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1 Introduction

The non-rigorous cavity method of statistical mechanics, originally developed
in the study of spin glasses and other disordered systems, has led to a num-
ber of purely mathematical predictions. Several of them can be found in the
remarkable book [17] by Marc Mézard, Giorgio Parisi and Miguel Angel Vi-
rasoro. Establishing these predictions rigorously remains a challenge to prob-
ability theory. Important achievements in this direction are David Aldous’
proof of the ζ(2) limit in the assignment problem [4], Michel Talagrand’s
proof of the correctness of the Parisi solution of the Sherrington-Kirkpatrick
model [9, 24], and the algorithmic and theoretical results on phase transitions
in constraint satisfaction problems [1, 2, 18].

One of the areas where the statistical mechanics view has produced a
number of challenging conjectures is optimization in mean field models of
distance. In the simplest of these models there are n vertices labeled 1, . . . , n.
Each pair of vertices is connected by an edge, and the edges (i, j) are assigned
i. i. d. random costs Xi,j (sometimes thought of as representing distance)
from a given distribution µ on the nonnegative real numbers. In general
one is interested in the large n (“thermodynamical”) limit of the cost of a
solution to a combinatorial optimization problem.

I will describe a mathematically rigorous method whose underlying idea
resembles the cavity method. Several new results have been established with
this method, some of which were anticipated by the cavity approach. For
instance we have established the “mean field limit” for the traveling salesman
problem, conjectured in [11, 14, 15].
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Figure 1: The curve (1 + x
2
)e−x + (1 + y

2
)e−y = 1.

Let Ln be the cost of the minimum traveling salesman tour, that is, the
minimum sum of the edge costs of a cycle that visits each vertex exactly
once. Further, we define the number L⋆ ≈ 2.04 by

L⋆ =
1

2

∫ ∞

0

y dx, (1)

where y(x) is the positive solution to the equation

(

1 +
x

2

)

e−x +
(

1 +
y

2

)

e−y = 1, (2)

see Figure 1.

Theorem 1.1. If the distribution µ satisfies

P (Xi,j < t)

t
→ 1, as t → 0+, (3)

then

Ln
p
→ L⋆, as n → ∞. (4)

This problem has been studied extensively, theoretically as well as by
computer simulation [4, 5, 10, 11, 14, 15, 17]. Until now the most precise
estimate of limn→∞ Ln was obtained with the cavity method. The value
2.0415 is given in [11]. This value is consistent with the less precise estimates
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obtained by simulation. Using equation (1) we have found, to 26 decimal
places,

L⋆ = 2.04154818641213241804549016 . . .

After a discussion of Theorem 1.1, G. Parisi (in personal communication)
has shown that the analytic characterization of L⋆ obtained in equations (6)
and (9) of [11] is equivalent to (1). In fact this was the first proof that
equation (6) of [11] (with r = 0) has a unique solution. This brings us to the
satisfactory conclusion that the cavity result is exact.

2 Temperature and annealing

An interesting question is how our method relates to the statistical mechanics
approach. The details of this relationship are not yet clear, and it remains
to be seen whether similar methods can put other cavity results on firm
mathematical ground.

In the language of statistical mechanics, the cost of an optimization prob-
lem corresponds to the hamiltonian H(σ) of a physical system. The system
is supposed to act somewhat as if it tried to find a state σ that minimizes this
quantity. The tendency to minimize the hamiltonian is governed by the tem-
perature T . This is reflected by the Gibbs measure, in which the probability
of finding the system in a particular state σ is proportional to

exp(−H(σ)/T ).

In the limit T → 0, the Gibbs measure concentrates at the ground state, in
other words the state that minimizes H . Physically, the meaning of temper-
ature is intuitively clear, but in the mathematical setting, it is not obvious
why one should introduce this parameter. An idea which is present both in
the cavity approach and in the simulated annealing paradigm of computer
science is to introduce the parameter T and then to let T → 0, thereby
forcing the system to converge to its ground state.

The mean field models that we study are roughly of the following type:
There is a set of random variables X1, . . . , XN (the edge costs). A state σ is
a subset of {1, . . . , N} (a set of edges), and the hamiltonian is given by

H(σ) =
∑

i∈σ

Xi.
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If the variables Xi are exponential of rates ri as in [6], then we can think of
them as generated from an underlying set Y1, . . . , YN of rate 1 exponential
variables by Xi = Yi/ri. Then the Gibbs measure becomes

P (σ) ∝ exp

(

−
∑

i∈σ

Yi

T · ri

)

.

If we allow the rates ri to vary, there is no point in introducing the pa-
rameter T . Rescaling all the rates will give the same effect as changing the
temperature, which means that we can put T = 1 without loss of generality.

Conversely, we can regard each rate ri as a local temperature parameter
associated to the variable Yi. As in [6], we associate a parameter (called the
weight) to each vertex rather than to the edges. Following the cavity method,
we relax the optimization problem by introducing an extra vertex. Then,
realizing that the weight of this vertex plays the role of a local temperature
parameter, we apply the annealing trick and force the system back to its
original state by letting the weight of the extra vertex tend to zero. It may
come as a surprise that this gives us information about the distribution of
minσ H(σ), since at first it looks like we only get the original problem back.

Our approach is based on an exact solution of a certain class of “friendly”
problems. The first example of this kind was the formula conjectured by
G. Parisi for the cost An of the bipartite assignment problem with exponential
edge costs [22]. This formula,

E (An) = 1 +
1

4
+

1

9
+ · · · +

1

n2
, (5)

was proved in [12, 19, 20]. We introduce a random model that we call the
friendly model. In this model there is a large class of linear programming
problems that have similar exact solutions. In particular we have established
an analogue of (5) for the complete graph. For a suitable linear relaxation of
the perfect matching problem, the expectation of the cost Cn of the minimum
solution is given by the alternating sum

E (Cn) = 1 −
1

4
+

1

9
− · · ·+

(−1)n−1

n2
. (6)
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3 The random flow problem

3.1 The friendly model

In Section 3.2 we define a class of optimization problems whose feasible solu-
tions include loops and multiple edges. Here we introduce a random model
that contains such edges. This model is designed to allow for exact identities
like (5) and (6). We will refer to it as the friendly model. There are n ver-
tices v1, . . . , vn. Each vertex vi has a positive real weight γi. For each i and
j there is a potentially infinite set of edges connecting vi and vj . If i 6= j,
these edges have costs that are determined by the times of the events in a
Poisson process of rate γiγj. If i = j, there is a set of loops at this vertex,
and their costs are given by a Poisson process of rate γ2

i /2. All these Poisson
processes are independent.

This model has a certain self-similarity. If we group the vertices into
sets and regard the edges as connecting these sets instead of the individual
vertices, we obtain a structure that behaves in the same way as the original
model. For a set S of vertices, let

γS =
∑

i∈S

γi.

If S and T are disjoint, then the edges that connect S and T have costs given
by a Poisson process of rate γSγT , while the costs of the edges that have both
their endpoints in S are given by a process of rate γ2

S/2.

3.2 Flow problems

If we are given a set V = {v1, . . . , vn} of n vertices, and guaranteed the
existence of arbitrarily many edges between each pair of vertices (including
loops), we can define a certain type of optimization problem that we call flow

problem. We let each vertex vi have a nonnegative integer capacity ci. Let
E denote the set of edges. For each e ∈ E, let Xe ≥ 0 be the cost of e. For
e ∈ E and v ∈ V we use the notation 〈e, v〉 for the number of times that e is
connected to v. In other words

〈e, v〉 =











2, if e is a loop at v,

1, if e connects v to another vertex,

0, otherwise.
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For a nonnegative integer k, the flow problem asks for the vector σ : E →
R that minimizes

∑

e∈E

σ(e)Xe, (7)

subject to the constraints

• For each e ∈ E, 0 ≤ σ(e) ≤ 1,

• σ respects the capacity constraints at each vertex, that is, for each i,

∑

e∈E

〈e, vi〉σ(e) ≤ ci, (8)

• The total size of σ is (at least) k/2:

∑

e∈E

σ(e) ≥ k/2. (9)

Since the edge costs Xe are all nonnegative, we can obviously replace
the inequality in (9) by equality.

There exist feasible solutions if and only if 0 ≤ k ≤
∑

1≤i≤n ci. A vector
σ that satisfies the constraints (that is, a feasible solution) will be called a
flow. If equality holds in (9), σ is called a k-flow. The left-hand side of (8)
is called the degree of vi with respect to σ. If equality holds in (8), we say
that vi has full degree in σ.

In the generic case, when there are no linear relations between the edge
costs, there is a unique minimum k-flow for every k. In the friendly model,
genericity holds with probability 1. In the following, we sometimes assume
genericity without explicitly stating this assumption. We denote the min-
imum k-flow by σk (without assuming genericity, this notation would be
ambiguous). The cost of σk is denoted Ck, and the degree of vi in σk is
denoted δk(i).

4 The annealing method

Suppose that we are given a random flow problem in the friendly model, as
described in Sections 3.1 and 3.2. This means that we have specified the
number n, the weights γ1, . . . , γn and the capacities c1, . . . , cn. We also fix
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a positive integer k ≤
∑

1≤i≤n ci. As was explained informally in Section 2,
we introduce an extra vertex vn+1 of weight γn+1 and capacity 1. In the
following, quantities referring to this extended graph will be denoted with a
superscript (n + 1).

For the moment, we fix a vertex vi, 1 ≤ i ≤ n. Since cn+1 = 1, only one
edge between vi and vn+1 is relevant to the flow problem. We denote this
edge by ei and note that the cost Xi,n+1 of ei has exponential distribution of
rate γiγn+1, in other words, the density is

γiγn+1e
−γiγn+1t

for t ≥ 0. We are interested in the expected value of the coefficient σ
(n+1)
k (ei)

of ei in the minimum k-flow in the extended graph, as a function of γn+1.
Let us for the moment condition on the costs of all other edges. We let

f(x) denote the cost of the minimum k-flow on the extended graph given
that Xi,n+1 = x. We have

Ef(Xi,n+1) = γiγn+1

∫ ∞

0

e−γiγn+1xf(x) dx.

Moreover, the coefficient σ
(n+1)
k (ei) is the derivative of f(x) at x = Xi,n+1.

Here we disregard the fact that there may be a finite number of points where
f is non-differentiable. The following calculations by partial integration only
require f to be continuous. We have

E
[

σ
(n+1)
k (ei)

]

=

∫ ∞

0

γiγn+1e
−γiγn+1xf ′(x) dx.

By partial integration, this is equal to

γiγn+1

[
∫ ∞

0

γiγn+1e
−γiγn+1xf(x) dx− f(0)

]

= γiγn+1

[

EC
(n+1)
k −

(

C
(n+1)
k |Xi,n+1 = 0

)]

. (10)

Notice that we are still conditioning on all edge costs except Xi,n+1. In (10),

we therefore regard (C
(n+1)
k |Xi,n+1 = 0) as a non-random quantity.

We let the superscript (̂i) denote a flow problem where the capacity ci is
decreased by 1 (assuming that originally this capacity was nonzero). Since
one possibility of obtaining a k-flow in the extended graph is to use the edge
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ei together with the minimum (k − 2)-flow given this decreased capacity of
vi, we have

(

C
(n+1)
k |Xi,n+1 = 0

)

≤ C
(̂i)
k−2.

If we regard the edge costs as generated from an underlying set of rate
1 variables as described in Section 2, then we can let γn+1 → 0 for a fixed
point in the probability space. It is clear that, pointwise,

C
(n+1)
k → Ck and

(

C
(n+1)
k |Xi,n+1 = 0

)

→ C
(̂i)
k−2.

By the principle of dominated convergence we conclude from (10) that as
γn+1 → 0,

E
[

σ
(n+1)
k (ei)

]

γn+1
→ γi

(

ECk − EC
(̂i)
k−2

)

. (11)

So far we have conditioned on all edge costs except the cost Xi,n+1 of
ei. At this point it is clear that (11) must hold also if we interpret the
expectations as averages over all edge costs.

In fact there are methods that allow us to compute the expected degree
of a vertex in the minimum flow. In particular, this allows us to compute

lim
γn+1→0

1

γn+1
·

n
∑

i=1

E
[

σ
(n+1)
k (ei)

]

,

which by (11) is equal to
(

n
∑

i=1

γi

)

· ECk −
n
∑

i=1

γiEC
(̂i)
k−2. (12)

A convenient way to state this equation is

ECk =
1

γ1 + · · · + γn

· lim
γn+1→0

E
[

δ
(n+1)
k (n + 1)

]

γn+1

+ EC
(̂i)
k−2, (13)

where in the last term, EC
(̂i)
k−2 is interpreted as an average over a random

choice of i, taken with probabilities proportional to the weights, in other
words, the probability of choosing a particular i is

γi

γ1 + · · · + γn

.
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Provided that we can compute the expected degree of a vertex in the
solution to a random flow problem in the friendly model, equation (13) allows

us to compute ECk recursively by first computing EC
(̂i)
k−2 for 1 ≤ i ≤ n.

5 The average degree of a vertex in the min-

imum k-flow

Suppose that the weights and capacities are given, and let K =
∑

1≤i≤n ci.
Recall that δ0, . . . , δK are the degree vectors for the flows σ0, . . . , σK . In
this section we define another random process based on the weights and
capacities. This process was introduced by Marshall Buck, Clara Chan, and
David Robbins [6], and we refer to it as the Buck-Chan-Robbins urn process.
It turns out that several quantities associated to the random flow problem
have counterparts in the urn process. Virtually all our “exact” results for the
flow problem state that some random variable defined in terms of the flow
problem has the same expectation as a corresponding random variable defined
in terms of the urn process. In this section we define the one-dimensional
version of the urn process and show how Eδk(i) can be interpreted in terms
of this process.

An urn contains balls labeled 1, . . . , n, one ball corresponding to each
vertex in the graph. The balls have weights γ1, . . . , γn. Each time a ball is
drawn from the urn, it is chosen among the balls in the urn with probabilities
proportional to the weights. The capacities c1, . . . , cn serve as replacement

protocol : The balls that are drawn from the urn are put back into the urn as
long as they have not been drawn a number of times equal to their capacity.
When ball i has been drawn ci times, it is removed.

The results in this section can be stated for a discrete time version of this
process, where balls are simply drawn one at a time from the urn. However,
it is convenient to introduce a continuous time version of the process, where
the balls are drawn at random times independently of each other. This is
achieved by letting ball i be drawn from the urn at times determined by a
rate γi Poisson process. As soon as ball i has been drawn ci times, it is
removed.

We record the outcome of the urn process by letting Dk(i) be the number
of times that ball i occurs among the first k times that a ball is drawn from
the urn. Notice that the distribution of Dk(i) depends on the weights as
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well as the capacities, but that it is independent of whether we regard the
process as discrete or continuous time. Our method is based on the following
proposition:

Proposition 5.1.

Eδk(i) = EDk(i).

Let Tk be the time at which the k:th ball is drawn in the urn process.

Lemma 5.2.

lim
γn+1→0

E
[

δ
(n+1)
k (n + 1)

]

γn+1
= ETk.

Proof. By Proposition 5.1, we have

E
[

δ
(n+1)
k (n + 1)

]

= ED
(n+1)
k (n + 1).

We have to prove the identity

lim
γn+1→0

ED
(n+1)
k (n + 1)

γn+1
= ETk. (14)

This identity concerns the urn process only. We have

ED
(n+1)
k (n + 1) = P (t < Tk),

where t is the time at which ball n + 1 is drawn. This is equal to

E [1 − exp(−γn+1Tk)] . (15)

The left-hand side of (14) is the (right) derivative of (15) as γn+1 → 0+. By
differentiating, this is equal to

Tk · exp(−γn+1Tk) → Tk,

as γn+1 → 0+.
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6 The two-dimensional urn process

Suppose that the number n of vertices, the weights γi and the capacities ci

are given. We use the results of Sections 4 and 5 to obtain a “formula” for
ECk. This formula is expressed in terms of a two-dimensional version of the
urn process. In this version, there are two independent urn processes on the
vertices. The two processes take place in two independent directions along
the x- and y-axes in a two-dimensional time plane. For each vertex vi, we let
Pi(x) be the number of times that the vertex vi has been drawn in the first
process (the x-process) up to time x. Similarly, let Qi(y) be the number of
times that vi has been drawn in the second urn process up to time y. We
define the rank of the process for the single vertex vi at time (x, y) by

Ranki(x, y) = min(Pi(x), ci) + min(Pi(x) + Qi(y), ci). (16)

The total rank of the process is defined by

Rank(x, y) =
n
∑

i=1

Ranki(x, y).

We let Rk = Rk(c, γ) be the region in the positive quadrant of the x-y-plane
for which Rank(x, y) < k. The following theorem gives an exact characteri-
zation of ECk.

Theorem 6.1.

ECk = E [area(Rk)] .

Proof. This follows inductively from (13) and Proposition 5.1. Suppose by

induction that EC
(̂i)
k−2 = E

(

area(R
(̂i)
k−2)

)

for 1 ≤ i ≤ n. Then by (13) and

Lemma 5.2,

ECk =
1

γ1 + · · ·+ γn
· ETk + E

[

area(R
(̂i)
k−2)

]

. (17)

We have to show that the right-hand side of (17) is equal to E [area(Rk)] .
Therefore consider the urn process. Let x0 be the time at which the first ball
is drawn in the x-process. Then the expected area of the part of Rk that lies
in the strip 0 < x < x0 is

ETk

γ1 + · · ·+ γn
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which is the first term in the right-hand side of (17).
The probability that the first ball to be drawn is the one labeled i is

γi

γ1 + · · · + γn
.

If this happens, then the expected area of the remaining part of Rk (for which
x > x0) is equal to

E
[

area(R
(̂i)
k−2)

]

,

which is the second term of (17).

If all vertices have capacity 1 and k = n, the flow problem is an LP-
relaxation of the perfect matching problem. It is easy to show that in this
case, Theorem 6.1 specializes to (6).

7 Estimate of the size of the region Rk

Using standard techniques of probability theory, one can obtain estimates of
the expected area of Rk, and thereby of ECk.

Suppose that n and k are given. Let R⋆ be the non-random region given
by

E (Rank(x, y)) ≤ k.

One can establish the following upper bound on the difference between the
area of R⋆ and the expected area of R:

Theorem 7.1. If for every i, γi = 1 and ci ≤ 2, then

|E (area(R)) − area(R⋆)| = O

(

(log n)3/2

n1/2

)

.

In the case that all vertices have capacity 2, and k = 2n, the region R⋆

is precisely the region under the curve in Figure 1.

8 The TSP versus the 2-factor problem

In [8], Alan Frieze studied the relation between the 2-factor problem and the
TSP on the complete graph Kn with uniform [0, 1] edge costs. With our
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notation, Ln is the length of the minimum tour and Zn is the length of the
minimum 2-factor. Frieze proved that

Ln − Zn = o(1) whp as n → ∞. (18)

When the edge costs are known, Zn is computable in polynomial time.
In [8], Frieze showed that with high probability, the minimum 2-factor can
be “patched” to a tour at small extra cost, and that this can be done in
polynomial time. Hence a polynomial time algorithm will produce a tour
that with high probability is not much worse than the minimum tour. Using
Fireze’s method, we can prove the following theorem:

Theorem 8.1. In the friendly model with weights γi = 1,

E |Ln − L⋆| = O

(

(log log n)1/2

(log n)1/4

)

.

In particular, as n tends to infinity, ELn → L⋆ and Ln
p
→ L⋆.

References

[1] Achlioptas, Dimitris, Naor, A. and Peres, Yuval, Rigorous location of

phase transitions in hard optimization problems, Nature 435 (205), 759–
764.

[2] Achlioptas, Dimitris and Peres, Yuval, The threshold for random k-SAT

is 2k log 2 − O(k), Journal of the AMS 17 (2004), 947–973.

[3] Aldous, David, Asymptotics in the random assignment problem, Probab.
Theory Relat. Fields, 93 (1992) 507–534.

[4] Aldous, David, The ζ(2) limit in the random assignment problem, Ran-
dom Structures & Algorithms 18 (2001), no 4. 381–418.

[5] Boettcher, Stefan and Percus, Allon, Nature’s Way of Optimizing,
arXiv:cond-mat/9901351.

[6] Buck, Marshall W., Chan, Clara S. and Robbins, David P., On the

Expected Value of the Minimum Assignment, Random Structures & Al-
gorithms 21 (2002), no. 1, 33–58.

13



[7] Frieze, Alan M. and Sorkin, Gregory B., The probabilistic relationship

between the assignment and asymmetric traveling salesman problems,
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, Baltimore MD (2001), 652–660.

[8] Frieze, Alan M., On random symmetric travelling salesman problems,
Mathematics of Operations Research, Vol. 29, No. 4, November 2004,
878–890.

[9] Guerra, F., Replica Broken Bounds in the Mean Field Spin Glass Model,
Communications Math. Phys. 233 (2003), 1–12.

[10] Kirkpatrick, Scott and Toulouse, Gérard, Configuration space analysis

of travelling salesman problems, Journal de Physique 46 (1985), 1277–
1292.
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[25] Wästlund, J., A Proof of a Conjecture of Buck, Chan and Robbins on

the Expected Value of the Minimum Assignment, Random Structures
and Algorithms (2005) 237–251.
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