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Abstract
The edges of a complete graph on n vertices are assigned i. i. d.

random costs from a distribution for which the interval [0, t] has prob-
ability asymptotic to t as t → 0 through positive values. In this so
called pseudo-dimension 1 mean field model, we study several opti-
mization problems, of which the traveling salesman is the best known.
We prove that as n → ∞, the cost of the minimum traveling sales-
man tour converges in probability to a certain number, approximately
2.0415, which is characterized analytically.

1 Introduction

In a complete graph on n vertices, the edges are assigned independent ran-
dom costs from a fixed distribution µ on the nonnegative real numbers. This
is the mean field model of distance. Several well-known optimization prob-
lems consist in finding a set of edges of minimum total cost under certain
constraints. Examples are minimum matching, spanning tree, and the trav-
eling salesman problem (TSP). The distribution of the cost of the solution to
these problems has been studied extensively, in particular when µ is either
uniform on the interval [0, 1] or exponential of mean 1. These distributions
both represent the so called pseudo-dimension 1 case, in which a variable
X of distribution µ satisfies

P (X < t)

t
→ 1, as t→ 0+. (1)
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When the number of edges in a solution scales like n, a common phenomenon
is that as n → ∞, the cost of the solution converges in probability to some
constant which is characteristic of the problem.

We let Ln denote the cost of the TSP. More precisely, Ln is the minimum
sum of the edge costs of a cycle that visits each vertex precisely once. It
can be proved by elementary methods [18, 21, 46] that there are positive
constants c and C such that as n→∞, P (c < Ln < C)→ 1, and the same
holds for minimum matching and spanning tree, but establishing convergence
and determining the limit is a more difficult problem.

In this paper we study several optimization problems including variations
of minimum matching as well as the TSP. We show that they are related
to a two-dimensional version of the urn process of M. Buck, C. Chan and
D. Robbins [14], giving rise to a random plane region Rn. In several cases it
turns out that as n→∞, Rn converges to a problem specific limit region R?

whose shape is described by a simple equation in two variables. Moreover,
the area of R? is equal to the limit cost of the optimization problem. Our
prime example is the TSP, whose asymptotic cost is given by Theorem 1.1.

Theorem 1.1. If µ satisfies (1), then as n→∞,

Ln
p→ 1

2

∫ ∞
0

y dx, (2)

where y, as a function of x, is the positive solution to the equation(
1 +

x

2

)
e−x +

(
1 +

y

2

)
e−y = 1. (3)

The limit, which we denote by L?, is therefore half of the area under the
curve shown in Figure 1. There seems to be no simple expression for L? in
terms of known mathematical constants, but it can be evaluated numerically
to

lim
n→∞

Ln = L? ≈ 2.0415481864.

Our method applies to a variety of problems. For instance, the minimum
matching problem leads to the conclusion of Theorem 1.1 with equation (3)
replaced by the simpler equation e−x + e−y = 1. In this case the equation
has the explicit solution y = − log(1 − e−x), and as was conjectured in [13,
26, 28, 29, 35] and established in [5, 6], the limit cost is equal to

1

2

∫ ∞
0

− log(1− e−x) dx =
π2

12
.
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Figure 1: The curve (1 + x
2
)e−x + (1 + y

2
)e−y = 1.

2 Background

The replica and cavity methods of statistical mechanics, originally developed
in the study of spin glasses and other disordered systems, have led to a num-
ber of purely mathematical predictions [30, 43]. Several of these results are
mathematically non-rigorous, and establishing them has become a stimulat-
ing challenge to probability theory. Some important achievements in this
direction are David Aldous’ proof of the ζ(2) limit in the assignment prob-
lem [6], Michel Talagrand’s proof of the correctness of the Parisi solution of
the Sherrington-Kirkpatrick model [19, 34, 40, 44], and the algorithmic and
theoretical results on phase transitions in constraint satisfaction problems
[1, 2, 31] and counting [11, 47]. See [25] for a recent introduction to this
field.

One of the areas where the statistical mechanics approach has produced
a series of remarkable conjectures is optimization in mean field models of
distance. The simplest of these models is the one described in the introduc-
tion, but the analogous bipartite model has also been studied. In general
one is interested in the large n limit cost of the problem, which corresponds
physically to the thermodynamical limit.

Explicit limit theorems have been obtained only for distributions satisfy-
ing (1). A. Frieze showed [17] that the limit cost of the minimum spanning
tree is ζ(3), and D. Aldous [5, 6] established the limit π2/6 for bipartite min-
imum matching. See also [3, 4] for other results based on weak convergence.
The theorem of Aldous resolved a conjecture by M. Mézard and G. Parisi
from the mid-1980’s [26, 28, 29, 30, 35]. In articles of Mézard, Parisi and
W. Krauth [23, 27, 28], a similar limit was conjectured for the TSP. The limit
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was predicted on theoretical grounds to be a certain constant, approximately
2.0415. This value was consistent with earlier less precise estimates obtained
theoretically as well as by computer simulation [10, 22, 30, 41, 45], see also
[6, 7, 8, 12, 15, 37, 38, 39].

Theorem 1.1 confirms the Krauth-Mézard-Parisi conjecture, except that
for a while it was not clear that L? is the same as the number obtained with
the cavity method. The numerical agreement was certainly convincing, and
soon it was shown by Parisi (in personal communication) that the analytic
characterization of limLn obtained in equations (6) and (9) of [23] is indeed
equivalent to the one given by (3). This leads to the satisfactory conclusion
that the cavity result for the limit cost of the TSP is correct. Parisi’s argu-
ment sheds some light on the relation between the cavity solution and the
limit shape R?, but this is something that deserves further study.

3 Organization of the paper

In Section 4 we introduce a modified random graph model which is designed
in order to simplify the analysis. In this model each vertex has a nonneg-
ative real weight, which governs the distribution of the edge costs, an idea
originating in the paper of Buck, Chan and Robbins [14]. We study a certain
type of optimization problem that we call flow problem, which includes nat-
ural relaxations of matching and the TSP. Our method relies on letting the
weight of one of the vertices tend to zero. This idea was suggested already
in [14], but not fully exploited. With this method we show in Section 5 that
knowledge of the expected number of edges from a vertex in a solution to the
flow problem allows us to find recursively the expected cost of the solution.

This strategy is carried out in Sections 6 and 7, where we also introduce
the two-dimensional urn process. The expected cost of the flow problem is
expressed as the area of a region Rn defined by the urn process. In Section 8
we study the behavior of Rn for large n. Using the Talagrand concentration
inequality [42], we prove in Section 9 that under certain conditions, the cost
of a flow problem converges in probability to the area of the limit shape
of Rn. In Sections 10 and 11, we show that the mean field TSP is well
approximated by its relaxation to a flow problem, thereby completing the
proof of Theorem 1.1. An important step is provided by a theorem of Frieze
[18] stating that the mean field TSP is asymptotically equivalent to the mean
field 2-factor problem.

In Section 12 we show that similar results can be obtained in the tech-
nically simpler bipartite graph model, for which our method produces exact
results not only for the expectation, but also for the higher moments of the
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cost of a flow problem. For several problems, the limit cost on the bipartite
graph Kn,n is twice that of the same problem on the complete graph. Indeed,
this is the reason for the factor 1/2 in equation (2). The region shown in
Figure 1 actually corresponds to the bipartite TSP, but the two limit regions
are related through a simple change of variables.

For the minimum matching, which is the simplest flow problem, the urn
process can be analyzed exactly, and this leads to several explicit formulas
that are discussed in Section 13.

4 Flow problems and the friendly model

In this section we define a certain type of random graph model that we call
the friendly model, and a class of optimization problems that we call flow
problems.

4.1 The friendly model

There are n vertices v1, . . . , vn. Each vertex vi has a positive real weight γi.
For each i and j there is a potentially infinite set of edges connecting vi and
vj. If i 6= j, these edges have costs that are determined by the times of the
events in a Poisson process of rate γiγj. If i = j, there is a set of loops at
this vertex, and their costs are given by a Poisson process of rate γ2

i /2. All
these Poisson processes are independent.

The friendly model can also be characterized in the following way: The
total sequence of edge costs in the graph is generated by a Poisson process
of rate

(γ1 + · · ·+ γn)2

2
.

For every event in this process, an edge of cost equal to the time of the event
is added to the graph by choosing its two endpoints independently according
to the fixed probability measure on the vertices given by

P (vi) =
γi

γ1 + · · ·+ γn
.

4.2 Flow problems

We let each vertex vi have a nonnegative integer capacity ci. Let E denote
the set of edges. For each e ∈ E, let Xe ≥ 0 be the cost of e. For e ∈ E and
v ∈ V we use the notation 〈e, v〉 for the number of times that e is connected
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to v. In other words

〈e, v〉 =


2, if e is a loop at v,

1, if e connects v to another vertex,

0, otherwise.

For a nonnegative real number k, the flow problem asks for the function
σ : E → [0, 1] that minimizes ∑

e∈E

σeXe,

subject to

• the capacity constraints: For every i,∑
e∈E

〈e, vi〉σe ≤ ci, (4)

• The norm of σ is (at least) k:∑
e∈E

σe ≥ k. (5)

Since the edge costs Xe are nonnegative, we can obviously replace the
inequality in (5) by equality.

A function σ that satisfies the constraints (that is, a feasible solution) is
called a flow. If equality holds in (5), σ is called a k-flow. The left hand side
of (4) is the degree of vi with respect to σ, and if equality holds in (4) we say
that vi has full degree in σ.

In the generic case, that is, when there are no linear relations between the
edge costs, there is a unique minimum k-flow for every k that allows a feasible
solution. In the friendly model, genericity holds with probability 1. We shall
sometimes assume genericity without explicitly stating this assumption. The
minimum k-flow is then denoted by σ(k) (without assuming genericity, this
notation would be ambiguous). The cost of σ(k) is denoted Ck, and the degree

of vi in σ(k) is denoted δ
(k)
i . We denote the integer vector of capacities by

boldface c = (c1, . . . , cn), and when dependence on the capacities is crucial,

we write σ(k)(c), δ
(k)
i (c) etc.

In principle k denotes a nonnegative real number, but it turns out that
we only have to consider values of k for which 2k is an integer. The reason
is that for given edge costs, Ck as a function of k is piecewise linear, and the
points of non-differentiability can only be located at these particular values
of k.
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Figure 2: The friendly model, n = 3.

4.3 Example

As a simple example, suppose n = 3 and that the weights and capacities are
all equal to 1. Then only the cheapest edge between each pair of vertices
is relevant. The graph essentially looks like Figure 2, where the loops have
costs X1,1, X2,2 and X3,3 that are exponential of rate 1/2, that is, mean 2,
and the edges connecting distinct vertices have costs X1,2, X1,3 and X2,3 that
are exponential of mean 1.

Consider the k-flow problem for k = 3/2, which is the maximum value of
k since the sum of the vertex capacities is 3. Once the edge costs are given,
the optimization problem consists in minimizing

σ1,1X1,1 + σ2,2X2,2 + σ3,3X3,3 + σ1,2X1,2 + σ1,3X1,3 + σ2,3X2,3,

subject to
σi,j ∈ [0, 1],

σ1,1 + σ2,2 + σ3,3 + σ1,2 + σ1,3 + σ2,3 = 3/2,

2σ1,1 + σ1,2 + σ1,3 ≤ 1,

2σ2,2 + σ1,2 + σ2,3 ≤ 1,

2σ3,3 + σ1,3 + σ2,3 ≤ 1.

It is shown in Section 6 that for the optimum solution in the generic case,
σi,j only takes the values 0, 1/2, and 1. Therefore the optimum solution must

7



Figure 3: The five basic solutions.

be one of the five solutions shown in Figure 3. The dashed lines indicate edges
of coefficient 1/2.

The loops can only occur with coefficient 1/2. Since they are exponential
of mean 2, it seems that the model can be simplified by letting the loops be
exponential of mean 1, and counting them only once in the degree of their
vertices. Indeed, if we simulate this example by computer, we most easily
generate exponential mean 1 variables Yi,j for 1 ≤ i ≤ j ≤ 3, and then
compute

min

(
Y1,1 + Y2,2 + Y3,3, Y1,1 + Y2,3, Y2,2 + Y1,3, Y3,3 + Y1,2,

Y1,2 + Y1,3 + Y2,3

2

)
.

However, when the capacites are at least 2, loops can occur with coefficient
1, and it then turns out that the definitions of Sections 4.1 and 4.2 are the
correct ones.

A computer simulation in order to estimate the expectation of the cost
of the minimum solution reveals that EC3/2 ≈ 0.86. In fact it follows from
equation (57) that EC3/2 = 31/36.

4.4 Integer flow problems

The optimization problem described in Section 4.2 is the linear flow problem.
If we require that σe ∈ {0, 1}, we get an integer flow problem. For such a
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problem, a solution can be regarded as a set of edges (the set of edges of
coefficient 1).

The integer flow problem, specialized to the case that all capacities are 1,
is well-known as the minimum matching problem. A feasible solution, called
a k-matching, is a set of k edges of which no two have a vertex in common.

A 2-factor is a set of edges for which every vertex has degree 2. The
minimum 2-factor problem is an integer flow problem for which every vertex
has capacity to 2, and k = n. A 2-factor can also be described as a set
of vertex-disjoint cycles. A solution to the TSP is a 2-factor with only one
cycle, also known as a tour. Therefore the 2-factor problem is a relaxation
of the TSP.

5 Description of the method

Our method is based on letting the weight of a vertex tend to zero. The
results of this section are valid for the integer as well as the linear flow
problem.

Suppose that we are given a random flow problem in the friendly model as
described in Section 4. This means that we have specified the number n, the
weights γ1, . . . , γn and the capacities c1, . . . , cn. We also assume that k ≥ 1
and that k is small enough so that feasible solutions to the flow problem
exist.

We now introduce an extra vertex vn+1 of weight γn+1 and capacity 1.
We compare the flow problem for the capacity vector c = (c1, . . . , cn, 0),
that is, the original problem, with the flow problem for the capacity vector
c + 1n+1 = (c1, . . . , cn, 1). The latter is called the extended problem. Here 1i
denotes the vector that has a 1 in position i and zeros elsewhere.

For the moment, we fix a vertex vi, 1 ≤ i ≤ n, and assume that its
capacity ci is nonzero. Since, in the extended flow problem, the capacity of
vn+1 is still only 1, at most one edge (the cheapest) between vi and vn+1 is
relevant to the flow problem. We denote this edge by e and note that the
cost Xe of e has exponential distribution of rate γiγn+1, in other words, the
density is

γiγn+1 exp(−γiγn+1t)

for t ≥ 0. We are interested in the expected value of the coefficient σ
(k)
e (c +

1n+1) of e in the minimum k-flow in the extended problem, as a function of
γn+1.

Let us for the moment condition on the costs of all other edges. We let
f(x) denote the cost of the minimum k-flow with respect to c + 1n+1 given
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that Xe = x. We have

ECk = Ef(Xe) = γiγn+1

∫ ∞
0

e−γiγn+1xf(x) dx.

Moreover, the coefficient σ
(k)
e (c + 1n+1) is the derivative of f(x) at x = Xe.

Here we disregard the fact that there may be a finite number of points where
f is non-differentiable. The following calculation by partial integration only
requires f to be continuous. We have

E
[
σ(k)
e (c + 1n+1)

]
=

∫ ∞
0

γiγn+1e
−γiγn+1xf ′(x) dx. (6)

By partial integration, (6) is equal to

γiγn+1

[∫ ∞
0

γiγn+1e
−γiγn+1xf(x) dx− f(0)

]
= γiγn+1 [ECk(c + 1n+1)− (Ck(c + 1n+1)|Xe = 0)] . (7)

We are still conditioning on all edge costs except Xe. In (7), we therefore
regard (Ck(c + 1n+1)|Xe = 0) as a non-random quantity.

Since one way of obtaining a k-flow with respect to c + 1n+1 is to use the
edge e together with the minimum (k − 1)-flow with respect to c − 1i, we
have

(Ck(c + 1n+1)|Xe = 0) ≤ Ck−1(c− 1i).

If X is an exponential random variable of rate λ, then X can be defined
as X = Y/λ, where Y is a rate 1 variable. This way, the edge costs can
be generated from an underlying set of rate 1 variables. If these underlying
variables constitute the probability space, then we can let γn+1 → 0 for a
fixed point in this space. Then the costs of all edges of nonzero cost from
vn+1 will tend to infinity. It follows that pointwise,

Ck(c + 1n+1)→ Ck and (Ck(c + 1n+1)|Xe = 0)→ Ck−1(c− 1i).

By the principle of dominated convergence we conclude from (7) that as
γn+1 → 0,

E
[
σ

(k)
e (c + 1n+1)

]
γn+1

→ γi (ECk(c)− ECk−1(c− 1i)) . (8)

So far we have conditioned on all edge costs except the cost Xe of e. Now
it is clear that (8) must hold also if we interpret the expectations as averages
over all edge costs.
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In Section 7.2 we show how to compute the expected degree of a vertex
in the minimum flow. In particular this allows us to compute

lim
γn+1→0

1

γn+1

·
∑
e

E
[
σ(k)
e (c + 1n+1)

]
, (9)

where the sum is taken over all edges e from vn+1 (only the cheapest edge to
each other vertex is relevant). If we assume that ci > 0 for every i, then it
follows from (8) that (9) is equal to(

n∑
i=1

γi

)
· ECk(c)−

n∑
i=1

γiECk−1(c− 1i).

A convenient way to state this equation is

ECk(c) =
1

γ1 + · · ·+ γn
· lim
γn+1→0

E
[
δ
(k)
n+1(c + 1n+1)

]
γn+1

+ ECk−1(c− 1i), (10)

where the last term ECk−1(c−1i) is interpreted as an average not only over
the edge costs but also over a random choice of i, taken with probabilities
proportional to the weights. In other words, the probability of choosing a
particular i is

γi
γ1 + · · ·+ γn

.

6 Combinatorics of the linear flow problem

In this section we establish some combinatorial results on the structure of
the minimum linear flows. These results are valid for arbitrary nonnegative
edge costs, and are therefore independent of the random model introduced
in Section 4.1.

In the linear flow problem we allow a coefficient σe to be any number in
the interval [0, 1]. The following proposition shows that we can still restrict
our attention to a finite number of potentially optimal solutions.

Proposition 6.1. Suppose that for a linear flow problem the capacities, edge
costs, and the number k are given. Suppose moreover that the sum 2k of the
degrees of the vertices in a solution is an integer. Then there is a minimum
k-flow whose coefficients all belong to the set {0, 1/2, 1}.

In the proof of Proposition 6.1, we let σ be a k-flow, and assume that
σ is not a convex combination of other k-flows. We let H be the subgraph
consisting of all edges of non-integer coefficient in σ, and all vertices incident
to such an edge. The main part of the proof consists of the following lemma.
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Lemma 6.2. All but at most one of the components of H are cycles of odd
length where all edges have coefficient 1/2, and all vertices have full degree.
There may or may not be an exceptional component, which is a path or cycle
of odd length, or a cycle with an attached path.

Proof. We first show that there can be no cycle of even length in H (and in
particular no multiple edges). Let us say that a cycle is nontrivial if some
edge occurs an odd number of times. We claim that H cannot contain a
nontrivial cycle of even length. Suppose for a contradiction that there is
such a cycle in H. Then we modify σ by an operation that we call switching.
We construct a new flow σ′ by letting σ′e = σe whenever e is not in the cycle,
while if e is in the cycle, σ′e = σe ± ε, where the signs alternate around the
cycle, and ε > 0 is chosen small enough that σ′e ∈ [0, 1]. Each vertex has the
same degree in σ′ as in σ, so σ′ is a flow. If we now construct σ′′ by choosing
the signs in the opposite way, we have

σ =
σ′ + σ′′

2
.

The assumption that there is some edge that occurs an odd number of times
in the cycle implies that σ′ and σ′′ are distinct from σ, a contradiction.

For the same reason, there cannot be a path of even length in H con-
necting two vertices which do not have full degree in σ. This means that
the components of H are trees or unicyclic (if a component has two distinct
cycles, then it must be possible to find a nontrivial cycle of even length).
Since the leafs in a tree component of H obviously do not have full degree
(they do not have integer degree), the tree components must be paths of odd
length (if there were three leafs, then two of them would be at even distance
from each other).

In an odd cycle, there cannot be more than one vertex of less than full
degree, since two such vertices would be at even distance from each other
along some path. Actually there cannot even be two vertices of less than full
degree in two different odd cycles, because then we can switch σ along these
cycles, and start by increasing in one of them and start by decreasing in the
other. Again this would make σ a convex combination of two other k-flows.

This argument works for cycles where some edges are used twice. Hence
in all the unicyclic components of H, there cannot be more than a total of
one vertex that does not have full degree in σ. In particular, the unicyclic
components can have at most one leaf altogether.

In the same way we can exclude the possibilities that there are two distinct
path components in H, or that there is a path and a unicyclic component
with a leaf. Therefore the structure of H must be as claimed.
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It is clear that at most one component of H can have a vertex of less
than full degree. Moreover, in a component of H where all vertices have full
degree, the non-integer coefficients must add to integers at every vertex, and
the only solution is a cycle of odd length where every edge has coefficient
1/2.

Proof of Proposition 6.1. We use Lemma 6.2 together with the assumption
that 2k is an integer. If H has no exceptional component, the statement
is clear. Suppose therefore that there is an exceptional component H1, and
notice that the edge coefficients in H1 must add to half an integer.

If H1 is a path or cycle, then the coefficients must alternate between x
and 1− x for some x ∈ (0, 1), and we must have x = 1/2.

It remains to consider the case that H1 is a cycle with an attached path.
The leaf (endpoint of the path) obviously does not have full degree in σ.
Hence by the previous argument, there cannot be another vertex that does
not have full degree.

This implies that for some x and y, the coefficients in the path alternate
between x and 1 − x, and the coefficients in the cycle alternate between y
and 1− y, with two y’s meeting at the point where the path is attached. It
follows that x+ 2y is an integer.

Moreover, the sum of the coefficients in H1 is either an integer + y or an
integer + x + y, depending on whether the path is of even or odd length.
Since y + (x + y) = x + 2y which is an integer, it follows that if one of
y and x + y is half-integral, then so is the other, so in fact both are half-
integral. It follows that y = 1/2 and from this that x = 1/2. This already
proves Proposition 6.1, but in fact we reach a contradiction since it shows
that x + 2y was not an integer after all. Hence when k is half-integral, the
exceptional component must be a path or a cycle.

Definition 6.3. We say that a flow is stable if all edges of non-integer coef-
ficient go between vertices of full degree.

Proposition 6.4. Suppose that the edge costs are generic. If 2k is an integer
and the minimum k-flow σ(k) is not stable, then

σ(k+1/2) = 2σ(k) − σ(k−1/2). (11)

Proof. Suppose that σ(k) has an edge e of coefficient 1/2 incident to a vertex
v which is not of full degree. Then e and v are in the exceptional component
H1, which is either a path or a cycle of odd length. If it is a path, then v
has to be an endpoint, and the other endpoint u does not have full degree
either (since it has non-integer degree). In any case, by alternating between
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increasing and decreasing the coefficients of the edges in H1 by 1/2 in the
two possible ways, we obtain a (k−1/2)-flow σ′ and a (k+ 1/2)-flow σ′′ such
that

σ =
σ′ + σ′′

2
.

Since the mean value of a (k − 1/2)-flow and a (k + 1/2)-flow is always a
k-flow, this actually shows that σ′ is the minimum (k − 1/2)-flow and σ′′ is
the minimum (k + 1/2)-flow. Consequently,

σ(k) =
σ(k−1/2) + σ(k+1/2)

2
,

which is equivalent to (11).

6.1 The Nesting Lemma

Finally we establish an analogue of the Nesting Lemma of [14].

Lemma 6.5. If the capacities and edge costs are fixed, then the degree δ
(k)
i of

a given vertex vi is a nondecreasing function of k. Moreover, for half-integral
k, if δ

(k)
i is an integer for every i, then δ(k+1/2) is obtained from δ(k) by either

increasing the value by 1/2 at two vertices, or increasing by 1 at one vertex.

If δ
(k)
i is not an integer for every i, then there are precisely two vertices for

which it is half-integral. In this case δ(k+1/2) is obtained from δ(k) by rounding
up to the nearest integer at these two vertices.

Proof. Suppose that 2k is not an integer and that σ is the minimum k-flow.
Then there must be an exceptional component H1 of H. Let k′ and k′′ be
obtained by rounding k down and up respectively to the nearest half-integers.
If H1 is a path or a cycle, then plainly σ is a convex combination of a k′-flow
σ′ and a k′′-flow σ′′ obtained by switching in the two ways.

The corresponding holds also when H1 is a cycle with an attached path.
In the notation of the proof of Proposition 6.1,σ′ and σ′′ are then obtained by
rounding y to the two nearest half-integer values, and setting x accordingly
either to 0 or 1, so that the only vertex that changes its degree is the leaf.

Again since every convex combination of flows is a flow, it follows that σ′

and σ′′ are minimal, and the statement of the lemma follows.

7 Expected value of the minimum flow

In this section we establish the connection between the random flow problem
and the two-dimensional urn process. Several of the ideas go back to the
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paper [14] by Buck, Chan and Robbins. In particular, Proposition 7.1 is a
generalization of their Lemma 5.

Here we consider the linear flow problem. Bounds on the expected cost
of integer flow problems are obtained in Section 10.

7.1 The oracle process

It follows from the results of Section 6 that it suffices to consider minimum
k-flows for half-integral k. From now on we therefore let k denote a number
such that 2k is an integer. We think of an “oracle” who knows all the edge
costs. At the beginning, these costs are unknown to us, but we get knowledge
about them by asking questions to the oracle. The trick is to choose the
questions so that we get knowledge about the location of the minimum flow
while at the same time retaining control of the joint distribution of all the
edge costs conditioning on the information we get.

We describe a generic step of the process, and we assume that for a
certain k the minimum k-flow σ(k) is stable. In particular this implies that
every vertex has integer degree. Moreover, we assume that the following
information is known to us:

O1. The costs of all edges for which both endpoints have full degree in σ(k).

O2. The edges of nonzero coefficient in σ(k), and their costs (by the stability
assumption, these edges have coefficient 1 unless they were included
under O1).

O3. The minimum cost of the remaining edges between vertices that do
not have full degree (but not the location of the edge that has this
minimum cost).

O4. For each vertex v of full degree, the minimum cost of the remaining
edges that connect v to a vertex that does not have full degree (but
again not the location of this edge).

Using this information only, we can essentially compute the minimum
(k + 1/2)-flow σ(k+1/2). We know from Section 6.1 that σ(k+1/2) is obtained
from σ(k) by an operation that we refer to as switching of an alternating
path that connects two vertices not of full degree, that is, the coefficients
of the edges in the path are alternatingly increased and decreased by 1/2.
The path can be degenerate in a number of ways, and in particular the two
endpoints need not be distinct. The information in O1–O4 allows us to
compute everything except the location of the endpoints of this path.
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By the memorylessness property of the Poisson process, the unknown
endpoints (whether one or two) are chosen independently among the vertices
not of full degree in σ(k), with probabilities proportional to the weights γi.
Notice that this holds also if the path consists of only one edge (and that
this edge can turn out to be a loop).

After “essentially” computing σ(k+1/2), we ask the oracle for the infor-
mation that will be needed according to (O1–O4) in the next round of the
process. We begin by asking for the locations of the endpoints of the alter-
nating path. There are essentially three possibilities.

1. If there are two distinct endpoints vi and vj, then their degrees increase

by 1/2, that is, δ
(k+1/2)
i = δ

(k)
i +1/2 and δ

(k+1/2)
j = δ

(k)
j +1/2. In this case

σ(k+1/2) is not stable, and by Proposition 6.4, σ(k+1) is determined by
(11) once σ(k+1/2) is known. The same two vertices will again increase

their degrees by 1/2, so that δ
(k+1)
i = δ

(k)
i + 1 and δ

(k+1)
j = δ

(k)
j + 1.

Since σ
(k+1)
e − σ(k)

e is an integer for every e, the flow σ(k+1) is stable.

2. Even if the alternating path starts and ends in two distinct edges, these
edges can turn out to go to the same vertex vi. Then δ

(k+1/2)
i = δ

(k)
i +1.

If vi gets full degree in σ(k+1/2), then σ(k+1/2) is stable. Otherwise
Proposition 6.4 applies again, and δ

(k+1)
i = δ

(k)
i + 2. In this case, σ(k+1)

is stable.

3. The third possibility is that the alternating path starts and ends with
the same edge. It is then clear that the endpoints of the path will
coincide. This endpoint vi is again chosen among the vertices not of
full degree, with probabilities proportional to the weights. In this case
δ
(k+1/2)
i = δ

(k)
i + 1, and σ(k+1/2) is stable.

7.2 The average degree of a vertex in the minimum
k-flow

In this section we show how to compute the expected degree of a given vertex
in the linear flow problem in the friendly model. Suppose that the weights
and capacities are given, and recall that for

0 ≤ k ≤ 1

2

∑
i

ci,

δ(k) is the degree vector for the minimum flow σ(k). Here we define another
random process which is also based on the weights and capacities of the
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vertices. This process was introduced (for the bipartite assignment problem)
by Buck, Chan, and Robbins [14], and we refer to it as the Buck-Chan-
Robbins urn process. It turns out that several quantities associated to the
random flow problem have counterparts in the urn process. Here we introduce
the one-dimensional version of the urn process and show how Eδ

(k)
i can be

interpreted in terms of this process.
An urn contains the vertices v1, . . . , vn. Vertices are drawn one at a

time from the urn, and each time, the vertex to be drawn is chosen with
probabilities proportional to the weights γ1, . . . , γn. The capacities c1, . . . , cn
serve as a replacement protocol : The vertices that are drawn from the urn
are put back into the urn as long as they have not yet been drawn a number
of times equal to their capacity. When vi has been drawn ci times, it is
removed.

The results in this section can be stated for a discrete time version of the
process, where vertices are just drawn one at a time, but it is convenient to
introduce an equivalent continuous time version, in which the vertices are
drawn at random times independently of each other. This is achieved by
letting the vertex vi be drawn from the urn at times determined by a rate γi
Poisson process (and independently of all other vertices). After ci events of
the Poisson process, vi is removed from the urn.

We record the outcome of the urn process by letting D
(h)
i be the number

of times that vi occurs among the first h times that a vertex is drawn from
the urn. Notice that the distribution of D

(h)
i depends on the weights as well

as on the capacities, but that it is independent of whether we regard time as
discrete or continuous. The crucial result is the following:

Proposition 7.1. For every integer h such that 0 ≤ h ≤
∑

i ci,

Eδ
(h/2)
i = ED

(h)
i .

Proof. It follows from the results of Section 6 that the only way a vertex can
have non-integer degree in the minimum (h/2)-flow is if for i 6= j, we have

δ
((h+1)/2)
i = δ

((h−1)/2)
i + 1, δ

((h+1)/2)
j = δ

((h−1)/2)
j + 1, and δ(h/2) = (δ((h−1)/2) +

δ((h+1)/2))/2. In this case, σ((h−1)/2) and σ((h+1)/2) are both stable. We define
a new random variable ε(h/2) which is equal to δ(h/2) except that in the case of
non-integer degrees above, we either choose ε

(h/2)
i = δ

(h/2)
i − 1/2 and ε

(h/2)
j =

δ
(h/2)
j + 1/2 or vice versa, by tossing a coin. Then ε(h/2) takes only integer

values. Whenever σ(h/2) is stable, ε(h/2) = δ(h/2), and for every h and i,
Eε

(h/2)
i = Eδ

(h/2)
i . We claim that ε(h/2) has the same distribution as D(h). In

the oracle process, suppose that we take into account only the answers given
by the oracle about which vertices that are endpoints of the alternating path.
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Suppose further that when two endpoints are to be revealed, a coin is flipped
to decide which one is revealed first. Then if we condition on ε

((h−1)/2)
i for

every i, then ε(h/2) is obtained by choosing j among the vertices for which
ε
((h−1)/2)
j < cj, with probabilities proportional to the weights, and then letting

ε
(h/2)
j = ε

((h−1)/2)
j + 1, and ε

(h/2)
i = ε

((h−1)/2)
i for i 6= j. It is clear from the

definition of the urn process that D(h) satisfies the same recursion. Hence
Eδ

(h/2)
i = Eε

(h/2)
i = ED

(h)
i .

Let T (h) be the h:th time at which a vertex is drawn in the continuous
time urn process.

Lemma 7.2.

lim
γn+1→0

E
[
δ
(h/2)
n+1 (c + 1n+1)

]
γn+1

= ET (h)(c).

Proof. By Proposition 7.1,

E
[
δ
(h/2)
n+1 (c + 1n+1)

]
= ED

(h)
n+1(c + 1n+1).

We therefore have to prove the identity

lim
γn+1→0

ED
(h)
n+1(c + 1n+1)

γn+1

= ET (h)(c). (12)

This identity concerns the urn process only. We have

ED
(h)
n+1(c + 1n+1) = P

[
t < T (h)(c)

]
,

where t is the time at which vn+1 is drawn for the first time. This is equal to

E
[
1− exp(−γn+1T

(h)(c))
]
. (13)

The left hand side of (12) is the (right) derivative of (13) as γn+1 → 0+. By
differentiating, this is equal to

T (h)(c) · exp
(
−γn+1T

(h)(c)
)
,

which tends to the limit T (h)(c) as γn+1 → 0+.
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Figure 4: The typical shape of the region Rh(c).

7.3 The two-dimensional urn process

Suppose that the number n of vertices, the weights γi and the capacities ci
are given. The results of Sections 5 and 7.2 lead to a “formula” for ECk.
This formula is expressed in terms of a two-dimensional version of the urn
process. In this version, there are two independent urn processes on the set
of vertices. The processes take place in independent directions that we label
the x- and z-axes, in a two-dimensional time plane. For each vertex vi, we
let Pi(x) be the number of times that the vertex vi has been drawn in the
first process up to time x. Similarly, Qi(z) is the number of times that vi has
been drawn in the second urn process up to time z. We define the rank of
the process for the single vertex vi at time (x, z) by

Ranki(x, z) = min(Pi(x), ci) + min(Pi(x) +Qi(z), ci).

The total rank of the process is defined by

Rank(x, z) =
n∑
i=1

Ranki(x, z).

We let Rh = Rh(c) be the region in the positive quadrant of the x-z-plane
for which Rank(x, z) < h, see Figure 4.

The following theorem gives an exact characterization of ECk for half-
integral k = h/2.

Theorem 7.3.
ECh/2 = E [area(Rh)] .
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Proof. This follows inductively from (10) and Proposition 7.1. Suppose by
induction that EC(h−1)/2(c − 1i) = E [area(Rh−1(c− 1i))] for 1 ≤ i ≤ n.
Then by (10) and Lemma 7.2,

ECh/2 =
1

γ1 + · · ·+ γn
· ET (h) + E [area(Rh−1(c− 1i))] . (14)

We have to show that the right hand side of (14) is equal to E [area(Rh)] .
In the first of the two urn processes (the x-process), let x0 be the first time
at which a vertex is drawn. The expected area of the part of Rh that lies in
the strip 0 < x < x0 is

ET (h)

γ1 + · · ·+ γn

which is the first term in the right hand side of (14).
The probability that vi is the first vertex to be drawn in the x-process is

γi
γ1 + · · ·+ γn

.

If this happens, then the expected area of the remaining part of Rh (for which
x > x0) is equal to

E [area(Rh−1(c− 1i))] ,

which is the second term of (14).

7.4 Example

We continue the discussion of the example of Section 4.3. By symmetry, we
can assume that in the z-process, the vertices are drawn in the order v1, v2,
v3. The region R3 consists of four or five “boxes”, depending on whether or
not the first vertex to be drawn in the x-process is v1, see Figure 5.

The expectated areas of the boxes are indicated in Figure 6. In this
example, the areas of the boxes are independent of whether or not they belong
to R3. Since the box of expected are 1/4 belongs to R3 with probability 1/3,
the expected cost of the minimum solution is equal to

1

9
+

1

6
+

1

3
+

1

6
+

1

3
· 1

4
=

31

36
.
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Figure 5: The urn process.

Figure 6: Expected areas of boxes.
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8 Estimates of the expected cost of the min-

imum flow

In this section, we obtain estimates of the expected area of Rh, and thereby
of ECk. We are going to apply these results to the random TSP with edge
costs satisfying (1). Therefore we assume that each vertex has weight 1 and
capacity at most 2. In principle, Theorem 8.1 below is valid for an arbitrary
upper bound on the capacities, but the implied constant will depend on this
upper bound.

8.1 The area of the region Rh

Suppose that the positive integers n and h = 2k are given. For i = 1, 2, let
ni be the number of vertices of capacity at least i. We assume that n = n1,
in other words, there is no vertex of zero capacity. We wish to estimate the
expected area of the random region R = Rh(n1, n2) given by the points (x, z)
for which

Rank(x, z) < h.

Recall that the rank is defined by

Rank(x, z) =
n∑
i=1

Ranki(x, z),

where Ranki(x, z) = min(Pi(x), ci)+min(Pi(x)+Qi(z), ci). We must assume
that h ≤ n1 + n2, since otherwise the flow problem has no feasible solution,
and the region R has infinite area.

We let R? = R?
h(n1, n2) be the non-random region in the xz-plane given

by
E (Rank(x, z)) ≤ h.

Our goal is to obtain the following upper bound on the difference between
the area of R? and the expected area of R:

Theorem 8.1. If for every i, γi = 1 and ci ≤ 2, then

|E (area(R))− area(R?)| = O

(
(log n)3/2

n1/2

)
.

This section is mainly devoted to the proof of Theorem 8.1. The following
lemma shows that when estimating the expected area of R, it suffices to
consider the area of R ∩B for a sufficiently large rectangular box B.
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Lemma 8.2. Let x, y > 0 and let B be the rectangular box with sides [0, x]
and [0, y]. Then

E (area(R ∩B)) ≤ E (area(R)) ≤ E (area(R ∩B))

P (R ⊆ B)
.

Proof. The first inequality is trivial. To prove the second inequality, let B′

be the strip [0, x]× [0,∞]. We have

E [area(R)] ≤ E [area(R ∩B′)] + P ((x, 0) ∈ R) ·E [area(R\B′)|(x, 0) ∈ R]

≤ E [area(R ∩B′)] + P ((x, 0) ∈ R) · E [area(R)] ,

which can be rearranged as

E [area(R)] ≤ E [area(R ∩B′)]
P ((x, 0) /∈ R)

.

A similar argument shows that

E [area(R ∩B′)] ≤ E [area(R ∩B)]

P ((0, y) /∈ R)
.

Consequently,

E [area(R)] ≤ E [area(R ∩B)]

P ((x, 0) /∈ R) · P ((0, y) /∈ R)
=
E (area(R ∩B))

P (R ⊆ B)
.

In the following, we specifically choose B to be the box with sides [0, 2]
and [0, 2 log n]. To motivate this choice, we show that with high probability,
R ⊆ B. We shall use the following Chernoff-type bound, whose proof we
omit.

Lemma 8.3. Suppose that X = X1 + · · · + Xn is a sum of n independent
variables that take the values 0 or 1. Let δ > 0. Then

P (X − EX ≥ δ) ≤ e−δ
2/2n.

For nonnegative x and z and l = 1, 2, 3, 4, let θl(x, z) be the number of i
for which Ranki(x, z) ≥ l. Then

Rank(x, z) = θ1(x, z) + θ2(x, z) + θ3(x, z) + θ4(x, z).

The point is that each θl is a sum of n independent 0-1-variables.
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Lemma 8.4.
P ((2, 0) ∈ B) ≤ 2e−n/512.

Proof. We have h ≤
∑

i ci, and therefore

P ((2, 0) ∈ B) = P (Rank(2, 0) < h) ≤ P

(
Rank(2, 0) <

∑
i

ci

)
.

Since Qi(0) = 0,

Rank(2, 0) = 2
n∑
i=1

min(Pi(2), ci) = 2(θ2(2, 0) + θ4(2, 0)).

We claim that

E [min(Pi(2), ci)] ≥ (1− e−1)ci >
5

8
ci.

This is seen by dividing the interval [0, 2] into ci subintervals of length at
least 1, and then counting the intervals that contain some event where vi is
drawn in the urn process. Consequently

E (Rank(2, 0)) ≥ 5

4
n ≥ h+

n

4
. (15)

If θ2(2, 0) + θ4(2, 0) < h/2, then either θ2(2, 0) or θ4(2, 0) must be smaller
by at least n/16 than their expected value. Since each θl(2, 0) is a sum of n
independent 0-1-variables, Lemma 8.3 shows that

P [θ2(2, 0) + θ4(2, 0) < h/2] ≤ 2e−n/512.

Lemma 8.5.

P ((0, 2 log n) ∈ R) = O

(
log n

n

)
.

Proof. The probability that there is some vertex that is not drawn at least
2 times up to time z is at most

n · (1 + z)e−z,

and if z = 2 log n then this is equal to

1 + 2 log n

n
.
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Lemmas 8.2, 8.4 and 8.5 together imply the following:

Corollary 8.6.

E (area(R)) = E (area(R ∩B)) ·
(

1 +O

(
log n

n

))
= E (area(R ∩B)) +O

(
(log n)2

n

)
.

The last equation comes from the fact that area(R ∩ B) ≤ area(B) =
O(log n).

Lemma 8.7. For nonnegative x and z, and ε > 0, the probability that
Rank(x, z) deviates by at least εn from its expected value is at most

4e−ε
2n/32.

Proof. If Rank(x, z) deviates by at least εn from its expected value, then one
of θl(x, z) for l = 1, . . . , 4 must deviate by at least εn/4 from its expected
value. Since each θl(x, z) is a sum of n independent 0-1-variables, it follows
from Lemma 8.3 that the probability for such a deviation is at most 4e−ε

2n/32.

We make the specific choice of ε so that

e−ε
2n/32 =

1

n2
,

in other words we put

ε =
8(log n)1/2

n1/2
.

We divide B into three regions B1, B2 and B3 according to whether (for
a point (x, z)), E (Rank(x, z)) is smaller than h − εn, between h − εn and
h+ εn, or greater than h+ εn, see Figure 7.

Lemma 8.8.

area(B2) = O

(
(log n)3/2

n1/2

)
.

Proof. We show that at a given height z, the expected rank cannot stay
between h− εn and h+ εn for too long. We have

d

dx
E (Rank(x, z)) ≥ d

dx

n∑
i=1

Emin(Pi(x), ci).
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Figure 7: The box B and the regions B1, B2 and B3.

For each i,

d

dx
Emin(Pi(x), ci) =

{
e−x, if ci = 1,

(1 + x)e−x, if ci = 2,

is decreasing in x, so that the minimum value occurs for x = 2 and ci = 1.
Therefore inside B we have

d

dx
Emin(Pi(x), ci) ≥ e−2, (16)

and
d

dx
E (Rank(x, z)) ≥ ne−2.

It follows that for a fixed z, the width of B2 at height z is at most

2nε

ne−2
= 2e2ε =

16e2(log n)1/2

n1/2
.

Since the height of B is 2 log n, the statement follows.

Lemma 8.9.

E [area(R ∩B)] = area(R? ∩B) +O

(
(log n)3/2

n1/2

)
. (17)
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Proof. In B1, the probability that a point belongs to R is at least 1− 4/n2,
while in B3 this probability is at most 4/n2. We conclude that the expected
area of R ∩B deviates from the area of R? ∩B by at most

area(B2) +
4

n2
· area(B) = O

(
(log n)3/2

n1/2

)
+O

(
log n

n2

)
= O

(
(log n)3/2

n1/2

)
. (18)

Lemma 8.10.

area(R?\B) = O

(
log n

n2

)
.

Proof. It follows from (15) that R? lies entirely in the region x < 2. For a
single vertex vi, the remaining capacity at time z, that is, ci−Qi(z), is larger
when the capacity is larger. To prove the lemma, we may therefore assume
that ci = 2 for every i.

The average rank E (Ranki(0, z)) for a single vertex at time z is∫ z

0

(1 + t) · e−t dt,

since the rank increases the first and the second time the vertex is drawn.
Therefore the expected remaining capacity at time z is

E [ci −Qi(z)] =

∫ ∞
z

(1 + t) · e−t dt = (2 + z) e−z.

By (16), the area of R?\B is at most

e2
∫ ∞

2 logn

(2 + z)e−z dz = e2 · 3 + 2 log n

n2
. (19)

Proof of Theorem 8.1. We have

|E (area(R))− area(R?)| ≤
|E (area(R))− area(R ∩B)|+ |E (area(R ∩B))− area(R? ∩B)|

+ |E (area(R? ∩B))− area(R?)| .

From Corollary 8.6 and Lemmas 8.9 and 8.10 it follows that this is

O

(
(log n)2

n

)
+O

(
(log n)3/2

n1/2

)
+O

(
log n

n2

)
= O

(
(log n)3/2

n1/2

)
.

27



8.2 Asymptotic estimates

For problems like relaxed matching and 2-factor that scale with n under
fixed local constraints, the region R? is independent of n. Therefore R? is a
natural limit of Rn, and by the results of Section 8.1, the expected cost of
the optimization problem converges to the area of R?.

For the relaxed matching problem, we obtain ECn/2 → π2/12, but this
can also be established by an explicit calculation, as is shown by (57) in
Section 13. Another consequence is that the expected cost of the relaxed
2-factor problem converges to the number L? defined in the introduction.

Theorem 8.11. If for every i, γi = 1 and ci = 2, then the area of the region
R? is the number L? defined by (2) and (3). Hence if Cn is the cost of the
minimum relaxed 2-factor, then as n→∞, ECn → L?.

Proof. Let x and z be nonnegative real numbers. The region R? is defined
by the inequality

E [min(Pi(x), 2) + min(Pi(x) +Qi(z), 2)] ≤ 2. (20)

Pi(x) and Qi(z) are the number of events in two independent rate 1 Poisson
processes. This means that Pi(x) is 0, 1 or at least 2 with probabilities e−x,
xe−x and 1 − e−x − xe−x respectively, and that the distribution of Qi(z) is
given in the same way by z.

Since the two Poisson processes are independent, Pi(x) + Qi(z) has the
same distribution as Qi(x + z). By the variable substitution y = x + z and
linearity of expectation, it follows that (20) is equivalent to

Emin(Pi(x), 2) + Emin(Qi(y), 2) ≤ 2.

Here

Emin(Pi(x), 2) = 0 · e−x + 1 · xe−x + 2 · (1− e−x − xe−x) = 2− 2e−x − xe−x,

and similarly for Qi(y). Therefore (20) can be written

4− 2e−x − xe−x − 2e−y − ye−y ≤ 2.

Equality holds when (
1 +

x

2

)
e−x +

(
1 +

y

2

)
e−y = 1, (21)

and the region R? is therefore defined by this equation together with the
boundaries x = 0 and z = 0, the latter equivalent to x = y. The change of
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variables from (x, z) to (x, y) is area preserving. Since in the xy-plane, R?

lies above the line x = y, its area is by symmetry half of the total area in
the positive quadrant of the x-y-plane under the curve given by (21). This
means that the area of R? is equal to the right hand side of (2).

Since the relaxed 2-factor problem is a relaxation of the TSP, Theo-
rem 8.11 already provides a lower bound on the expected cost of the TSP as a
first step towards proving Theorem 1.1. Other problems for which the region
R? is essentially independent of n include incomplete matching and 2-factor
problems, if k scales with n like pn for some constant p. A calculation similar
to the one above shows that for matching, the expected cost converges to the
area under the curve

e−x + e−(x+z) = 2− 2p, 0 ≤ p ≤ 1/2,

while for the incomplete 2-factor problem, the region is given by(
1 +

x

2

)
e−x +

(
1 +

x+ z

2

)
e−(x+z) = 2− p, 0 ≤ p ≤ 1. (22)

Notice that for the incomplete problems, the limit region is bounded.

Proposition 8.12. The area of the region given by (22) is continuous as a
function of p on the interval 0 ≤ p ≤ 1.

The area jumps to infinity for p > 1, but the fact that it tends to L? as
p approaches 1 from the left has the following consequence for the cost of an
incomplete 2-factor:

Corollary 8.13. Consider the incomplete relaxed 2-factor problem. If k < n
but k scales with n in such a way that k/n→ 1 as n→∞, then

ECk → L?.

9 Concentration

In this section we derive a concentration inequality for flow problems by a
straightforward application of the Talagrand inequality [42]. As in Section 8,
we assume that for every i, γi = 1 and ci ≤ 2. We consider the linear flow
problem. In principle, Talagrand’s method applies also to integer flow prob-
lems, but they lead to some additional technical difficulties. A consequence
of the results of Section 10 is that the concentration inequality for linear
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problems partly carries over to integer problems, and we thereby avoid these
difficulties.

We are primarily interested in showing that the variance of the cost of
certain flow problems tends to zero as n → ∞. Throughout this section,
A1, A2, A3, . . . will denote positive constants for which numerical values could
in principle be substituted, but whose actual values are not important.

Theorem 9.1. If for every i, γi = 1 and ci ≤ 2, then for the linear flow
problem, and for every k that allows a solution,

var(Ck) = O

(
(log n)5

n

)
. (23)

By using the sharpest bounds available, one could probably obtain a
O(log2 n/n) bound, but we try to keep the argument simple without bother-
ing about the exponent of the logarithm. We conjecture that the right hand
side of (23) can in reality be replaced by O(1/n).

To apply Talagrand’s method, we need a bound on the probability that
the minimum flow uses some extremely expensive edge. Let Xmax be the
cost of the most expensive edge that has nonzero coefficient in σ(k). Our first
objective is to prove the following:

Proposition 9.2. If both n and z are sufficiently large, then

P

(
Xmax >

z(log n)2

n

)
≤ n−A1·z.

The expectation of Xmax is at most 2E
(
Ck − Ck−1/2

)
, which is bounded

by O(log n/n), but we need a stronger bound on large deviations of Xmax

than what follows from the expectation only.
To establish Proposition 9.2, we need some preliminary results. For z > 0,

let Dz ⊆ E be the set of edges of cost at most z log n/n. When necessary,
we shall assume that z is sufficiently large. We begin by showing that with
high probability, Dz has a certain expander property.

For S ⊆ V , let S ′ denote the set of Dz-neighbors of S, that is, the set of
vertices that are connected to S by an edge in Dz.

Lemma 9.3. Let S be a set of vertices chosen independently of the edge
costs. If

|S| ≤ 3n

z log n
, (24)

then
|S ′| ≥ 0.3z log n · |S| , (25)

with probability at least 1− n−A2·z·|S|.
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Here the numbers 3 and 0.3 are chosen sufficiently large that 1 − e−3 >
3 · 0.3 > 4/5. It will become clear later why this is necessary. If the upper
bound on ci was larger, then 3 and 0.3 would have to be replaced by larger
numbers.

Proof of Lemma 9.3. Let s = |S|. For each vertex v we have

P (v ∈ S ′) = 1− P (v /∈ S ′) = 1− exp

(
−z log n

n
· s
)
.

From (24) it follows that sz log n/n ≤ 3, and therefore

P (v ∈ S ′) ≥ 1− e−3

3
· s · z log n

n
.

Let p = P (v ∈ S ′). We have, for every λ > 0,

E [exp (−λ |S ′|)] = (pe−λ + 1− p)n ≤ exp
[
−np(1− e−λ)

]
.

By the Chebyshev inequality, and using the fact that 0.3 ·3/(1−e−3) < 0.95,
we find that

P (|S ′| < 0.3sz log n) ≤ P

(
|S ′| < 0.3 · 3

1− e−3
· pn
)

≤ P (|S ′| < 0.95 · pn) = P (exp (−λ |S ′|) > exp(−0.95λpn))

≤ exp(−np(1− e−λ))
exp (−0.95λpn)

= exp
(
−pn(1− e−λ − 0.95λ)

)
≤ exp

(
−1− e−3

3
sz log n(1− e−λ − 0.95λ)

)
.

We now put λ = 1− 0.95 = 0.05. This gives

1− e−3

3
(1− e−λ − 0.95λ) > 0.0004.

Hence Lemma 9.3 holds with A2 = 0.0004.

Lemma 9.4. If z is sufficiently large, then with probability at least 1−n−A3·z,
every set S ⊆ V of vertices satisfies

|S ′| ≥ min (0.9n, 0.3z log n · |S|) . (26)
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Proof. It is sufficient to consider only sets of cardinality at most |S| ≤
3n/(z log n), and to show that with the desired probability, each of these
sets satisfies (25). For larger sets, we can choose a subset of size 3n/(z log n),
rounded down. The number of sets S of size s is at most ns. Therefore the
probability that there is some set S of size s that does not satisfy (25) is at
most

ns · exp (−A2sz log n) = exp (−A2sz log n+ s log n) ≤ exp (−A4sz log n) ,

if z is sufficiently large. Moreover,

∞∑
s=1

exp (−A4sz log n) ≤ exp (−A3z log n) = n−A3·z.

Proof of Proposition 9.2. Fix n and z. Since we allow a failure probability
of n−A1·z, we may assume that Dz has the desired expander property, that
is, that every set S of vertices satisfies (26). Under this assumption we want
to show that the maximum edge cost Xmax in the minimum k-flow is at most
z(log n)2/n.

Let σ be the minimum k-flow. All coefficients of σ are 0, 1/2 or 1. Since
ci ≤ 2, this implies that each vertex is incident to at most four edges of
nonzero coefficient in σ (actually at most three by the results of Section 6,
but any uniform bound will do).

Let e be an edge of nonzero coefficient in σ and let vi and vj be the
endpoints of e (we do not assume that i 6= j). We want to construct a
sequence of vertices x0, y0, x1, y1, . . . , xm, ym which constitutes an alternating
path with respect to σ and Dz, and such that x0 and ym either belong to the
set {vi, vj} or do not have full degree in σ. We require that (xi, yi) ∈ Dz for
0 ≤ i ≤ m, and that (xi, yi+1) has nonzero coefficient in σ for 0 ≤ i < m.

We let S0 ⊆ V consist of vi, vj and all vertices that do not have full degree
in σ. Then let Si and Ti be the sets of vertices that can be reached by a path
as the one above of length at most i. More precisely, supposing that Si has
been defined, let Ti be the set of v ∈ V such that for some u ∈ Si, there is
an edge between u and v that belongs to Dz. Then supposing that Ti has
been defined, let Si+1 be the set of v ∈ V such that either v ∈ S0 or there is
a u ∈ Ti and an edge between u and v that has nonzero coefficient in σ.

Suppose that Ti contains only vertices of full degree in σ. Then each
u ∈ Ti is incident to at least one edge in σ. Since on the other hand each
vertex is incident to at most 4 edges in σ, we have

|Si+1| ≥
1

4
|Ti| .
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A consequence of this is that if

|Ti| >
4

5
n,

then Ti intersects Si+1, and we can construct a path as above with m = 2i+1.
In view of (26), this will clearly happen for some m = O(log n).

Even if there are repetitions of the same vertex or edge in this sequence,
there will be an ε > 0 such that by “switching” (increasing and decreasing)
the coefficients of the edges in the sequence by ε, we obtain a new flow. In
particular, if the edge e has cost larger than the sum of the costs of the m+1
edges in Dz, then σ is not the minimum k-flow. If such a sequence can be
found for every flow and every edge e, then

Xmax ≤ (m+ 1)z log n/n = O

(
z(log n)2

n

)
.

This shows that there are constants A5 and A6 such that

P

(
Xmax >

A5z(log n)2

n

)
≤ n−A6·z.

By rescaling, this is clearly equivalent to Proposition 9.2.

We now turn to the proof of Theorem 9.1. We quote Theorem 8.1.1 of
[42], or rather the special case used in Section 10 on the assignment problem.
Let v > 0 and let Y1, . . . , Ym be independent random variables with arbitrary
distribution on the interval [0, v]. Let

Z = min
λ∈F

∑
i≤m

λiYi,

where F is a family of vectors in Rm (in our case the λi’s are nonnegative,
but Talagrand’s theorem holds without this assumption). Let

ρ = max
λ∈F

∑
i≤m

λ2
i .

Moreover, let M be a median for the random variable Z.

Theorem 9.5 (Talagrand 1995). For every w > 0,

P (|Z −M | ≥ w) ≤ 4 exp

(
− w2

4ρv2

)
.
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When we apply this theorem to the random k-flow problem, the λi’s
will be at most 2, where the coefficients that are equal to 2 come from the
possibility of using multiple edges or loops. Since the capacities are at most
2, a flow contains at most n edges. Although the coefficients λi cannot all
be equal to 2, for simplicity we use the bound ρ ≤ 4n.

If we take v = 1, the resulting bound will be too weak to be interest-
ing. We therefore modify the problem by replacing the edge costs Y by
min(Y, ζ(log n)2/n). Let Mζ be a median of the cost Zζ in the modified
problem. It follows from Theorem 9.5 with v = ζ(log n)2/n that for all
w > 0,

P (|Zζ −Mζ | ≥ w) ≤ 4 exp

(
− w2n

16ζ2(log n)4

)
,

and consequently by Proposition 9.2, for all sufficiently large ζ,

P (|Z −Mζ | ≥ w) ≤ 4 exp

(
− w2n

16ζ2(log n)4

)
+ n−A7ζ .

By taking

ζ =
w2/3n1/3

(log n)5/3
,

we obtain

P (|Z −Mζ | ≥ w) ≤ 4 exp

(
− w2/3n1/3

16(log n)2/3

)
+ exp

(
−A7w

2/3n1/3

(log n)2/3

)
≤ 5 exp

(
−A8

w2/3n1/3

(log n)2/3

)
.

The requirement that ζ should be sufficiently large is equivalent to assum-
ing that w is at least a certain constant times n−1/2(log n)5/2. We therefore
introduce yet another parameter t and put

w =
t(log n)5/2

n1/2
.

We then conclude that for all sufficiently large t,

P

(
|Z −Mζ | ≥

t(log n)5/2

n1/2

)
≤ 5 exp

(
−A8t

2/3 log n
)
. (27)

A small remaining problem is that Mζ depends on t. Equation (27) therefore
only says that for every t, there is some interval of length

2t(log n)5/2

n1/2
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that contains Z with probability at least

1− 5 exp(−A8t
2/3 log n).

Since t has to be larger than some absolute constant, we can assume that
5 exp(−A8t

2/3 log n) < 1/2. Then the interval must also contain the median
M of Z. We therefore conclude that for sufficiently large t,

P

(
|Z −M | ≥ 2t(log n)5/2

n1/2

)
≤ 5 exp

(
−A8t

2/3 log n
)
.

Here it is clear that the right hand side tends to zero rapidly enough
to give a O((log n)5/2/n1/2) bound on the standard deviation of Z. This
completes the proof of Theorem 9.1.

10 Integer flow problems

In this section we treat the integer flow problem in the friendly model. Unfor-
tunately we are unable to obtain exact formulas for the expected cost of the
solution, but we establish bounds that are good enough for determining limit
costs as n → ∞. The expected cost of the linear flow problem has already
been established in Theorem 7.3, and this clearly gives a lower bound on the
cost of the corresponding integer flow problem. Letting C̃k here denote the
cost of the integer flow problem, we have, in terms of the two-dimensional
urn process, the lower bound

EC̃k ≥ E [area(R2k)] .

Therefore it only remains to obtain a reasonably good upper bound. We
do this by bounding the probability that the extra vertex vn+1 participates
in the minimum flow with respect to c + 1n+1. In order to apply the same
methods as for the linear problem, we need to establish a nesting lemma
valid for integer flow problems. This is easier since a solution is just a set of
edges and all vertex degrees are integers.

Lemma 10.1. Consider the integer flow problem. For every k for which
there exists a (k + 1)-flow, each vertex is incident to at least as many edges

in σ(k+1) as in σ(k). In other words, δ
(k)
i ≤ δ

(k+1)
i .

Proof. Let H = σ(k)4σ(k+1) be the symmetric difference of the minimum k-
and (k + 1)-flows, that is, the set of edges that belong to one of them but
not to the other. We decompose H into paths and cycles in the following
way: At each vertex v, if v has full degree in one of the two flows σ(k) and
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σ(k+1), then we pair up the edges (incident to v) of the other flow with these
edges. Thus H is decomposed into paths and cycles in such a way that the
symmetric difference of any of σ(k) and σ(k+1) with the union of a number of
such paths and cycles is a flow.

By minimality and genericity, no such component can be balanced in the
sense of containing equally many edges from σ(k) as from σ(k+1), since this
would imply that either σ(k) or σ(k+1) could be improved by switching. For
the same reason, there cannot be two components of H that together are
balanced. The only remaining possibility is that H is a single path whose
ends both belong to σ(k+1), and this proves the statement.

When we derive the upper bound, we modify the protocol for the oracle
process.

10.1 The protocol

As in Section 7.1, we ask questions to the oracle in order to successively find
the minimum r-flow for r = 1, . . . , k. Recall that σ(r) denotes the minimum
r-flow, and that we can now regard σ(r) as a set of edges. We let Γr be the
set of vertices of full degree in σ(r). At each stage (for r = 0, . . . , k − 1), the
following information is available to us:

O1′. The edges of σ(r) and their costs.

O2′. The costs of all edges between vertices in Γr. (Strictly speaking, this
includes infinitely many edges, but only finitely many are relevant in
each problem instance.)

O3′. The costs of a further set of edges arising from collisions (see below).
These are edges either from a vertex in Γr to a vertex of remaining
capacity 1 (whose degree in σ(r) is one less than its capacity), or a loop
at a vertex of remaining capacity 1. Each such edge is the cheapest
edge not in σ(r) from its endpoint in Γr to a vertex outside Γr. In
particular, from each vertex in Γr there is at most one such edge. If it
is a loop, it must be the cheapest edge connecting vertices outside Γr.

O4′. For each v ∈ Γr, the cost of the cheapest edge from v other than the
edges already specified in O1′–O3′ (in particular, this edge goes to a
vertex outside Γr). Also notice that since r < k, by assumption there
must be at least one vertex outside Γr, otherwise a k-flow would be
impossible for the given capacities.

36



O5′. The cost of the cheapest edge not included under O1′ or O3′ between
two vertices not in Γr. In other words, the cost of the cheapest edge
that does not fall under any of O1′–O4′.

Notice that in O4′ and O5′, it is only the costs that are known, not the
locations of the edges of these costs.

Just as in Section 7 we now compute, using this information, the minimum
cost of an (r+1)-flow under the assumption that there is no collision between
unknown edges. By Lemma 10.1, σ(r+1) is obtained from σ(r) by switching an
alternating path starting and ending at vertices (possibly the same) outside
Γr.

If one or two of the ends of the alternating path fall under O4′ or O5′,
so that the endpoints are unknown, then we ask the oracle to reveal these
endpoints to us. The only reason our proposed flow may not be the minimum
(r + 1)-flow is that these two endpoints may be the same, and this vertex
may already have degree in σ(r) only one less than its capacity.

If the oracle tells us that this is the case, then the ends of the alternating
path are “colliding” edges that now fall under O3′ above. (The colliding
edges must then be the minimum edges not in σ(r) from their endpoints in
Γr to vertices outside Γr.) We further ask the oracle about the minimum
cost of the remaining edges from these two vertices (if the collision consisted
in a loop, we ask for the minimum cost of the remaining edges not in σ(r)

connecting vertices not in Γr). Then we compute a new proposed minimum
(r+ 1)-flow, and repeat until the oracle tells us that no collision takes place.

10.2 Estimate of the probability that vn+1 participates

When the oracle tells us that the proposed (r + 1)-flow is valid, there are
essentially three possibilities:

1. The alternating path ends in two unknown vertices. Then we are condi-
tioning on the event that there is no collision, that is, the two endpoints
are chosen independently according to weights and conditioning on not
both of them being equal to one and the same vertex of remaining ca-
pacity 1. Notice that this includes the case that σ(r+1) is obtained from
σ(r) by adding the cheapest edge not in σ(r) between two vertices not in
Γr, and that if the cheapest such edge is a loop of remaining capacity
1, this is treated like an ordinary collision.

2. The alternating path has one end consisting of an edge whose cost is
known according to O3′. Then we are conditioning on the event that
the other endpoint is another vertex.
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3. The alternating path ends in two known edges. These edges must then
end in vertices having remaining capacity 1.

Suppose that there is an adversary who can choose between these three
options. The adversary tries to maximize the probability of vn+1 participating
in the minimum flow. This can again be modeled by an urn process. Vertices
are drawn from an urn two at a time, but with replacement. When some
vertices reach remaining capacity 1, that is, they have been drawn a number
of times equal to their capacity minus 1, the adversary can choose between
three options every time a pair of vertices is drawn:

1. To condition on the event that the two vertices that are drawn are not
one and the same vertex of remaining capacity 1.

2. To choose a vertex (other than vn+1) of remaining capacity 1 and con-
dition on the other vertex in the pair being different from this one.

3. To choose two distinct vertices (other than vn+1) of remaining capac-
ity 1.

The procedure of drawing two vertices is repeated k times. The extra
vertex vn+1 is thought of as having infinitesimal weight γ = γn+1. We can
therefore disregard the possibility that vn+1 is drawn twice.

We derive an upper bound on the normalized probability of drawing vn+1,
which is valid under the conditions we need in our study of the traveling
salesman problem. With similar methods it is certainly possible to derive
bounds valid under more general conditions.

Suppose therefore that all vertices except vn+1 have weight 1. Further
let ni denote the number of vertices of capacity at least i, and suppose that
there is no vertex of capacity 3 or more. In other words, there are n1 vertices
of capacity 1 or 2, of which n2 have capacity 2.

An upper bound on the probability of drawing vn+1 can be computed as
follows: Inductively define I(k, n1, n2) for integers 0 ≤ n2 ≤ n1 and 0 ≤ k ≤
(n1 + n2)/2 by I(0, n1, n2) = 0, and for k > 0,

I(k, n1, n2) =

max
[ 1

n2
1 − n1 + n2

(2n1 + (n1 − n2)(n1 − n2 − 1)I(k − 1, n1 − 2, n2)

+ (2n1 − 2n2 + 1)n2I(k− 1, n1 − 1, n2 − 1) + n2(n2 − 1)I(k− 1, n1, n2 − 2)),

1

n1 − 1
(1 + (n1 − n2 − 1)I(k − 1, n1 − 2, n2) + n2I(k − 1, n1 − 1, n2 − 1)),

I(k − 1, n1 − 2, n2)
]

(28)
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Here the first expression in the right hand side corresponds to option 1.
There are n2

1 ways of choosing two vertices independently, and n1 − n2 of
them consist in choosing the same vertex of capacity 1 twice. The normalized
probability of choosing vn+1 as one of the two vertices is 2n1, and if this does
not happen, the remaining terms give (an upper bound on) the probability
of choosing vn+1 at a later stage. Similarly the second and third arguments
correspond to options 2 and 3.

The second argument should be taken into account only if n1 ≥ n2 + 1,
and the third argument only if n1 ≥ n2 + 2. Under these conditions the right
hand side of (28) makes sense, because terms that are not well-defined have
coefficient zero. For instance, the term I(k−1, n1, n2−2) is well-defined only
if n2 ≥ 2, but if n2 < 2 then the coefficient n2(n2 − 1) is zero.

Hence the normalized probability that vn+1 participates in the minimum
integer k-flow is at most I(k, n1, n2). This is compared with the recursive
equation for the expected time, here denoted J(2k, n1, n2), until 2k vertices
have been drawn in the original urn process. We have

J(2k, n1, n2)

=
1

n1

(1 + (n1 − n2)J(2k − 1, n1 − 1, n2) + n2J(2k − 1, n1, n2 − 1)) . (29)

If we recursively expand equation (29) one more step we get

J(2k, n1, n2) =
1

n1

+
n1 − n2

n1(n1 − 1)
+
n2

n2
1

+
(n1 − n2)(n1 − n2 − 1)

n1(n1 − 1)
J(2k − 2, n1 − 2, n2)

+

(
n2(n1 − n2)

n1(n1 − 1)
+
n2(n1 − n2 + 1)

n2
1

)
J(2k − 2, n1 − 1, n2 − 1)

+
n2(n2 − 1)

n2
1

J(2k − 2, n1, n2 − 2). (30)

We wish to establish an upper bound on the quantity

∆(k, n1, n2) = I(k, n1, n2)− J(2k, n1, n2).

Proposition 10.2.

∆(k, n1, n2) ≤
2

n1 + n2 − 2k + 1
.
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To prove this, we show inductively that

∆(k, n1, n2) ≤
2

n1 + n2 − 2k + 1
− 2

n1 + n2 + 1
. (31)

If k = 0, which is the base of the induction, then ∆(k, n1, n2) = 0, and so is
the right hand side of (31). For the inductive step, we need two lemmas:

Lemma 10.3. For all k > 0 and n1 > n2, we have

J(k − 1, n1 − 1, n2) ≤ J(k, n1, n2).

Proof. The right hand side can be interpreted as the expected time until k
vertices have been drawn given the capacities that correspond to (n1, n2),
conditioning on the event that a certain vertex of capacity 1 is drawn at time
zero. The fact that a certain vertex is drawn at time zero cannot increase
the time until k vertices have been drawn.

Lemma 10.4.
J(k, n1 − 1, n2) ≥ J(k, n1, n2 − 1).

Proof. We prove this inductively using equation (29). J(k − 1, n1 − 1, n2) is
equal to 1/(n1 − 1) plus a convex combination of J(k − 1, n1 − 2, n2) and
J(k − 1, n1 − 1, n2 − 1), while J(k − 1, n1, n2 − 1) is 1/n1 plus a convex
combination of J(k−1, n1−1, n2−1) and J(k−1, n1, n2−2). If any of these
terms is undefined because n1−2 < n2 or n2−2 < 0, then the corresponding
coefficient will be zero and the argument still holds. By induction,

J(k − 1, n1 − 2, n2) ≥ J(k − 1, n1 − 1, n2 − 1) ≥ J(k − 1, n1, n2 − 2).

Hence

J(k, n1 − 1, n2) ≥
1

n1 − 1
+ J(k − 1, n1 − 1, n2)

≥ 1

n1

+ J(k − 1, n1 − 1, n2) ≥ J(k, n1, n2 − 1).

The induction step of the proof of Proposition 10.2 has three cases de-
pending on which of the three values in the right hand side of (28) is the
largest.
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Case 1. Suppose first that

I(k, n1, n2) =

2n1

n2
1 − n1 + n2

+
(n1 − n2)(n1 − n2 − 1)

n2
1 − n1 + n2

I(k − 1, n1 − 2, n2)

+
(2n1 − 2n2 + 1)n2

n2
1 − n1 + n2

I(k − 1, n1 − 1, n2 − 1)

+
n2(n2 − 1)

n2
1 − n1 + n2

I(k − 1, n1, n2 − 2). (32)

Comparing the first terms of the right hand sides of (30) and (32), we find
that

2n1

n2
1 − n1 + n2

−
(

1

n1

+
n1 − n2

n1(n1 − 1)
+
n2

n2
1

)
=

n2
1(n1 − 1)− n2

1n2 + n2
2

(n2
1 − n1 + n2)n2

1(n1 − 1)
≤ n2

1(n1 − 1)

(n2
1 − n1 + n2)n2

1(n1 − 1)

=
1

n2
1 − n1 + n2

.

Since
(n1 − n2)(n1 − n2 − 1)

n2
1 − n1 + n2

≤ (n1 − n2)(n1 − n2 − 1)

n1(n1 − 1)

and
n2(n2 − 1)

n2
1 − n1 + n2

≥ n2(n2 − 1)

n2
1

,

it follows from Lemma 10.4 that

J(2k, n1, n2) ≥
1

n1

+
n1 − n2

n1(n1 − 1)
+
n2

n2
1

+
(n1 − n2)(n1 − n2 − 1)

n2
1 − n1 + n2

J(2k − 2, n1 − 2, n2)

+
(2n1 − 2n2 + 1)n2

n2
1 − n1 + n2

J(2k − 2, n1 − 1, n2 − 1)

+
n2(n2 − 1)

n2
1 − n1 + n2

J(2k − 2, n1, n2 − 2).
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Therefore

∆(k, n1, n2) ≤
1

n2
1 − n1 + n2

+
(n1 − n2)(n1 − n2 − 1)

n2
1 − n1 + n2

∆(k − 1, n1 − 2, n2)

+
(2n1 − 2n2 + 1)n2

n2
1 − n1 + n2

∆(k − 1, n1 − 1, n2 − 1)

+
n2(n2 − 1)

n2
1 − n1 + n2

∆(k − 1, n1, n2 − 2).

By the induction hypothesis, it follows that

∆(k, n1, n2) ≤
1

n2
1 − n1 + n2

+
(n1 − n2)(n1 − n2 − 1)

n2
1 − n1 + n2

·
(

2

n1 + n2 − 2k + 1
− 2

n1 + n2 − 1

)
+

(2n1 − 2n2 + 1)n2

n2
1 − n1 + n2

·
(

2

n1 + n2 − 2k + 1
− 2

n1 + n2 − 1

)
+

n2(n2 − 1)

n2
1 − n1 + n2

·
(

2

n1 + n2 − 2k + 1
− 2

n1 + n2 − 1

)
=

1

n2
1 − n1 + n2

+
2

n1 + n2 − 2k + 1
− 2

n1 + n2 − 1
.

In order for the induction to work, we have to verify that

1

n2
1 − n1 + n2

+
2

n1 + n2 − 2k + 1
− 2

n1 + n2 − 1

≤ 2

n1 + n2 − 2k + 1
− 2

n1 + n2 + 1
,

or equivalently that

4

(n1 + n2 + 1)(n1 + n2 − 1)
≥ 1

n2
1 − n1 + n2

.

Since both denominators are positive, this reduces to showing that

4(n2
1 − n1 + n2) ≥ (n1 + n2)

2 − 1. (33)

If we fix n1, then plainly (33) holds in the two extreme cases n2 = 0 and
n2 = n1. Since, as a function of n2, the left hand side of (33) is linear while
the right hand side is convex, (33) holds in the other cases as well.
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Case 2. Now consider the case that

I(k, n1, n2)

=
1

n1 − 1
+
n1 − n2 − 1

n1 − 1
I(k−1, n1−2, n2)+

n2

n1 − 1
I(k−1, n1−1, n2−1)).

Using the induction hypothesis we have

I(k, n1, n2) ≤
1

n1 − 1

+
n1 − n2 − 1

n1 − 1

(
J(2k − 2, n1 − 2, n2) +

2

n1 + n2 − 2k + 1
− 2

n1 + n2 − 1

)
+

n2

n1 − 1

(
J(2k − 2, n1 − 1, n2 − 1) +

2

n1 + n2 − 2k + 1
− 2

n1 + n2 − 1

)
=

1

n1 − 1
+

2

n1 + n2 − 2k + 1
− 2

n1 + n2 − 1

+
n1 − n2 − 1

n1 − 1
J(2k − 2, n1 − 2, n2) +

n2

n1 − 1
J(2k − 2, n1 − 1, n2 − 1)

= J(2k − 1, n1 − 1, n2) +
2

n1 + n2 − 2k + 1
− 2

n1 + n2 − 1
.

To verify the induction step, we wish to show that this is at most

J(2k, n1, n2) +
2

n1 + n2 − 2 + 1
− 2

n1 + n2 + 1
.

It suffices to note that by Lemma 10.3,

J(2k − 1, n1 − 1, n2) ≤ J(2k, n1, n2).

Case 3. In the third case,

I(k, n1, n2) = I(k − 1, n1 − 2, n2).

By induction

I(k − 1, n1 − 2, n2)

≤ J(2k − 2, n1 − 2, n2) +
2

n1 + n2 − 2k + 1
− 2

n1 + n2 − 1
.

Therefore in order to show that

∆(k, n1, n2) ≤
2

n1 + n2 − 2k + 1
− 2

n1 + n2 + 1
,
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we only have to verify that

J(2k − 2, n1 − 2, n2)− J(2k, n1, n2) ≤
2

n1 + n2 − 1
− 2

n1 + n2 + 1
.

Again by Lemma 10.3, J(2k−2, n1−2, n2)−J(2k, n1, n2) ≤ 0. This completes
the proof of Proposition 10.2.

10.3 Bound on the difference in cost of the integer and
linear flow problems

Equation (10), when specialized to the case of weights 1 and capacities at
most 2, becomes

ECk(n1, n2) =
1

n1

lim
γn+1→0

E
[
δ
(k)
n+1(c + 1n+1)

]
γ

+
n1 − n2

n1

ECk−1(n1 − 1, n2) +
n2

n1

ECk−1(n1, n2 − 1). (34)

This equation holds for the integer as well as the linear flow problem,
provided that δ stands for the degree in the optimal solution to the corre-
sponding optimization problem. Let Ck(n1, n2) and C̃k(n1, n2) denote, re-
spectively, the cost of the linear and integer flow problems. Similarly let δ̃
denote the degree with respect to the solution to the integer optimization
problem. By Lemma 7.2 (with h = 2k), we know that

lim
γn+1→0

E
[
δ
(k)
n+1(c + 1n+1)

]
γn+1

= ET (2k)(c) = J(2k, n1, n2),

and by Proposition 10.2 we therefore have

lim
γn+1→0

E
[
δ̃
(k)
n+1(c + 1n+1)

]
γn+1

− lim
γn+1→0

E
[
δ
(k)
n+1(c + 1n+1)

]
γn+1

≤ 2

n1 + n2 − 2k + 1
.

Hence from (34) it follows that

E
(
C̃k(n1, n2)− Ck(n1, n2)

)
≤ 1

n1

· 2

n1 + n2 − 2k + 1

+max
(
C̃k−1(n1 − 1, n2)− Ck−1(n1 − 1, n2), C̃k−1(n1, n2 − 1)− Ck−1(n1, n2 − 1)

)
.

(35)

This allows us to establish the following bound:
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Proposition 10.5.

E
(
C̃k(n1, n2)− Ck(n1, n2)

)
≤

4

n1 + n2 − k

(
1

n1 + n2 − 2k + 1
+

1

n1 + n2 − 2k + 2
+ · · ·+ 1

n1 + n2 − k

)
.

(36)

Proof. By induction we can assume that

max(
C̃k−1(n1 − 1, n2)− Ck−1(n1 − 1, n2), C̃k−1(n1, n2 − 1)− Ck−1(n1, n2 − 1)

)
≤ 4

n1 + n2 − k

(
1

n1 + n2 − 2k + 2
+ · · ·+ 1

n1 + n2 − k

)
.

To verify that (36) follows from (35) we therefore only have to check that

2

n1(n1 + n2 − 2k + 1)
≤ 4

(n1 + n2 − k)(n1 + n2 − 2k + 1)
.

This inequality is equivalent to n2−k ≤ n1, which clearly holds, since n2−k ≤
n2 ≤ n1.

For simplicity, we replace (36) by a bound which depends only on n1 = n
and not on k and n2.

Theorem 10.6. For weight 1 flow problems with capacities at most 2,

E
(
C̃k(n1, n2)− Ck(n1, n2)

)
= O

(
log n1

n1

)
.

Proof. Since k ≤ (n1 + n2)/2, we have

4

n1 + n2 − k
≤ 4

n1 + n2 − (n1 + n2)/2
=

8

n1 + n2

≤ 8

n1

.

Moreover,

1

n1 + n2 − 2k + 1
+ · · ·+ 1

n1 + n2 − k
≤ 1 +

1

2
+ · · ·+ 1

k
≤ 1 +

1

2
+ · · ·+ 1

n1

.

Hence the right hand side of (36) is at most

8

n1

(
1 +

1

2
+ · · ·+ 1

n1

)
= O

(
log n1

n1

)
.
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10.4 Concentration for the integer flow problem

Theorems 7.3, 8.1 and 10.6 imply that the expected cost of the (non-relaxed)
matching problem on Kn for even n converges to π2/12 (see also equation
(57)). Similarly the expected cost of the 2-factor problem converges to L?.

Our next objective is to establish concentration inequalities strong enough
to show that the costs of these problems converge in probability to their
limits. Let k be a positive integer that allows a solution to the integer
problem, and let Ck and C̃k denote the costs of the linear and integer flow
problems respectively.

Theorem 10.7. Suppose that for 1 ≤ i ≤ n, γi = 1 and ci ≤ 2. Then

E
∣∣∣C̃k − ECk∣∣∣ = O

(
(log n)5/2

n1/2

)
. (37)

Proof. By a standard inequality,

E |Ck − ECk| ≤
√

var(Ck),

and by Theorem 9.1,

var(Ck) = O

(
(log n)5

n

)
.

Hence

E
∣∣∣C̃k − ECk∣∣∣ ≤ E |Ck − ECk|+ E

(
C̃k − Ck

)
≤
√

var(Ck) +O

(
log n

n

)
= O

(
(log n)5/2

n1/2

)
.

Corollary 10.8. As n → ∞, the cost of the 2-factor problem converges
in probability to L?, and for even n, the cost of the minimum matching
converges in probability to π2/12.

The fact that the cost of the minimum matching converges in probability
to π2/12 is known to follow from the work of Aldous [5, 6] on the assignment
(bipartite matching) problem, provided Proposition 2 of [5] is modified so
that it applies to the complete graph.
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11 The mean field model

In this section we show that some of the asymptotic results carry over from
the friendly model to the mean field model. In particular we complete the
proof of Theorem 1.1 by proving that Ln converges in probability to L? under
the weaker assumption (1). We here consider only the traveling salesman
problem, although with obvious minor changes the argument applies also to
matching and related problems. The feasible solutions to the TSP contain
no loops, multiple edges, or edges with coefficient 1/2. Therefore we can
disregard all edges except the cheapest edge between each pair of distinct
vertices. This makes the friendly model a special case of the mean field
model described in the introduction, namely by taking µ to be the rate 1
exponential distribution.

We use the following notation: Let Zk,n denote the cost of the minimum
integer k-flow in Kn given that each vertex has capacity 2, in other words
an incomplete 2-factor. We let Ln denote the cost of a traveling salesman
tour in Kn. Since we are considering the differences between various distri-
butions, we shall here explicitly write out the dependence on the distribution
under consideration. We let µ be a general pseudodimension 1 distribution.
Further, we let exp denote rate 1 exponential distribution, and U denote
uniform distribution on [0, 1].

It was shown by A. Frieze [18] that

Ln(U)− Zn,n(U)
p→ 0, (38)

as n→∞.
Every pseudodimension 1 distribution is stochastically dominated by a

continuous pseudodimension 1 distribution, and conversely it dominates some
other continuous pseudodimension 1 distribution. It is therefore sufficient to
prove Theorem 1.1 under the assumption that µ is continuous. We first
establish the lower bound:

Proposition 11.1. If µ satisfies (1), then for every ε > 0,

P (Ln(µ) ≤ L? − ε)→ 0

as n→∞.

Proof. We establish the stronger result that

P (Zn−1,n(µ) ≤ L? − ε)→ 0. (39)

If X is a variable of distribution µ, then the function F (t) = P (X < t)
satisfies F (0) = 0 and F ′(0) = 1 (only the right derivative is considered).

47



Consider the minimum integer (n−1)-flow under distribution µ, and remove
the k most expensive edges for an integer k chosen as a function of n. The
only requirement on this function is that as n → ∞, we must have k → ∞
and k/n → 0. For instance we can choose k = bn1/2c. Let x be the cost
of the most expensive remaining edge in the flow. Now we apply an order
preserving transformation of all edge costs, so that they become exponentially
distributed with mean 1 (and still independent). This is done by the mapping

t 7→ φ(t)

that satisfies

F (t) = P (X < t) = P (X̃ < φ(t)) = 1− e−φ(t),

where X̃ is rate 1 exponential. Solving for φ(t) gives

φ(t) = − log (1− F (t)) .

We note that

φ′(t) =
F ′(t)

1− F (t)
,

which in particular means that φ(t) ∼ t for small t.
Let C be the cost of the (n − 1 − k)-flow of exponential cost edges that

has been obtained this way. Obviously C stochastically dominates the cost
Zn−1−k,n(exp) of the minimum integer (n − 1 − k)-flow for capacities 2. By
Corollary 8.13 and equation (37), Zn−1−k,n(exp) converges in probability to
L? provided k/n→ 0. We want to show that given C and x, we can obtain
a lower bound on the cost Zn−1,n(µ) of the original minimum (n − 1)-flow.
The flow of cost C contains no edge of cost > x. Now define

f(y) = inf
0<t≤y

t

φ(t)
.

Then f(y)→ 1 as y → 0+, and f is decreasing. We have

Zn−1,n(µ) ≥ C · f(x) + k · x ≥ Zn−1−k,n(exp) · f(x) + k · x. (40)

We want to show that with high probability, the right hand side of (40)
is at least L? − ε. If µ (and thereby f) is fixed, then for every ε1 we can
choose n large enough that f(x) > 1 − ε1 whenever x < L?/k. In that case
it follows that the right hand side of (40) is at least (1− ε1) ·Zn−1−k,n. Since
Zn−1−k,n → L? in probability, the statement follows.
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Now we turn to the upper bound on Ln(µ). In order to establish Theo-
rem 1.1 it only remains to show the following.

Proposition 11.2. If µ satisfies (1), then for every ε > 0,

P (Ln(µ) ≥ L? + ε)→ 0

as n→∞.

Proof. We know that
Zn,n(exp)

p→ L?. (41)

Since uniform distribution on [0, 1] is stochastically dominated by exponential
distribution, it follows from (41) and Proposition 11.1 that

Zn,n(U)
p→ L?.

Now it follows from (38) that

Ln(U)
p→ L?.

By (39), applied to the distribution U , it follows that

Ln(U)− Zn−1,n(U)
p→ 0.

Consequently, the cost of the most expensive edge in the minimum tour under
distribution U also converges in probability to zero, since by removing this
edge we obtain an (n− 1)-flow.

Hence for fixed ε and letting n→∞, the order preserving transformation
that converts uniform [0, 1] variables to distribution µ will give a tour of cost
at most (1 + ε) · L? with probability tending to 1. This completes the proof
of Proposition 11.2, and thereby of Theorem 1.1.

12 The bipartite friendly model

We show that results similar to those established in Sections 4–8 hold for
an analogous and technically simpler bipartite friendly model. Actually our
results on the bipartite model are stronger, since we obtain exact results not
only for the expectation but also for the higher moments of the cost of the
flow problem.
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12.1 Definitions and combinatorial results

In the bipartite friendly model, there are two vertex sets U = {u1, . . . , um}
and V = {v1, . . . , vn}, and the vertices have weights α1, . . . , αm and β1, . . . , βn
respectively, and capacities a = (a1, . . . , am) and b = (b1, . . . , bn). For each
pair ui, vj there is a sequence of edges whose costs are given by a Poisson
process of rate αiβj. There are no edges within U or within V .

The definition of the random flow problem in Section 4 carries over to
the bipartite model with obvious minor changes in notation. An important
difference that makes the bipartite model considerably simpler than the com-
plete model is that the linear and integer problems are equivalent when k
is an integer. This follows from the analysis of Section 6. The results of
that section obviously hold for the bipartite graph too, but since there are
no cycles of odd length, it follows that in the generic case, the minimum flow
is stable if and only if k is an integer, and in that case the minimum linear
flow is actually an integer flow.

Hence in the bipartite case, we need only consider integer values of k,
and integer flows. It is therefore natural to think of a flow as a set of edges.
Following the method of Section 5, we introduce an extra vertex um+1 of
weight αm+1 which has edges only to the vertices v1, . . . , vn. When we let
αm+1 → 0 we obtain, paralleling the argument of Section 5, the equation

ECk(a,b) =
1

β1 + · · ·+ βn
· lim
αm+1→0

E
[
δ
(k)
m+1(a + 1m+1,b)

]
αm+1

+ECk−1(a,b−1j),

(42)

analogous to (10). Here δ
(k)
m+1(a + 1m+1,b) is the degree of the extra vertex

in the extended flow problem, while the last term ECk−1(a,b − 1j) refers
to a random choice of vj ∈ V taken with probabilities proportional to the
weights. But here we deviate from the argument of Section 7, and instead
derive a result for all moments.

Let F be a flow (we now think of F as a subset of the set E of edges).
We define the span of F (with respect to the capacities a) to be the set of
edges which either belong to F , or are incident to a vertex in U that has full
degree in F .

Lemma 12.1. Suppose that F ⊆ E is an r-flow which is not of minimum
cost. Then there is an r-flow F ′ of smaller cost than F which contains at
most one edge which is not in the span of F .

Proof. Let G be a minimum cost r-flow, and let H = F4G be the sym-
metric difference of F and G. We split H into path and cycles that can be
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“switched”, respecting the capacity constraints. Then the unbalanced com-
ponents can be paired so that H is partitioned into a number of sets that
contain equally many edges from F and G, and that can be switched. One
of these sets must be such that by switching, the cost decreases.

The following is a corollary to Lemma 12.1. To simplify the statement,
we assume that the edge costs are generic.

Lemma 12.2. Let vj ∈ V and suppose that the capacity bj is nonzero. Let
F = σ(r)(a,b− 1j) and G = σ(r+1)(a,b). Then G contains exactly one edge
which is not in the span of F .

Proof. In order to apply Lemma 12.1, we introduce an auxiliary element um+1

of capacity 1. We let the first edge between um+1 and vj have nonnegative
cost x, and let all other edges from um+1 have infinite cost. If we put x = 0,
then the minimum (r + 1)-flow with respect to (a + 1m+1,b) consists of the
cheapest edge e between um+1 and vj together with F . If we increase the
value of x, then at some point this minimum (r+ 1)-flow changes to G. If we
let x have a value just above this point, so that the minimum (r + 1)-flow is
G, but no other (r+ 1)-flow has smaller cost than F + e, then it follows from
Lemma 12.1 that G contains exactly one edge outside the span of F .

The following theorem is the basis for our results on the higher moments
in the bipartite model. We have been unable to find an analogous result for
the complete model, and this is mainly why we have not established, or even
conjectured, any exact results for the higher moments in the complete model.

As above let F = σ(r)(a,b − 1j) and G = σ(r+1)(a,b). Moreover let uG
be the element of U incident to the unique edge of G which is not in the span
of F .

Theorem 12.3. If we condition on the span of F and the cost of F , then the
cost of G is independent of uG, and uG is distributed on the set of vertices
in U that do not have full degree in F , with probabilities proportional to the
weights.

Proof. We condition on (1) the costs of all edges in the span of F , and (2)
for each v ∈ V , the minimum cost of all edges to v which are not in the
span of F . By Lemma 12.1, we have thereby conditioned on the cost of G,
and by the memorylessness of the Poisson process, the unknown endpoint uG
of the edge that goes outside the span of F is still distributed, among the
vertices that do not have full degree in F , with probabilities proportional to
the weights.
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12.2 The normalized limit measure

As we shall see, the method of Section 5 together with Theorem 12.3 allows
us to establish exact results for all moments of the cost of a bipartite flow
problem. We extend U by an extra vertex um+1 of capacity 1 and study the
probability that um+1 participates in the minimum solution.

The method, which relies on finally letting the weight αm+1 tend to zero,
leads one to think of αm+1 as infinitesimal. This suggests an alternative
way of interpreting equations (8), (10) and (42). The limit expectation as

αm+1 → 0 of a random variable like σ
(k)
e , normalized by dividing by αn+1,

can be regarded as a measure in its own right. If φ is a function of the edge
costs, we let

E?φ = lim
αm+1→0

Eφ

αm+1

.

This is the normalized limit measure of φ. We use the same notation for
events, with the obvious interpretation, replacing expectation by probability.
With this notation, we can write equation (42) as

ECk(a,b) =
1

β1 + · · ·+ βn
·E?
[
δ
(k)
m+1(a + 1m+1,b)

]
+ECk−1(a,b−1j), (43)

but the interesting thing is that we can interpret the normalized limit mea-
sure directly, without regarding it as a limit. Notice that the exponential
distribution with rate αm+1βj, scaled up by a factor 1/αm+1, converges to βj
times Lebesgue measure on the positive real numbers as αm+1 → 0. There-
fore we can construct a measure space whose points are assignments of costs
to the edges, where exactly one edge from um+1 has finite cost, and the others
have cost +∞. For each j, the cost assignments where the edge (um+1, vj)
has finite cost are measured by βj times Lebesgue measure on the positive
reals. The union of these spaces for 1 ≤ j ≤ n is combined with the original
probability measure on the costs of the other edges.

From this starting point, equation (43) could have been derived without
referring to the principle of dominated convergence, but we shall not discuss
this alternative approach in detail here.

12.3 A recursive formula

If g = (g1, . . . , gm) is a vector of nonnegative integers, then we let Ik(g, a,b)
be the indicator variable for the event that for every ui ∈ U , the minimum
k-flow with respect to (a,b) contains at least gi edges from ui. Naturally we
must have gi ≤ ai for every i, and g1 + · · · + gm ≤ k, in order for Ik(g, a,b)
to be nonzero.
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Let N be a positive integer, and let g be as above. Assume moreover
that g1 + · · · + gm = k − 1. For vj ∈ V , let Ij be the indicator variable for
the event that the minimum k-flow with respect to (a + 1m+1,b) contains
an edge between um+1 and vj and that for 1 ≤ i ≤ m, it contains exactly gi
edges from ui.

Lemma 12.4.

E
[
Ck(a,b)N · Ik−1(g, a,b− 1j)

]
=

E
[
Ck−1(a,b− 1j)

N · Ik−1(g, a,b− 1j)
]
+
N

βj
E?
[
Ck(a + 1m+1,b)N−1 · Ij

]
.

(44)

Proof. We compute N/βj · E?
[
Ck(a + 1m+1,b)N−1 · Ij

]
by integrating over

the cost, which we denote by t, of the first edge between um+1 and vj. We
therefore condition on the costs of all other edges.

The density of t is αm+1e
−αm+1t, and we therefore get the normalized

limit by dividing by αm+1 and instead computing the integral with the den-
sity e−αm+1t. For every t this tends to 1 from below as αm+1 → 0, and by
the principle of dominated convergence, we can interchange the limits and
compute the integral using the density 1 instead. This is the same thing as in-
tegrating with respect to the normalized limit measure. The key observation
is that

d

dt

(
Ck(a + 1m+1,b)N · Ik−1(g, a,b− 1j)

)
= N · Ck(a + 1m+1,b)N−1 · Ij.

According to the normalized limit measure, since we are conditioning on
the first edge between um+1 and vj being the one with finite cost, E? is just βj
times Lebesgue measure. Therefore (44) now follows from the fundamental
theorem of calculus: Putting t =∞, we get

Ck(a + 1m+1,b)N · Ik−1(g, a,b− 1j) = Ck(a,b)N · Ik−1(g, a,b− 1j),

while if t = 0, we get

Ck(a + 1m+1,b)N · Ik−1(g, a,b− 1j) = Ck−1(a,b− 1j)
N · Ik−1(g, a,b− 1j).

Proposition 12.5. Let h = (h1, . . . , hm) be a nonnegative integer vector
such that hi ≤ ai for every i, and h1 + · · ·+ hm = k. Moreover, let

β =
∑
j

bj>0

βj.
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Then

E
[
Ck(a,b)N · Ik(h, a,b)

]
=∑

1≤i≤m
hi>0

αi
αi +

∑
j 6=i
hj<aj

αj

∑
1≤j≤n
bj>0

βj
β
E
[
Ck−1(a,b− 1j)

N · Ik−1(h− 1i, a,b− 1j)
]

+
N

β
·
∑

1≤i≤m
hi>0

αi
αi +

∑
j 6=i
hj<aj

αj

E?
[
Ck(a + 1m+1,b)N−1 · Ik(h− 1i + 1m+1, a + 1m+1,b)

]
. (45)

Proof. We multiply both sides of (44) by βj and sum over all j for which
bj > 0. This way we obtain∑

1≤j≤n
bj>0

βj · E
[
Ck(a,b)N · Ik−1(g, a,b− 1j)

]
=

∑
1≤j≤n
bj>0

βj · E
[
Ck−1(a,b− 1j)

N · Ik−1(g, a,b− 1j)
]

+N · E?
[
Ck(a + 1m+1,b)N−1 · Ik(g + 1m+1, a + 1m+1,b)

]
. (46)

Next, we apply Theorem 12.3. Let h be as above, and suppose that for
a certain j, bj > 0. If the minimum k-flow with respect to (a,b) contains
exactly hi edges from vi for every i, then the minimum (k − 1)-flow with
respect to (a,b− 1j) must have hi− 1 edges from a certain vertex vi, and hl
edges from vl for every l 6= i. By summing over the possible values of i, we
obtain

E
[
Ck(a,b)N · Ik(h, a,b)

]
=
∑

1≤i≤m
hi>0

αi
αi +

∑
l 6=i
hl<al

αl
· E
[
Ck(a,b)N · Ik−1(h− 1i, a,b− 1j)

]
. (47)

We average the right hand side over the possible values of j (those for
which bj > 0), chosen with probabilities according to the weights. In other
words, we multiply (47) by βj/β and sum over all j such that bj > 0. This
leaves the left hand side intact, and we get

54



E
[
Ck(a,b)N · Ik(h, a,b)

]
=
∑

1≤i≤m
hi>0

αi
αi +

∑
l 6=i
hl<al

αl

∑
1≤j≤n
bj>0

βj
β
· E
[
Ck(a,b)N · Ik−1(h− 1i, a,b− 1j)

]
. (48)

Now we rewrite the right hand side of (48) using equation (46) with
g = h− 1i. This establishes (45).

12.4 Interpretation in terms of the urn process

The urn process corresponding to the bipartite case is, as should be expected,
symmetric with respect to the two sides of the graph. The coordinate axes
are now labeled x and y. An urn process with the vertices of U runs along
the x-axis, and an independent urn process with the vertices of V runs along
the y-axis. Again each vertex is drawn at times of the events in a Poisson
process of rate equal to the weight of the vertex. We let Pi(x) be the number
of times that ui has been drawn up to time x, while Qj(y) similarly denotes
the number of times that vj has been drawn up to time y in the other process.
The region Rk is now defined as the region in the xy-plane for which∑

1≤i≤m

min(Pi(x), ai) +
∑

1≤j≤n

min(Qj(y), bj) < k.

Denoting, as before, the cost of the minimum k-flow by Ck, it turns out
in analogy with Theorem 7.3 that

ECk = E [area(Rk)] . (49)

Equation (49) is a generalization of the formula conjectured by Buck, Chan
and Robbins [14] and proved in [48]. It can be established by following the
same route as the proof of Theorem 7.3 in Section 7, but we shall give a
different proof, generalizing to higher moments.

To describe the higher moments, we introduce an extended urn process.
In the N-th extension of the urn process on U and V there are, in addition
to the ordinary urn processes, N extra points (x1, y1), . . . , (xN , yN) in the
positive quadrant of the x-y plane. These points are “chosen” according
to Lebesgue measure on the positive real numbers, and therefore cannot be

55



treated as random variables. In analogy with the notation for the normalized
limit measure, we let E? denote the measure obtained by combining the
probability measure on the ordinary urn process with Lebesgue measure on
the extra points. The measure E? is the expected value (with respect to
the ordinary urn process) of the Lebesgue measure in 2N dimensions of the
set of points x1, . . . , xN , y1, . . . , yN belonging to a particular event. It can
also be interpreted as a normalized limit by letting x1, . . . , xN , y1, . . . , yN be
independent exponentially distributed of rate λ→ 0.

We define a rank function r on the nonnegative real numbers (depending
on the outcome of the extended urn process) by

r(x) =
∑

1≤i≤m

min(Pi(x), ai) + #{i : xi ≤ x}.

Similarly we let

s(y) =
∑

1≤j≤n

min(Qj(y), bj) + #{j : yj ≤ y}.

Our main exact theorem on bipartite random flow problems is the following:

Theorem 12.6.

E
[
Ck(a,b)N

]
= E? {(x, y) : r(xi) + s(yi) ≤ k +N for 1 ≤ i ≤ N} . (50)

When N = 1, the right hand side of (50) is the expected area of Rk(a,b).
For larger N , the condition r(xi) + s(yi) ≤ k+N for 1 ≤ i ≤ N implies that
the points (xi, yi) all lie in Rk(a,b). Therefore we have

Corollary 12.7.

E
(
Ck(a,b)N

)
≤ E

[
area(Rk(a,b))N

]
,

with equality if N = 1.

This in turn implies that

var(Ck(a,b)) ≤ var(area(Rk(a,b))),

so that the methods of Section 8 can be applied in order to bound the variance
of Ck(a,b), but we shall not pursue this further here.

We prove Theorem 12.6 by proving the following more precise form. Let
uk be the multiset of the first k vertices to be drawn in the urn process (with
replacement protocol a) on U , and define vk similarly.
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Theorem 12.8. Let h = (h1, . . . , hm) be such that hi ≤ ai for every i, and
h1 + · · ·+ hm = k. Then

E
(
Ck(a,b)N · Ik(h, a,b)

)
= E? [uk = h and r(xi) + s(yi) ≤ k +N for 1 ≤ i ≤ N ] . (51)

Proof. We use (45) together with induction on both k and N . Notice that
(51) holds trivially when k = 0. Notice also that when N = 0, the second
term of the right hand side of (45) vanishes.

Suppose therefore that (51) holds whenever k orN is replaced by a smaller
number. Then the right hand side of (45) can be rewritten in terms of the
urn process. We will show that the result is equal to the right hand side of
(51).

We therefore split the “event” uk = h and r(xi) + s(yi) ≤ k + N for
i = 1, . . . , N into two cases. Let g = uk−1. Let t be the time at which
the first event occurs in the extended urn process on V , in other words, we
condition on t being minimal such that s(t) = 1.

For 1 ≤ i ≤ m and positive integers l let ξ(i, l) be the time at which ui
is drawn for the l:th time, and similarly let ψ(j, l) be the time at which vj
is drawn for the l:th time. We think of these times as being defined for all i
and j regardless of the capacities.

Case 1. Let vj ∈ V and suppose that the event that occurs at time t is that
vj is drawn from the urn. This means that vj is the first element (of nonzero
capacity) to be drawn from the urn in the y-process, and moreover that the
time t at which this happens is smaller than all the numbers y1, . . . , yN .

We couple to another extended urn process by letting

ξ′(vj, l) = ξ(vj, l + 1)− t,

and for all i 6= j,
ξ′(vi, l) = ξ(vi, l)− t.

Moreover, for 1 ≤ i ≤ N let
y′i = yi − t.

We let x′i = xi and for ui ∈ U , ξ′(ui, l) = ξ(ui, l). Let r′ and s′ be the
rank functions with respect to a and b − 1j in the primed extended urn
process. Then r′ = r, and s′(y′i) = s(yi) − 1. Hence for 1 ≤ i ≤ N ,
r′(x′i) + s′(y′i) ≤ k − 1 +N if and only if r(xi) + s(yi) ≤ k +N .

If we condition on uk−1 = g = h− 1i, then

P (uk = h) =
αi

αi +
∑

l 6=i
hl<al

αl
.
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By the induction hypothesis it follows that E?(Case 1) is equal to the first
term of the right hand side of (45).

Case 2. Suppose that yN = t (the cases yi = t for 1 ≤ i ≤ N − 1 are of
course identical). We couple Case 2 to the (N − 1):th extended urn process
in essentially the same way as we did in Case 1. Let

ξ′(vj, l) = ξ(vj, l)− t,

and for 1 ≤ i ≤ N − 1 let
y′i = yi − t.

In the limit αn+1 → 0, the point ξ(um+1, 1) is measured by αn+1 times
Lebesgue measure on the positive real numbers. Hence if we let

ξ′(um+1, 1) = xN ,

we obtain a coupling which is valid as αm+1 → 0.
Again conditioning on uk−1 = g = h− 1i,

P (uk = h) =
αi

αi +
∑

l 6=i
hl<al

αl
.

Moreover,
1

β
=

1∑
1≤l≤n
bl>0

βl

is the measure of the event that yN is smaller than ξ(vj, 1) for every j such
that bj > 0. By the induction hypothesis it now follows that E?(Case 2) is
equal to the second term of the right hand side of (45).

Hence E
(
Ck(a,b)N · Ik(h, a,b)

)
= E?(Case 1) + N · E?(Case 2). This

completes the proof.

Theorem 12.8 generalizes automatically to vectors h whose sum is smaller
than k:

Theorem 12.9. Let h ≤ a. Then

E
(
Ck(a,b)N · Ik(h, a,b)

)
= E? [uk ≥ h and r(xi) + s(yi) ≤ k +N for 1 ≤ i ≤ N ] .

In particular if h = 0 then this is Theorem 12.6.
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12.5 The area of the region Rk

With the method used in Section 8, we can establish a similar estimate of
the area of Rk for the bipartite case. Suppose again that each vertex has
weight 1 and capacity at most 2. Now R = Rk(m1,m2, n1, n2) is the region
for which ∑

1≤i≤m

Pi(x) +
∑

1≤j≤n

Qj(y) < k.

Naturally we take R? = R?
k(m1,m2, n1, n2) to be the region for which∑

1≤i≤m

E (Pi(x)) +
∑

1≤j≤n

E (Qj(y)) < k.

For simplicity we assume thatm and n are of the same order of magnitude.
We briefly outline a proof that the statement of Theorem 8.1 (with the new
definitions and a different implied constant) holds also in the bipartite case,
that is,

|E (area(R))− area(R?)| = O

(
(log n)3/2

n1/2

)
. (52)

Outline of proof. Lemma 8.2 still holds in the bipartite setting. We take B
to be the box with sides [0, 2 logm] and [0, 2 log n]. Lemma 8.5 still holds,
and in Corollary 8.6, the last error term becomes O((log n)3/n), but this is
not important for the following.

In Lemma 8.7, the rank of the urn process at (x, y) can be written
θ1(x, y) + θ2(x, y), where each θ is a sum of m+n independent 0-1-variables.
The probability that the rank deviates by at least ε(m + n) from its expec-
tation is at most 2e−ε

2(m+n)/8. To make this equal to 1/(m + n)2, we put
ε = 4(log(m+ n))1/2/(m+ n)1/2.

We divide B into regions B1, B2 and B3 as before. The estimate of the
area of B2 in Lemma 8.8 still holds, although in the bipartite setting we also
have to estimate the height of B2 for a given value of x. Lemmas 8.9 and
8.10 hold with minor changes in the proofs, and as before, this makes the
area of B2 the main error term in (52).

12.6 An example

In the bipartite case there is an optimization problem that provides an in-
termediate step between matching and 2-factor. Consider a bipartite graph
with vertex sets U of size n, and V of size 2n. Suppose that we wish to con-
nect every vertex in U to two vertices in V in such a way that every vertex
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in V is used exactly once. This is the 2n-flow problem with capacities 2 in
U and 1 in V . Here too the region R? is independent of n. The limit shape
is given by the equation (

1 +
x

2

)
e−x + e−y = 1,

and consequently the expected cost of the optimization problem converges
to ∫ ∞

0

y dx =

∫ ∞
0

− log
(

1− e−x − x

2
e−x
)
≈ 2.614522.

This is also predicted (non-rigorously) from the replica-cavity ansatz by a
modification of the argument given in [29].

13 Exact formulas for matching and relaxed

matching

In this section we show that the exact results on the flow problem established
in Sections 7 and 12 lead to some simple exact formulas for the linear flow
problems when each vertex has weight 1 and capacity 1.

13.1 Expected values

The weight 1 capacity 1 case is simpler than the general case because con-
ditioning on the time T (i) of the i:th event in the urn process, the amount
T (i+1) − T (i) of time that we have to wait until the next vertex is drawn is
independent of the set of vertices that were drawn up to time T (i). Since
n− i vertices remain, all of which have weight 1, the expected time until the
next vertex is drawn is

1

n− i
.

We can therefore compute the expected area of each of the rectangles that
constitute the region Rh, both for the complete and the bipartite model.

In the bipartite case, the expected values of the increments T (1), T (2) −
T (1), T (3) − T (2), . . . , T (k) − T (k−1) are 1/m, 1/(m− 1), . . . , 1/(m− k + 1) for
the process along the x-axis, and similarly 1/n, 1/(n− 1), . . . , 1/(n− k + 1)
along the y-axis. The rectangles that constitute Rk have expected areas

1

(m− i)(n− j)
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for nonnegative i and j such that i+ j < k. This leads to the explicit result

ECk =
∑
i,j≥0
i+j<k

1

(m− i)(n− j)
. (53)

Equation (53) was conjectured by D. Coppersmith and G. Sorkin [16], as a
generalization of the formula

ECn = 1 +
1

4
+

1

9
+ · · ·+ 1

n2
(54)

for the complete n by n matching conjectured by Parisi in [36]. The formula
(53) was established independently in [32] and [24], and it is easily verified
that (53) specializes to (54) when k = m = n.

There is a direct analogue of (53) for the linear relaxation of matching in
the complete graph. In this case, it is probably easier to derive the formula
directly from (10) and Proposition 7.1, than to go via the urn process. When
the capacities and weights are equal to 1, it follows by induction on k and n
that

ECk/2 =
∑

0≤i≤j
i+j<k

1

(n− i)(n− j)
. (55)

If we put m = n in (53), then (53) contains all terms of (55) twice,
except those for which i = j. This means that if moreover k = n, so that
(53) specializes to (54), then (55) becomes

1

2

1 +
1

4
+ · · ·+ 1

n2
+

∑
n/2<i≤n

1

i2

 , (56)

which in turn simplifies to

ECn/2 = 1− 1

4
+

1

9
− · · · ± 1

n2
. (57)

In addition to showing that ECn/2 → π2/12, this alternating analogue
of (54) shows that although the linear relaxation makes it possible to find
feasible solutions also for odd n, the expected cost is always slightly higher
than for even n.

13.2 The variance of bipartite matching

We establish an exact formula for the variance of the cost of the bipartite
matching problem. This formula is described in [49]. Let Cn denote the cost
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of the minimum perfect matching in the n by n complete bipartite graph.
The problem of establishing a good upper bound on var (Cn) for large n
has been considered by several researchers [9, 33, 42]. The first proof that
var (Cn)→ 0 was obtained by M. Talagrand [42] with the method described
in Section 9.

The cost of the minimum k-assignment is denoted by Ck,m,n, so that in
particular Cn,n,n = Cn.

Proposition 13.1. The second moment of Ck,m,n is given by:

E
(
C2
k,m,n

)
= 2 ·

∑
0≤i1≤i2
0≤j2≤j1
i1+j1<k
i2+j2<k

1

(m− i1)(m− i2)(n− j1)(n− j2)

+ 2 ·
∑

0≤i1≤i2
0≤j1≤j2
i2+j2<k−1

1

(m− i1)(m− i2)(n− j1)(n− j2)
. (58)

Proof. Since all weights are equal to 1, the time between the i:th and the
(i + 1):th vertex to be drawn from U in the urn process is exponentially
distributed with mean 1/(m− i) and independent of the set of vertices that
have been drawn before. Similarly the time between the j:th and the (j+1):th
vertex to be drawn from V is exponential with mean 1/(n − j). In the
extended urn process there are two points (x1, y1) and (x2, y2). We first
consider the event that x1 < x2 and y1 > y2. We fix i1, i2, j1 and j2, and
consider the event that there are exactly i1 elements of U that are drawn
before x1, and i2 elements that are drawn before x2, and similarly that exactly
j1 elements in V are drawn before y1 and j2 elements are drawn before y2.
The expected measure of the set of choices for x1, x2, y1, y2 is equal to

1

(m− i1)(m− i2)(n− j1)(n− j2)
.

Notice that this holds also if i1 = i2 or j1 = j2. When we take the sum over
all possible values of i1, i2, j1, j2, we obtain the first sum in (58). The case
that x1 > x2 and y1 < y2 is similar and gives the factor 2.

In a similar way, the second sum comes from the case that x1 < x2 and
y1 < y2, and in this case it is required that (x2, y2) ∈ Rk−1, which means that
i2 + j2 < k− 1. Again the case that x1 > x2 and y1 > y2 is similar and gives
a factor 2 on the second sum.
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It was shown in [49] that the case k = m = n (perfect matching) leads to
the simple formula

var (Cn) = 5 ·
n∑
i=1

1

i4
− 2 ·

(
n∑
i=1

1

i2

)2

− 4

n+ 1
·

n∑
i=1

1

i3
. (59)

The derivation of (59) from (58) uses some identities from the remarkably
similar calculation in [20] of the variance of the cost of the shortest path tree.

Notice that since 5ζ(4) = 2ζ(2)2 = π4/18, the first two terms of (59)
essentially cancel as n→∞. By an elementary integral estimate,

n∑
i=1

1

is
= ζ(s)− 1

(s− 1)ns−1
+O

(
1

ns

)
,

and therefore we have

var (Cn) = 5ζ(4)− 2

(
ζ(2)− 1

n

)2

− 4

n
ζ(3) +O

(
1

n2

)
=

4ζ(2)− 4ζ(3)

n
+O

(
1

n2

)
.
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[27] Mézard, M. and Parisi, G., A replica analysis of the travelling salesman
problem, Journal de Physique 47 (1986), 1285–1296.
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