
describe can no longer be interpreted as drawing balls from an urn, as in [8].

Let V be a set with a discrete measure λ as in the previous section. For
each v ∈ V , let 0 < ξ(v, 1) < ξ(v, 2) < . . . be the times of the events in
a Poisson process of rate λ(v), and let all these processes be independent.
We let V (x) be the multiset of labels of the events that occur at time ≤ x.
We let W be another set with measure µ, and define a similar independent
urn process on W , where W (y) is the multiset of events occurring up to and
including time y.

The “exact” theorems that we are going to prove all state that some quan-
tity defined in terms of a random flow problem is equal to a corresponding
quantity defined in terms of the B-C-R urn process. The most important
theorem of this type is a straightforward generalization of the Buck-Chan-
Robbins formula for the assignment problem [8, 44]: Let Rk(A, B) be the
region in the positive quadrant of the x-y-plane consisting of those points

16



x

y

Figure 2: The typical shape of the region Rk(A, B).

(x, y) for which
rankA(V (x)) + rankB(W (y)) < k.

Then the expected value of Ck(A, B) is the same as the expected value of the
area of Rk(A, B), in analogy with the main theorem of [44]. We further show
that the higher moments of Ck(A, B) can also be characterized in terms of
the distribution of Rk(A, B), thereby generalizing the main results of [47].

We introduce an extended urn process. In the N-th extension of the urn
process on V and W there are, in addition to the ordinary urn processes
on V and W , N extra points (x1, y1), . . . , (xN , yN) in the positive quadrant
of the x-y plane. These points are “chosen” according to Lebesgue measure
on the positive real numbers, and therefore cannot be treated as random
variables. Again we use E⋆ to denote the measure obtained by combining
the probability measure on the urn process with Lebesgue measure on the
extra points. E⋆ can be interpreted as the expected value (with respect to
the ordinary urn process) of the Lebesgue measure in 2N dimensions of the
set of points x1, . . . , xN , y1, . . . , yN belonging to a particular event.

We define a rank function r on the nonnegative real numbers (depending
on the outcome of the extended urn process) by

r(x) = rankA(V (x)) + #{i : xi ≤ x}.

Similarly we let

s(y) = rankB(W (y)) + #{i : yi ≤ y}.
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Our main theorem on random flow problems is the following:

Theorem 2.6.

E
(

Ck(A, B)N
)

= E⋆ (r(xi) + s(yi) ≤ k + N for 1 ≤ i ≤ N) . (10)

When N = 1, the right hand side of (10) is the expected area of Rk(A, B).
For larger N , the condition r(xi) + s(yi) ≤ k + N for 1 ≤ i ≤ N implies that
the points (xi, yi) all lie in Rk(A, B). Therefore we have

Corollary 2.7.

E
(

Ck(A, B)N
)

≤ E
(

area(Rk(A, B))N
)

,

with equality if N = 1.

This corollary will be sufficient for our applications to the 2-factor prob-
lem and TSP in Sections 3 and 4. We prove Theorem 2.6 by proving the
following more precise form. We let Vk be the span of the first rank k multi-
set obtained in the urn process on V , and define Wk similarly.

Theorem 2.8. Let T be a rank k subspace with respect to A. Then

E
(

Ck(A, B)N · Ik(T, A, B)
)

= E⋆ (Vk = T and r(xi) + s(yi) ≤ k + N for 1 ≤ i ≤ N) . (11)

Proof. We use (6) (Theorem 2.5) together with induction on both k and N .
Notice that (11) holds trivially when k = 0. Notice also that when N = 0,
the second term of the right hand side of (6) vanishes, and that therefore
only induction on k is needed.

Suppose therefore that (11) holds whenever k or N is replaced by a smaller
number. Then the right hand side of (6) can be rewritten in terms of the
urn process. We are going to show that the result is equal to the right hand
side of (11).

We therefore split the “event” Vk = T and r(xi) + s(yi) ≤ k + N for
i = 1, . . . , N into two cases. Let S = Vk−1. Let t be the time at which the
extended urn process on W reaches rank 1, in other words, t is minimal such
that s(t) = 1. We condition on the event occurring at time t.

Case 1. Let b ∈ W and suppose that t = ξ(b, 1). In other words, we
assume that b is the first element such that B(b) > 0 which occurs in the urn
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process on W , and that the time at which b is first drawn is smaller than all
the numbers y1, . . . , yN .

We couple to another extended urn process by letting

ξ′(b, i) = ξ(b, i + 1) − t,

and for all w 6= b in W ,

ξ′(w, i) = ξ(w, i) − t.

Moreover, let
y′

i = yi − t.

We let x′
i = xi and for v ∈ V , ξ′(v, i) = ξ(v, i). Let r′ and s′ be the rank

functions with respect to A and B/b in the new extended urn process. Then
r′ = r, and s′(y′

i) = s(yi)−1. Hence for 1 ≤ i ≤ N , r′(x′
i)+s′(y′

i) ≤ k−1+N
if and only if r(xi) + s(yi) ≤ k + N .

If we condition on Vk−1 = S, then

Pr(Vk = T ) =
λ({v ∈ V : σA(S + v) = T})

λ(S⊥)
.

By the induction hypothesis, E⋆(Case 1) is equal to the first term of the right
hand side of (6).

Case 2. Suppose that yN = t (the other cases yi = t are of course
identical) . We are going to couple Case 2 to the (N − 1)th extended urn
process. The coupling is done in essentially the same way as in Case 1. Let

ξ′(b, i) = ξ(b, i) − t,

and for 1 ≤ i ≤ N − 1 let
y′

i = yi − t.

In the limit h → 0, ξ(a, 1) is measured by h times Lebesgue measure on the
positive real numbers. Hence if we let

ξ′(a, 1) = xN ,

we obtain a coupling which is valid as h → 0.
Again, condition on Vk−1 = S,

Pr(Vk = T ) =
λ({v ∈ V : σA(S + v) = T})

λ(S⊥)
.
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Moreover,
1

µ({w ∈ W : B(w) > 0})
is the measure of the event that yN is smaller than ξ(v, 1) for every v such
that B(v) > 0. By the induction hypothesis, E⋆(Case 2) is equal to the
second term of the right hand side of (6).

Hence E
(

Ck(A, B)N · Ik(T, A, B)
)

= E⋆(Case 1) + N · E⋆(Case 2). This
completes the proof.

Theorem 2.8 generalizes automatically to subspaces of rank < k.

Theorem 2.9. Let T be a subspace with respect to A. Then

E
(

Ck(A, B)N · Ik(T, A, B)
)

= E⋆ (T ⊆ Vk and r(xi) + s(yi) ≤ k + N for 1 ≤ i ≤ N) . (12)

In particular if T is empty then this is Theorem 2.6. We remark that for
the minimum matching problem (or assignment problem), the Parisi formula
(4) can easily be derived from the case N = 1 of this theorem. This is done
by taking V and W of size n, and letting A and B be the multisets where
each element has multiplicity 1. By taking N = 2, one obtains, after some
calculations, an exact formula for the variance. This was done in [47].

3 Applications to the random 2-factor prob-

lem

In this section, we apply the results of Section 2 to the 2-factor problem. We
let L̃n denote the cost of the minimum 2-factor in Kn,n. We prove bounds
on the expectation and variance of L̃n.

First, however, it seems appropriate to show how the results of the pre-

vious section can be used to calculate E
(

L̃n

)

exactly for small n, although

this is not necessary for the rest of the paper.

3.1 E
(

L̃n

)

for small n

We now apply Theorem 2.6 to the minimum 2-factor problem. We let V and
W be sets of size n, and A and B are the multisets where each element has
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multiplicity 2. The measures λ and µ are taken as the counting measures,
that is, each element has weight 1.

In this setting, a minimum 2n-flow is the same thing as a minimum 2-

factor. We compute E
(

L̃n

)

by summing over all the states of the two-

dimensional urn process. For each state, we compute the expected amount
of two-dimensional time spent in this state by integrating the probability of
being in the particular state over x and y in the positive quadrant. Since the
processes in V and W are independent, this integral is the product of two
one-dimensional integrals. We obtain the following formula:

∑

i1+2i2+j1+2j2<2n

I(n, i1, i2) · I(n, j1, j2),

where I is defined by

I(n, i1, i2) =
(

n

i1, i2, n − i1 − i2

)
∫ ∞

0

(e−x)(n−i1−i2)(xe−x)i1(1 − e−x − xe−x)i2 dx.

Here i1 is the number of vertices for which exactly one event has occurred
in the urn process, and i2 is the number of vertices for which at least two
events have occurred. For given values of n, i1 and i2, the integral is a rational
number that can easily be calculated using a computer program like Maple.
We obtain the following expected values for the 2-factor problem for the first
few values of n.

E
(

L̃1

)

= 3

E
(

L̃2

)

=
7

2

E
(

L̃3

)

=
3581

972
≈ 3.684

E
(

L̃4

)

=
626981

165888
≈ 3.779

E
(

L̃5

)

=
12953341271

3375000000
≈ 3.838
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E
(

L̃6

)

=
1526452234799

393660000000
≈ 3.877

We can (non-rigorously) determine the limit shape as n → ∞ of the region
R2n(A, B) as follows: The expected value of rankA(V (x)) and rankB(W (y))
is n times the expected rank produced by a particular element. Consider an
arbitrary element v ∈ V . With probability e−x, no event has occurred in the
urn process for v. With probability xe−x, exactly one event has occurred, and
in the remaining cases, that is, with probability 1− e−x − xe−x, at least two
events have occurred. For large n, the point (x, y) will lie inside R2n(A, B)
with high probability if the sum of the average ranks in V and W is smaller
than 2, and will be outside R2n(A, B) with high probability if the sum of
the average ranks is larger than 2. The limit shape of R2n(A, B) is therefore
given by the equation

xe−x + 2 (1 − e−x − xe−x) + ye−y + 2 (1 − e−y − ye−y) = 2,

which simplifies to
(

1 +
x

2

)

e−x +
(

1 +
y

2

)

e−y = 1. (13)

It is therefore reasonable to expect that E
(

L̃n

)

converges to the number τ .

In the next section we obtain a rigorous proof of this, with an explicit error
term. For the assignment problem, the same reasoning would show that the
limit shape is given by the curve e−x + e−y = 1. In this case, one can solve
explicitly for y, obtaining y = − log(1−e−x). Moreover, the area of the limit
region can be calculated as

∫ ∞

0

− log(1 − e−x) dx =
π2

6
,

in agreement with the theorem of Aldous [4], although a rigorous proof would
require an argument that the area of the limit shape is the same as the limit
of the expected area.

3.2 A rough bound on the size of R2n(n)

We let Rk(n) denote the region Rk(A, B) where V , W , A and B are as in the
previous section. We know from the results of Section 2 that the expected
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value of the cost of the minimum (2n)-flow is the same as the expected area
of the region R2n(n), and we therefore wish to obtain bounds on the area of
this region. We are going to show that with high probability, the boundary of
the region R2n(n) (except for the coordinate axes) lies entirely within a small
distance of the curve (1 + x/2) · e−x + (1 + y/2) · e−y = 1. This allows us to
bound the mean and variance of the length L̃n of the minimum 2-factor. The
bounds we obtain are certainly not the best possible, but they are obtained
with quite simple and general methods, and they are good enough to establish
convergence in probability of L̃n to the number τ defined in Section 1.5.

The time until completion of the (one-dimensional) urn process (that is,
until it reaches rank 2n), is roughly log n. Therefore with high probability,
no point of R2n(n) will be outside the square [0, 2 log n] × [0, 2 log n]. Our
first aim is to state and prove this with a precise error term. The square
[0, 2 logn] × [0, 2 log n] will be called the basic square.

Lemma 3.1. The expected area of the part of R2n(n) which is outside the
basic square is

O

(

(log n)2

n

)

.

Proof. The probability that at most one event has occurred up to time x in a
Poisson(1) process is (1 + x)e−x. At time x, the expected number of vertices
of V for which at most one event has occurred is n(1 + x)e−x. Therefore

Pr((x, y) ∈ R2n(n)) ≤ Pr((x, 0) ∈ R2n(n)) ≤ n(1 + x)e−x. (14)

We also have

Pr((x, y) ∈ R2n(n)) ≤ Pr((x, 0) ∈ R2n(n)) · Pr((0, y) ∈ R2n(n))

≤ n2(1 + x)(1 + y) · e−x−y. (15)

Therefore we get an upper bound on the expected area of the part of R2n(n)
which is outside a square of side T by

2T · I + I2,

where

I =

∫ ∞

T

n(1 + x)e−x dx = n(2 + T )e−x.
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Hence
2T · I + I2 = 2nT (2 + T )e−T + n2(2 + T )2e−2T .

If we put T = 2 log n, this is

O

(

(log n)2

n

)

.

3.3 Bounds on the shape of R2n(n)

We now establish more precise bounds on the shape of R2n(n) valid inside the
basic square. We use the following Chernoff type bound, which is established
using routine techniques:

Lemma 3.2. Supppose that X = X1 + · · · + Xn is a sum of n independent
variables that take the values 0 or 1. Then

Pr(|X − E (X)| ≥ δ) ≤ 2e−δ2/2n.

Proof. To simplify, we let Yi = Xi − E (Xi) and Y = Y1 + · · · + Yn =
X − E (X). Each Yi takes the value −q with probability p, and the value p
with probability q, for some nonnegative numbers p and q with p + q = 1.
For nonnegative t, it is easily established that

E
(

etYi

)

= pe−qt + qept ≤ et2/2.

We obtain the following Chernoff type bound for δ > 0:

Pr(Y ≥ δ) = Pr(etY ≥ etδ) ≤ E
(

etY
)

etδ
≤ exp(nt2/2 − tδ).

Putting t = δ/n to optimize the inequality, we obtain

Pr(Y ≥ δ) ≤ exp

(

− δ2

2n

)

.

By symmetry, we obtain the same bound for the probability that Y ≤ −δ.
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We now turn to the urn process. For x ≥ 0, we let θ(x) = rankA(V (x)).
We can write

θ(x) = θ1(x) + θ2(x),

where θi(x) is the number of vertices in V for which the urn process has
produced at least i events up to time x. Each of θ1(x) and θ2(x) is a sum of
n independent identically distributed 0-1 variables. By the Chernoff bound,

Pr
(

|θi(x) − E (θi(x))| ≥ 2(n log n)1/2
)

≤ 2n−2.

We are going to show that with high probability, θ(x) does not deviate
from its expected value by more than 2(n log n)1/2 for any x. The following
lemma gives bounds on the derivative of E (θi(x)) for i = 1, 2.

Lemma 3.3. If x is a nonnegative real number, then

0 ≤ d

dx
E (θ1(x)) ≤ n,

and

0 ≤ d

dx
E (θ2(x)) ≤ e−1n.

Proof. We have
1

n
· d

dx
E (θ1(x)) = 1 − e−x

and
1

n
· d

dx
E (θ2(x)) = 1 − e−x − xe−x.

The stated bounds are now obtained by elementary calculus.

If θ(x) deviates more than 8(n log n)1/2 from its mean, then either θ1(x)
or θ2(x) must deviate at least 4(n log n)1/2 from their mean. This in turn
implies, by the upper bounds on the derivatives, that one of them must
deviate by at least 2(n log n)1/2 on an interval of length 2n−1/2(log n)1/2.

The probability that this happens somewhere in the interval [0, 2 logn] is
at most

2n−2 · 2 log n

2n−1/2(log n)1/2
= 2(log n)1/2n−3/2.
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Figure 3: The basic square and the critical region. The dashed line is the
curve (1 + x/2)e−x + (1 + y/2)e−y = 1.

The same thing holds for the urn process on W . We let F (x, y) denote
the normalized average rank of the two-dimensional urn process at the point
(x, y) in the time plane. In other words,

F (x, y) =
E (θ(x)) + E (θ(y))

n
= 4 − 2e−x − xe−x − 2e−y − ye−y.

Notice that F (x, y) does not depend on n. We also let F (x) = 2−2e−x−xe−x

so that F (x, y) = F (x) + F (y).
We now obtain a high probability bound on the shape of R2n(n). In the

following, we say that a statement holds with failure probability p if it holds
with probability at least 1 − p.

Theorem 3.4. With failure probability

O

(

(log n)1/2

n3/2

)

,

the part of the boundary of the region R2n(n) which lies inside the basic square
lies entirely within the region

2 − 8(log n)1/2

n1/2
≤ F (x, y) ≤ 2 +

8(log n)1/2

n1/2
.
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The region 2 − 8n−1/2(log n)1/2 ≤ F (x, y) ≤ 2 + 8n−1/2(log n)1/2, 0 ≤
x, y ≤ 2 log n will be called the critical region. We now estimate the area of
this region.

Lemma 3.5. For x ≤ 1,

d

dx
F (x, y) ≥ 2e−1.

Proof. This is established by elementary calculus.

It now follows that the critical region has area bounded by

2

2e−1
· 2 log n · 16(log n)1/2

n1/2
= O

(

(log n)3/2

n1/2

)

.

It remains to bound the area of the region F (x, y) ≤ 2 which is outside
the basic square. By a rough estimate, for large x we have F (x) = 2−2e−x−
xe−x ≥ 2− e−x/2, and for small y we have F (y) ≥ y/2. The area of the limit
region which lies outside the square of side 2 log n is therefore bounded by

∫ ∞

2 log n

2e−x/2 dx =
4

n
.

In the following estimate, this can be neglected, since it is much smaller than
the error term that comes from the area of the critical region.

Theorem 3.6. The expected value E
(

L̃n

)

of the minimum 2-factor in the

Poisson(1) weighted complete bipartite graph Kn,n satisfies

E
(

L̃n

)

= τ + O

(

(log n)3/2

n1/2

)

.

Proof. The part of the region R2n(n) which lies outside the basic square has
expected area

O

(

(log n)2

n

)

,

which is negligible compared to the stated error term. The part of R2n(n)
which lies inside the basic square has its boundary completely within the
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critical region with high probability. In the cases of failure, which have
probability

O

(

(log n)1/2

n3/2

)

,

there is an error of at most the area of the basic square, that is, 4(log n)2.

3.4 An upper bound on the variance of L̃n

It follows from the results of Section 2 that E
(

L̃2
n

)

≤ E (area(R2n(n))2).

We therefore want to bound the square of the area of R2n(n). With failure
probability O(log n/n), the urn processes on V and W are both completed
within time 2 log n, which implies that R2n(n) lies entirely in the basic square.
With even smaller failure probability, the boundary lies entirely in the critical
region. If this holds, then the square of the area is

τ 2 + O

(

(log n)3/2

n1/2

)

.

In the cases of failure, we bound the area by a rectangle each of whose
sides is 2 log n plus the time it takes until (after time 2 log n) at least one
event has occurred in each of the n processes, plus the time until (after this)
yet another event has occurred in each of the n processes.

The time it takes until at least one event has occurred in each of n rate 1
Poisson processes is the sum of n independent exponential variables of rates
1, 2, . . . , n. Let Z be such a variable. Then

var(Z) = 1 +
1

4
+

1

9
+ · · ·+ 1

n2
= O(1).

Hence E (Z) = log n + O(1) and E (Z2) = O((logn)2). The area of the
rectangle that we use to bound R2n(n) is

U = (2 log n + Z1 + Z2)(2 log n + Z3 + Z4),

where Z1, . . . , Z4 are independent variables of this distribution. By indepen-
dence we have

E
(

U2
)

= E
(

(2 log n + Z1 + Z2)
2
)

· E
(

(2 log n + Z1 + Z2)
2
)

= O((log n)2) · O((log n)2) = O((log n)4). (16)

28



Hence the cases of failure contribute only

O

(

(log n)5

n

)

to E (area(R2n(n))2). We therefore conclude:

Theorem 3.7.

var(L̃n) = O

(

(log n)3/2

n1/2

)

.

We expect that a more detailed analysis will show that the variance is
actually of order 1/n, as has been proved for the assignment problem [47].

Corollary 3.8. L̃n converges in probability to the number τ .

3.5 Bounds on Ck(n) for k < 2n

We let Ck = Ck(n) denote the cost of the minimum k-flow, that is, the
minimum set of k edges of which no three share a vertex. Here we show that
if k is only slightly smaller than 2n, then Ck(n) is rarely much smaller than
L̃n. The following lemma gives a bound on the expected increment in cost
of the minimum k-flow as the value of k increases by 1.

Lemma 3.9. For every k ≤ 2n,

E (Ck) − E (Ck−1) ≤
4

n + 1

(

1 +
1

2
+ · · · + 1

n

)

= O

(

log n

n

)

.

Proof. E (Ck) − E (Ck−1) is the expected area of the diagonal of rectangles
in Rk(n) − Rk−1(n). It is clear that k = 2n is the worst case, so that it
is sufficient to consider this case. We get an upper bound on the expected
time from the point where the urn process reaches rank i to the point where
it reaches rank i + 1 by conditioning on the following event: The first two
events in the urn process occur for the same vertex, then the third and fourth
events occur for another vertex, and so on. It follows that the expected area
of R2n(n) − R2n−1(n) is upper bounded by

1

1 · n +
1

1 · n +
1

2 · (n − 1)
+

1

2 · (n − 1)
+ · · ·+ 1

n · 1

=
4

n + 1

(

1 +
1

2
+ · · ·+ 1

n

)

. (17)
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This means that if we take k in the interval

2n − (n log n)1/2 ≤ k ≤ 2n,

then the bounds on the mean and variance of Ck given in Theorems 3.6 and
3.7 still hold (with a slightly worse constant). The upper bound on E (C2

k)
is of course still valid.

Theorem 3.10. If 2n − (n log n)1/2 ≤ k ≤ 2n, then

E (Ck) = τ + O

(

(log n)3/2

n1/2

)

,

and

var(Ck) = O

(

(log n)3/2

n1/2

)

.

3.6 The lower bound on Ln

We have already obtained quite precise results on the cost of the minimum
2-factor in the Poisson(1) model. Here we wish to show that if the Poisson(1)
costs are replaced by uniform [0, 1] costs, then the cost of the minimum 2-
factor rarely decreases dramatically, hence it is rarely considerably smaller
than τ .

Since in the Poisson model we allow for multiple edges, we consider the
following model: For every pair of vertices, there are two edges, one with uni-
form [0, 1] cost, and one whose cost is the first one plus another independent
uniform [0, 1] number. This corresponds exactly to the Poisson(1) model.

In the uniform model, take the minimum 2-factor and delete the n1/2 +
O(1) longest edges. Let k = 2n − n1/2 + O(1) be the number of remaining
edges, and let x be the length of the longest remaining edge. Now we apply
the transformation

t 7→ − log(1 − t)

to all edge costs, and to the increments in cost between the first and second
edge of each pair. Let C be the cost of the k-flow in the Poisson(1) model
that we have obtained.

We show that given C, we can obtain a lower bound on the cost of the
original 2-factor in the uniform model. This cost must be at least

C · x
− log(1 − x)

+
√

n · x ≥ C · (1 − x) +
√

n · x,
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which is at least C, unless C >
√

n. If on the other hand C ≥ √
n, then

C · x
− log(1 − x)

+
√

n · x ≥
√

n · x
− log(1 − x)

+
√

n · x

=
√

n

(

x +
x

− log(1 − x)

)

≥
√

n. (18)

Hence we have:

Lemma 3.11. The cost of the minimum 2-factor in the uniform model is at
least

min(Ck,
√

n),

where Ck is the cost of the minimum k-flow in the Poisson model, and k =
2n − n1/2 + O(1) as above.

Proof. Since the flow of cost C that we have obtained is a k-flow, C ≥ Ck.

It remains to bound the contribution to E (Ck) from the cases where
Ck >

√
n. We have

E
(

C2
k

)

≥
√

n · E
(

Ck · I(Ck ≥
√

n)
)

.

Hence we can use the upper bound on the variance to lower bound the right
hand side. We have

E (cost of minimum tour in the uniform model)

≥ E (cost of 2-factor in the uniform model)

≥ E (cost of 2-factor in the uniform model with multiple edges permitted)

≥ E
(

min(Ck,
√

n)
)

≥ E (Ck) − E
(

Ck · I(Ck ≥
√

n)
)

≥ E (Ck) −
E (C2

k)√
n

= τ + O

(

(log n)3/2

n1/2

)

+ O

(

1

n1/2

)

= τ + O

(

(log n)3/2

n1/2

)

. (19)

We let Ln denote the cost of the minimum tour in the uniform model,
and if x is a real number, then we let

x+ =

{

x, if x ≥ 0,

0, if x < 0.

From the inequalities above, we conclude:
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Theorem 3.12. As n → ∞,

E(τ − Ln)+ = O

(

(log n)3/2

n1/2

)

.

4 Application to the random TSP

In this section, we finally apply the results we have obtained to the random
TSP. We let Ln denote the length of the minimum tour on Kn,n. Since it
only remains to establish an appropriate upper bound on Ln, we work with
Poisson(1) edge costs. By stochastic dominance, the upper bound we obtain
will be valid also with uniform [0, 1] edge costs.

4.1 A high probability bound on Ln

We first establish a high probability upper bound on Ln. This bound permits
the inference of convergence in mean from convergence in probability.

Theorem 4.1.

E (Ln − 4ζ(2))+ = O

(

(log n)3/4

n1/4

)

, as n → ∞.

Proof. We randomly colour the edges in three different colours, the first two
colours (red and blue, say) have probability 1/2 − c each, and the third has
probability 2c. The edges of the third colour are also given a random orien-
tation. The value of c will be chosen later. For each colour and direction,
the edges appear as a Poisson process with rate given by these probabili-
ties. Moreover, these four Poisson processes are independent. For the two
first colours, red and blue, we find the minimum perfect matchings. From
Theorem 7.1 of [47] we know that the cost of such a matching has expected
value

1

1/2 − c
· (ζ(2) − O(1/n)) = 2ζ(2) + O(c) + O(1/n)

(for small c and large n), and variance

O

(

1

n(1/2 − c)2

)

= O

(

1

n

)

.
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It follows from Jensen’s inequality that the cost X of these two perfect match-
ings satisfies

E(X − 4ζ(2))+ = O

(

c +
1√
n

)

.

Since the red and blue matchings are independent, the number of cycles
in the resulting 2-factor will be distributed like the number Zn of cycles of a
permutation taken uniformly from the set of all n! permutations of n objects.
It is easy to show by induction on n that this number satisfies

E
(

2Zn

)

= n + 1.

It follows from Markov’s inequality that

Pr(Zn > 4 log n) = Pr(2Zn > 24 log n) = Pr(2Zn > n4 log 2) ≤ n + 1

n4 log 2
<

1

n1.77
.

We also want to bound the probability that there is no large cycle in the
random permutation. Throughout, when we say that a cycle has size m, we
mean that it contains m vertices in each of V and W , and consequently a
total of 2m vertices and 2m edges. We have

Pr(no cycle of size n/ log n or larger)

≤
(

2

log n

)(log n)/2

=
n

1

2
log 2

n
1

2
log log n

= O

(

1

n1.77

)

. (20)

Suppose now that there is a cycle of size at least n/ log n, and that there
are at most 4 log n cycles. Then we use the directed edges of the third
colour to patch the smaller cycles, one at a time, to the larger cycle. Such a
patching is shown in Figure 4. To avoid dependencies among the edge costs
under consideration, we patch each new cycle using edges directed from the
new cycle to the main cycle.

We estimate the expected cost of the patching. For each patch, the ex-
pected cost is

O

(

(log n)1/2

cn1/2

)

,

and there are 4 log n patches to perform. Hence the expected cost of patching
all the cycles to a tour is

O

(

(log n)3/2

cn1/2

)

. (21)
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Figure 4: A simple patch turning two cycles into one.

If the number of cycles is larger than 4 log n, or there is no cycle of size
at least n/ log n, then we use the directed edges to create a tour of expected
length 2n/c. The contribution to E(Ln − 4ζ(2))+ from the cases of failure is

O

(

1

cn0.77

)

,

which is smaller than (21).
It remains to choose the value of c in order to minimize

O

(

c +
1√
n

)

+ O

(

(log n)3/2

cn1/2

)

.

We must choose c >> 1/
√

n, otherwise the second term will not tend to zero
as n → ∞. Hence the first term is O(c), and to minimize, we put

c =
(log n)3/2

cn1/2
,

that is,

c =
(log n)3/4

n1/4
.

This gives the bound stated in the theorem.

It then remains to estimate the bounded variable min(Ln, 4ζ(2)).
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4.2 The longest edge in the minimum 2-factor

Let Xn be the length of the longest edge in the minimum 2-factor.

Theorem 4.2.

E (Xn) ≤ 4(log n + 1)

n + 1
= O

(

log n

n

)

.

Proof. A (2n − 1)-flow can be obtained by deleting the longest edge in the
minimum 2n-flow. Hence an upper bound for E (Xn) is E (C2n − C2n−1) =
E (C2n) − E (C2n−1). The statement now follows from Lemma 3.9

We remark that Theorem 4.2 actually gives the right order of magnitude
of E (Xn), since already the maximum over vertices v of the length of the
shortest edge from v is of order log n/n.

We also remark that Alan Frieze [16] has shown (for the complete graph,
but his argument goes through for the bipartite graph as well) that there is
an absolute constant A such that Xn ≤ A log n/n with high probability as
n → ∞. We conjecture that

Xn · n
log n

converges in probability to some number between 1 and 4.

4.3 A bound on the number of small cycles

Our idea is to show that the minimum 2-factor can be changed into a tour
by replacing a relatively small number of edges, and that this can be done
at o(1) extra cost. The arguments given in Section 4.1 show that this would
be easy if it could be established that the cycle structure of the minimum
2-factor is roughly the same as that of a random 2-factor taken from uniform
distribution on all 2-factors. Unfortunately we do not know of any method
to establish such a theorem. We must, however, obtain a o(n) bound on the
number of cycles in order for our approach to work. If the average length of
the cycles in the minimum 2-factor would be, say, about 100, then we would
have to change at least n/100 edges to construct a tour, and this cannot be
done at o(1) expected cost.

Fortunately, for large n, it is unlikely that one can find a cycle starting at
a given point and returning in not more than 100 steps without using some
edge of length >> log n/n. Hence we can use the bound on the expected
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cost of the longest edge in the minimum 2-factor to establish a bound on the
number of short cycles. We know from Theorem 4.2 that the expected value
of the longest edge in the minimum 2-factor is O(log n/n). From this and
the Markov inequality it immediately follows that:

Lemma 4.3. With failure probability O(1/ logn), there is no edge longer
than

(log n)2

n

in the minimum 2-factor.

From this, we obtain a bound on the number of extremely short cycles.
In [16], Alan Frieze obtains a similar bound. Using more sophisticated tech-
niques, Frieze also obtains a stronger O(n/ log n) bound on the total number
of cycles, but it turns out that Lemma 4.4 below is sufficient for our purposes.

Lemma 4.4. With a failure probability of O(1/ logn), the minimum 2-factor
contains fewer than n0.81 cycles of size at most

log n

5 log log n
.

Proof. We estimate the number of cycles of size at most k with no edge
longer than (log n)2/n (in the whole graph, without regard to the minimum
2-factor). The expected number of such cycles is at most

k
∑

l=1

(n!)2

(n − l)!2
· (log n)4l

n2l
≤ k(log n)4k.

We now take

k =
log n

5 log log n
.

Then the expected number of cycles of length at most k is at most

log n

5 log log n
· (log n)4 log n/(5 log log n)

=
log n

5 log log n
· exp

(

4 log n

5 log log n
· log log n

)

= O(n4/5 log n). (22)
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4.4 Simple path extension

In this and the following sections we prove that with high probability, the
minimum 2-factor can be changed to a tour at o(1) extra cost. A technical
obstacle is that if we condition on the minimum 2-factor, the costs of the
remaining edges in the graph will no longer have the same distribution. To
overcome this, we use the same method as in Section 4.1. We randomly
“colour” some (relatively small fraction) of the edges with a different colour.
We find the minimum 2-factor on the remaining edges, and then use the
coloured edges to “patch” the 2-factor into a tour.

It turns out that we are going to need three extra “colours” of edges,
and the coloured edges will also be assigned a random orientation. The
extra edges will be called path extension edges, rotation edges and connecting
edges. We let these three colours have rate c each, so that the “normal”
edges occur with rate 1 − 3c. The choice of c will be optimized later, but
in any case c will tend to zero as n → ∞. Throughout, we allow a failure
probability of O(1/ logn), which is actually much smaller than we need in
order to establish Theorem 1.1.

In this section, we show that with high probability, the path extension
edges can be used to turn the minimum 2-factor into a set of edges consisting
of one long path, and o(n/ log n) cycles, at o(1) extra cost.

We consider the minimum 2-factor on the normal edges. We assume that
this 2-factor satisfies the conclusion of Lemma 4.4, that is, there are fewer
than n0.81 cycles of size at most log n/(5 log log n).

Now we use the path extension edges to connect most of these cycles by
what we call simple path extension. We start with an arbitrary vertex u0

and choose the shortest path extension edge directed from u0 to a vertex v1

in a different cycle. Then we let u1 be a vertex adjacent to v1 in this cycle,
and connect u1 to a vertex in yet another cycle by choosing the shortest path
extension edge directed from u1, and so on.

We continue this process until the number of vertices that are not con-
nected to the path is at most

n

(log n)1/2
.

We estimate the total cost of the simple extension phase. The total
number of cycles in the minimum 2-factor is at most

n0.81 + O

(

n log log n

log n

)

= O

(

n log log n

log n

)

.
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Figure 5: Simple path extension.

This is an upper bound on the number of steps in the simple extension phase.
The expected cost of each step is at most

O

(

(log n)1/2

cn

)

.

Hence the expected total cost of the simple extension phase is

O

(

log log n

c(log n)1/2

)

.

4.5 An expander theorem

The final phase of turning the 2-factor into a tour uses the rotation and
connecting edges. For simplicity we again take these edges to be oriented.
We choose a particular set of rotation edges that we call the expander set.
The expander set consists of the seven cheapest rotation edges directed away
from each vertex. We show that with failure probability O(1/ logn) (actually
much less), the set of expander edges has a certain good expander property
(which is why we call them expander edges).

Definition 4.5. If S is a subset of V , then we let S ′ be the set of vertices
in W that are connected to S by an expander edge.

The expander property we want to obtain is the following: For every
subset S of V with |S| ≤ n/8, we have |S ′| ≥ 4 |S|.
Theorem 4.6 (Expander theorem). With failure probability O(1/ logn), the
set of expander edges has the desired expander property.
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Proof. We estimate the failure probability for the expander property. This
probability is bounded by

n/8
∑

s=1

(

n

s

)(

n

4s

) (

4s

n

)7s

≤
n/8
∑

s=1

(

2n

5s

) (

4s

n

)7s

≤
n/8
∑

s=1

(

2n · e
5s

)5s (

4s

n

)7s

≤
n/8
∑

s=1

(

(2e)5 · 47 · s2

55 · n2

)s

≤
n/8
∑

s=1

(

29
s2

n2

)s

. (23)

For s ≥ 4 log n, the terms are smaller than

(

29

64

)4 log n

<
1

n2
,

while for s < 4 log n, the terms are smaller than

42 · 29 · (log n)2

n2
.

The sum is therefore bounded by

O

(

n · (log n)2

n2

)

,

and in particular by

O

(

1

log n

)

.

4.6 Rotation phase

When we enter the rotation phase, we assume that there is a path that
contains all but O(n/(logn)1/2) vertices, and that these remaining vertices
make up at most

5n log log n

(log n)3/2

cycles. We also assume that the expander edges constitute a set with the
good expander property.
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Figure 6: Rotation of the main path.

We will show that each of the remaining cycles can be absorbed into the
path by using O(log n) expander edges possibly together with one connecting
edge.

The rotation operation is carried out as follows (see Figure 6). Let P be
a path of even length, that is, with one endpoint a in V and the other in W .
If there is a rotation edge from a to another vertex b in P , then by replacing
one of the edges from b by this rotation edge, we obtain a new path (on the
same set of vertices) with one of the neighbours a′ of b as the endpoint in V .
The operation can then be iterated by using rotation edges from a′ and so
on.

Let E0 = {a}, and let Ei be the set of vertices in V that can become
enpoints of the path by performing at most i rotations. If for a particular
value of i, fewer than n/8 vertices belong to Ei, then by the expander prop-
erty, either there is a rotation edge from one of the vertices of Ei to a vertex
outside P , or there are at least twice as many vertices in Ei+1 as in Ei.

This shows that the size of Ei will grow exponentially until either there
is a rotation edge to a vertex outside P , or at least one eighth of the vertices
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in P ∩ V can become enspoints of the main path by performing at most i
rotations.

In the former case, we can extend the main path by using rotation edges
only. In the latter case, we pick one of the cycles outside the main path, and
we connect it to the main path by using the cheapest connecting edge from
this cycle to one of the possible endpoints of the main path.

Finally, after absorbing all the remaining cycles into the main path, we
turn this path into a tour by performing the same operation once more, this
time treating the endpoint in W as the cycle to be absorbed.

4.7 Proof of Theorem 1.1

We can now estimate the cost of the TSP, thereby completing the proof of
Theorem 1.1. We fist estimate the cost of the 2-factor on the normal edges,
and the path extension phase. The normal edges have density 1 − 3c, and
we solve the minimum 2-factor problem. The expected cost of this is

τ

1 − 3c
,

and the variance is of order (log n)3/2/n1/2. The standard deviation is of
order (log n)3/4/n1/4, and therefore we can afford to let the algorithm fail if
the cost of the minimum 2-factor is larger than τ/(1 − 3c) + (log n)7/4/n1/4.

We then turn to the cost of the rotation phase. There are

O

(

n log log n

(log n)3/2

)

steps, and each step uses O(log n) expander edges. The expander edges each
have expected cost O(1/(cn)). This gives a total expected cost of

O

(

log log n

c(log n)1/2

)

for the expander edges, that is, the same as the cost of the simple extension
phase. The connecting edges will cost only O(1/(cn)) each, so the cost of the
connecting edges can be absorbed into this term.

Summing up, the expected cost of |Ln − τ |, given that the algorithm
succeeds, is bounded by

O(c) + O

(

(log n)7/4

n1/4

)

+ O

(

log log n

c(log n)1/2

)

.
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We now put

c =
1

(log n)1/4
,

and obtain the error term

O

(

log log n

(log n)1/4

)

.

The extra contribution from the cases of failure is, by Theorem 4.1, only
of order O(1/ logn). This completes the proof of Theorem 1.1.
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[28] Mézard, M. and Parisi, G., Mean-field equations for the matching and
the travelling salesman problems, Europhys. Lett. 2 (1986) 913–918.
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