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Abstract

We repeatedly toss a biased coin where the probability is p of ob-
serving “heads”. The probability of a certain event can be regarded as
a function of p. L. Lovász asked for a characterization of the functions
occurring as the probability of some “reasonable” event. We state this
problem in precise terms by introducing the concept of an “observ-
able” event. Our main theorem states that a function (0, 1) → (0, 1)
represents the probability of an observable event if and only if it is
continuous, and does not tend to 0 or 1 faster than polynomially, as p

tends to 0 or 1. We also give several simple examples of events having
probabilities given by elementary functions.

1 Introduction

Suppose that we repeatedly toss a coin which is unfair in the sense that the
probability of observing “heads” is p, and the probability of observing “tails”

∗Note: A first version of this paper was written in 1997 and included in my PhD thesis
in 1999. After my PhD dissertation the last section on “finite” events was added. Later
I was informed that my main result, Theorem 1.2, was established already in 1994 by
M. S. Keane and G. L. O’Brien, A Bernoulli factory, ACM Transactions on Modeling and
Computer Simulation 4, Issue 2, 213–219 (thanks to Yuval Peres for pointing this out).
Of course I do not blame Lovász for giving me a problem that was already solved, he
mentioned it very informally at a dinner in his house. Actually it is a very nice problem
and I do not at all regret having spent time on it. Anyway, this is the reason the paper was
never published in a journal. However, in the years that have passed, several people have
asked me about this paper. Therefore I here provide it just as it was when I wrote it in
1999, without any further apologies for omitting necessary references. Anyone interested in
pursuing the subject further should also consult the more recent publications by Elchanan
Mossel, Serban Nacu, Yuval Peres and others.
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is 1− p. The probability of a given event can then be regarded as a function
of p.

Some polynomials and rational functions occur as probabilities of events
which are easy to describe. For example, the probability of observing two
heads in the first two tosses is p2, and the probability that the first tails
occurs after an odd number of tosses is 1/(1 + p).

L. Lovász [5] posed the problem of determining the class of functions
representing the probability of some “reasonable” event. In particular, he
asked if the function p 7→ 2p, for p in some suitable interval, say 0 < p < 0.4,
will arise in this way. In this paper we state the problem in precise terms,
and give a complete solution. We also give some simple examples of events
having probabilities given by transcendental functions like e−p.

We represent the possible outcomes of the coin flipping process by the set
Ω of all sequences X = (X1, X2, X3, . . . ) such that Xi ∈ {0, 1} for every i. A
specific outcome of the process is represented by the sequence X such that
Xi = 1 if the i:th toss results in “heads”, and Xi = 0 if the i:th toss results
in “tails”.

The product topology on Ω is defined by taking the sets U(a1, . . . , ak) =
{X ∈ Ω : Xi = ai, 1 ≤ i ≤ k} of all 0-1 sequences beginning by a1, . . . , ak,
as a basis for the open sets.

Every value of p, 0 < p < 1, determines a probability measure Pp on Ω
by the requirement that the Xi’s are independent, and Pp(Xi = 1) = p for
every i. We make a few remarks on this construction.

We require that

Pp(U(a1, . . . , ak)) =

k
∏

i=1

pai(1 − p)1−ai .

Since every open set is a disjoint countable union of basic open sets, this
determines Pp(E) for every open set E. The outer measure of any subset S
of Ω is now defined by

Pp(S) = inf{Pp(E):E is open and S ⊆ E}.

S is measurable with respect to Pp, if Pp(S)+Pp(S
c) = 1. It may happen that

a set is measurable with respect to Pp for one value of p, and non-measurable
for another. When we speak of an event, we mean a subset of Ω which is
measurable with respect to Pp for every p.
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For an introduction to probability spaces, as well as a discussion of coin
flipping, we refer to [2].

Since we are not actually tossing the coin an infinite number of times,
we are primarily interested in events which can be decided by observing the
outcome of a finite number of tosses. This motivates the following definition.

Definition 1. An event E is observable if there are two sets A and B of
finite 0-1 strings such that

(i) for every p in (0, 1), with probability 1 one and only one of the strings
in A and B will occur as an initial segment of X1, X2, X3 . . . , and

(ii) if this string is in A, E occurs, while if it is in B, E does not occur. (In
the unlikely event that no string in the two lists occurs as an initial segment
of X1, X2, X3 . . . , E may or may not occur).

This notion is related to the topology of the probability space Ω. To
say that an event E is open is to say that if X = (X1, X2, X3, . . . ) belongs
to E, then there is some neighborhood of X, which can be taken to be
U(X1, . . . , Xk) for some k, which lies entirely in E. In terms of coin flipping,
this means that if the event E occurs, then we will know this after a finite
number of tosses.

In general, the interior of an event E, IntE, consists of those outcomes for
which we can decide after some finite number of coin tosses that E occurs.
The boundary BdE of E consists of those infinite 0-1-sequences for which we
never know whether E occurs or not.

Proposition 1.1. An event E is observable if and only if BdE is a null set

for every p in (0, 1).

Proof. Suppose E is observable. Then BdE is the set of all X such that no
initial segment of (X1, X2, X3, . . . ) belongs to A or B. By (i) of Definition 1,
this is a null set for every p.

Suppose on the other hand that BdE is a null set for every p in (0, 1).
Then we let A be the set of all (a1, . . . , ak) which are minimal with the
property that U(a1, . . . , ak) ⊆ E, and let B be the set of all (b1, . . . , bk) which
are minimal with the property that U(b1, . . . , bk) ∩ E = ∅. Since Definition
1 is satisfied, E is observable.

Note that an observable event is not necessarily open, and that an open
event is not necessarily observable. For an example of an open event which
is not observable, Let E = ∪∞

n=1En, where En is the event that X1 =
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Xn+1, X2 = Xn+2, . . . , Xn = X2n. E is clearly open and dense. Since
the events En are not mutually exclusive, we have the strict inequality
P1/2(E) <

∑

∞

n=1 P1/2(En) = 1/2 + 1/4 + 1/8 + · · · = 1. Hence BdE, which
equals Ec, has positive probability (at least for p = 1/2), which means that
E is not observable.

However, a function representing the probability of an observable event
E also represents the probability of an open event, since by Proposition 1.1,
Pp(E) = Pp(IntE).

Note also that if BdE has measure 0 for every p, then E is automatically
an event, since IntE is open and therefore measurable for every p.

We now formulate Lovász’ question as follows:

For which functions f : (0, 1) → [0, 1] does there exist an observable event

E, such that Pp(E) = f(p) for every p in (0, 1)?

Without any restriction on the event E, the question would be more or
less trivial. As we shall see in a moment, if f is any function (0, 1) → [0, 1],
then there is an event E such that Pp(E) = f(p).

We remark that if f is the probability of an open event, and f(p) = 0 for
some p ∈ (0, 1), then f is identically 0, since any U(a1, . . . , ak) has positive
probability for every p. Similarly, if f is the probability of an observable
event, and f(p) is 0 or 1 for some p, then f is identically 0 or identically 1
respectively. Hence the restrictions of the range of f in Theorems 1.2 and
1.3 below.

In Section 2, we will discuss several methods for constructing observable
events with given probability functions. As an example, we construct an
event having probability exp

(

−√
cos p

)

. In Section 3, we prove the following
theorem, which answers Lovász’ question.

Theorem 1.2. A function f : (0, 1) → (0, 1) represents the probability of an

observable event if and only if f is continuous, and for some k,

pk(1 − p)k < f(p) < 1 − pk(1 − p)k.

Note that although f has to be continuous on the open interval (0, 1),
it does not have to tend to a limit as p tends to 0 or 1. For example, the
function

1

2
+

(

p − 1

2

)

sin
1

p(1 − p)
,
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which oscillates wildly near p = 0 and p = 1, still satisfies the condition of
Theorem 1.2.

We then prove the analogous theorem for open events. We remind the
reader that a function f is lower semicontinuous if f(a) ≤ lim infx→af(x) for
every a in its domain.

Theorem 1.3. A function f : (0, 1) → (0, 1] represents the probability of an

open event if and only if f is lower semicontinuous, and for some k,

f(p) > pk(1 − p)k

In particular, this shows that there is an open event with probability
given by

f(p) =

{

1, if p is irrational

1 − 1/n, if p is rational with minimal denominator n

2 Some methods for constructing an event

with a given probability

Our first nontrivial observation is the following, which seems to be “folklore”.

Theorem 2.1. There is an observable event which has constant probability

1/2.

In other words, we can use an unfair coin to simulate a fair coin, even
without knowing the probability p. There is a simple way of doing this,
described in [6]: Flip the coin twice. If the outcome is heads-tails, we answer
“heads”. If the outcome is tails-heads, we answer “tails”. If the two tosses
give the same result, we repeat the procedure.

Formally, we introduce a new random variable Y : Ω → {0, 1}, by letting
Y = X2n, where n is minimal with X2n−1 6= X2n, if there is such an n, and
letting Y = 0 or 1 arbitrarily if X2n−1 = X2n for every n. We claim that the
event E = Y −1{1}, that is, the event “Y = 1”, is an observable event with
constant probability 1/2.

To see that E is observable, note that

Bd(Y −1{1}) = {X ∈ Ω : X2n−1 = X2n for every n},
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which is clearly a null set for every p in (0, 1). To see that Y −1{1} has
measure 1/2, it now suffices to show that P (IntE) = P (IntEc), which is
clear by symmetry, since the outcomes heads-tails and tails-heads are equally
probable.

This principle is used in tie-breaks in racket games like tennis and table
tennis. In general, it is an advantage to serve. It is still reasonable to demand
that if both players are equally skilled, that is, if the probability p that the
server wins a given point is independent of which player has the serve, then
both players should have a 50% chance of winning the game, regardless of
the value of p. A simple solution to this problem is to let the serve alternate
between the players, and declare the winner to be the first player to be two
points ahead.

One can see that this corresponds exactly to the construction above. If
the two first points are distributed one point to the server and one point to
the receiver, then the player who won both these points is the winner. If
the server wins both, or if the receiver wins both, the score is even, and the
procedure is repeated.

More efficient ways of simulating a fair coin using a biased coin are dis-
cussed in [7].

It is interesting to note that Theorem 2.1 already gives us a method
for constructing an event which has probability

√
p. This was an idea of

S. Vempala. The Taylor expansion of
√

p around p = 1 can be written as

√
p = 1 −

∞
∑

n=0

Cn

22n+1
(1 − p)n+1, (1)

where Cn =
(

2n
n

)

/(n + 1) is the n:th Catalan number.
It is well known that Cn is equal to the number of parenthetically well

formed expressions with n pairs of parentheses, or equivalently, the number of
0-1-strings with n zeros and n ones, such that every initial segment contains
at least as many ones as zeros.

Suppose that we flip a fair coin until, for the first time, the total number
of tails is greater than the total number of heads. Then for a given n, the
probability that this happens after 2n + 1 steps is equal to Cn/22n+1, since
there are Cn 0-1-strings of length 2n + 1 with n ones and n + 1 zeros, such
that no proper initial segment contains more zeros than ones, and each of
these occurs with probability 1/22n+1.
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We now start by flipping a (simulated) fair coin until, for the first time,
the total number of tails is greater than the number of heads (which of course
happens at some point with probability 1). If this happens after 2n+1 steps,
we continue by flipping the coin (in the usual way) n+1 times. Then the event
E that at least one of these n + 1 tosses results in “heads” is an observable
event, and the probability of E is given by (1), so that Pp(E) =

√
p.

We can make the following refinement of Theorem 2.1.

Theorem 2.2. For every c ∈ [0, 1], there is an observable event which has

constant probability c.

In order to prove this, we introduce a few concepts which will also be
useful later. We define a sequence (Yk)

∞

k=1 : Ω → Ω, by letting Yk = X2n,
where n is the k:th number with the property that X2n−1 6= X2n. We let
Yk be 0 or 1 arbitrarily if there are at most k − 1 such values of n, but the
probability of this is 0 for every p. Since the outcomes heads-tails and tails-
heads are equally probable, and the Xi’s are independent, it follows that the
Yk’s are independent, and that Pp(Yk = 0) = Pp(Yk = 1) = 1/2.

The function R : Ω → [0, 1] is defined by R(X) =
∑

∞

k=1 2−kYk. Let λ
denote Lebesgue measure on R.

Lemma 2.3. For every measurable subset S of [0, 1], and every p,

Pp(R
−1(S)) = λ(S).

In other words, R is uniformly distributed in [0, 1], regardless of p.

For a proof of this, we refer to [3, p. 35]. We remark that the sequence
Y1, Y2, Y3, . . . is the binary representation of the number R(X). In particular,
if S is Lebesgue measurable, then R−1(S) is measurable for every p.

Let Ω′ = {X ∈ Ω : X2n−1 6= X2n for infinitely many n}. Clearly for every
p, Pp(Ω

′) = 1.

Lemma 2.4. If X ∈ Ω′, then R is continuous at X.

Proof. If X ∈ Ω′, then for every n there is a number k such that X1, . . .Xk

determine Y1, . . . , Yn. This implies that R maps the open neighborhood
U(X1, . . . , Xk) of X into the interval [y, y + 2−n], where y =

∑n
i=1 2−iYi.

We say that a set S of real numbers is observable if λ(BdS) = 0.
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Lemma 2.5. If S is an observable subset of [0, 1], then R−1(S) is observable.

Proof. Since Ω′ has measure 1 for every p, it suffices to show that the in-
tersection of Bd(R−1(S)) with Ω′ is a null set for every p. By Lemma 2.4,
Bd(R−1(S))∩Ω′ ⊆ R−1(BdS). Since BdS has Lebesgue measure 0, it follows
from Lemma 2.3 that R−1(BdS) has measure 0 for every p.

If I is a subinterval of [0, 1], then, since the boundary of I has Lebesgue
measure 0, R−1(I) is an observable event. Hence the event R(X) < c is an
observable event which has probability c, and Theorem 2.2 is proved.

D. E. Knuth and A. C. Yao [4] give an optimal method for simulating a
discrete random variable using a fair coin.

We now show that any function f : (0, 1) → [0, 1] represents the proba-
bility of some event E ⊆ Ω. Let E be the event “There exists a number q
such that {i : Xi = 1} has density q, that is, such that

|{i : Xi = 1} ∩ {1, . . . , n}|
n

→ q as n → ∞,

and R(X) < f(q)”. For every p, Pp({i : Xi = 1} has density p) = 1. Hence
Pp(E) = Pp(R(X) < f(p)) = f(p).

The idea of introducing new random variables distributed on {0, 1} ac-
cording to a given probability function f , and then use these as “input” for
an observable event with another probability function g can be used to show
the following:

Theorem 2.6. If f and g are functions (0, 1) → (0, 1) representing the

probability of some observable events, then so is g ◦ f .

Proof. Let Ef and Eg be observable events with probabilities f and g respec-
tively. Given an element X = (X1, X2, X3, . . . ) of Ω, we can almost certainly
(for every p) divide this sequence into finite blocks b1 = (X1, . . . , Xk1

), b2 =
(Xk1+1, . . . , Xk2

), . . . such that for every i, U(bi) is a subset of either Ef or
Ec

f .
We now assume that the blocks bi have been chosen with minimal length

with this property. Define a sequence (Yi)
∞

i=1 by letting Yi = 0 or 1 as U(bi)
is a subset of Ef or Ec

f respectively. (Yi)
∞

i=1 gives a map Ω → Ω which is
well defined except on a null set, on which we can define it arbitrarily. Since
the numbers k1, k2, . . . are stopping times, the Yi’s are independent, and for
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every i, P (Yi = 1) = f(p) (for a discussion of stopping times, we refer to any
textbook on probability, such as [2]). Hence the probability that (Yi)

∞

i=1 ∈ Eg

is g(f(p)). The boundary of this event is the union of the set of strings for
which one of the blocks bi does not terminate, and the inverse image of the
boundary of Eg. The first of these is a countable union of null sets, hence a
null set. That the second is a null set follows from the fact that the Yi’s are
independent and that Pf(p)(BdEg) = 0. Hence the inverse image of Eg under
(Yi)

∞

i=1 is an observable event with probability function g ◦ f .

There is another way in which Theorem 2.2 can be generalized:

Theorem 2.7. If f1, f2, f3, . . . is a sequence, finite or infinite, of functions,

each representing the probability of an observable event, then any convex

combination of f1, f2, f3, . . . is the probability of some observable event.

Proof. Let f = α1f1 + α2f2 + α3f3 + . . . , where 0 ≤ αi ≤ 1, and α1 + α2 +
α3 + · · · = 1. Let Ei be an observable event with probability fi(p).

Let I1, I2, I3, . . . be disjoint subintervals of [0, 1] such that |Ii| = αi. It
follows from Lemma 2.3 that, with probability 1 for every p, R(X) ∈ IntIi

for some i, and X ∈ Ω′. In this case by Lemma 2.4 there is a k such that
R(U(X1, . . . , Xk)) is contained in Ii.

Assuming that k is minimal with this property, we let E be the event
that (Xk+1, Xk+2, Xk+3, . . . ) ∈ Ei. For a certain i, the probability that
R(U(X1, . . . , Xk)) is contained in Ii, and (Xk+1, Xk+2, Xk+3, . . . ) ∈ Ei, is
αifi. Since these events are mutually inconsistent, the probability of E is
given by α1f1 + α2f2 + α3f3 + . . . , which proves the theorem.

Using Theorem 2.7, together with the fact that powers of p and 1 − p
are probabilities of observable events, we can explicitly construct observable
events with probability functions like e−p, cos p and sin p. For example, the
expansion

e−p =
e1−p

e
=

1

e
+

1 − p

e
+

(1 − p)2

2e
+ . . .

shows that e−p, being a convex combination of powers of 1 − p, is the prob-
ability of an observable event.

The usual Taylor series expansions of cos p and sin p can be rearranged
as

cos p = 1 −
∞
∑

k=0

1

(4k + 2)!

(

p4k+2

(

1 − p2

(4k + 3)(4k + 4)

))

,
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sin p = p

(

1 −
∞
∑

k=0

1

(4k + 3)!

(

p4k+2

(

1 − p2

(4k + 4)(4k + 5)

))

)

,

showing that cos p and sin p are the probabilities of observable events. By
Theorem 2.6, it follows that for example the function exp

(

−√
cos p

)

is the
probability of an observable event.

3 Proof of Theorems 1.2 and 1.3

We begin by establishing the necessity of the conditions given in Theorems
1.2 and 1.3.

Theorem 3.1. If f : (0, 1) → (0, 1) represents the probability of an observ-

able event, then there is a positive integer k such that

pk(1 − p)k < f(p) < 1 − pk(1 − p)k (2)

This will follow from the analogous theorem for open events:

Theorem 3.2. If f : (0, 1) → (0, 1] represents the probability of an open

event, then there is a positive integer k such that

pk(1 − p)k < f(p) (3)

Proof. It is enough to show that there is an m such that, for p < 1/2,
f(p) > pm. Let f : (0, 1) → (0, 1] be the probability of an open event E. Since
f(p) > 0, there is some finite 0-1 string a1, . . . , am such that U(a1, . . . , am) ⊆
E. For p < 1/2, the probability that a given 0-1-string of length m occurs
as an initial segment of (X1, X2, X3, . . . ) is at least pm. Hence f(p) > pm.

The same argument shows that there is an n such that, for p > 1/2,
f(p) > (1 − p)n. We now take k = max(m, n) in (3), and the theorem is
proved.

Now Theorem 3.1 follows by noting that if f : (0, 1) → (0, 1) represents
the probability of an observable event, then, since Pp(IntE) = f(p), and
Pp(Int(Ec)) = 1 − f(p), both f and 1 − f are probabilities of open events.
By Theorem 3.2, we can find k1 and k2 such that f(p) > pk1(1 − p)k1 and
1 − f(p) > pk2(1 − p)k2. If we take k = max(k1, k2), then (2) holds.
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Theorem 3.3. If f : (0, 1) → [0, 1] is the probability of an open event, then f
is lower semicontinuous. Hence if f is the probability of an observable event,

then f is continuous.

Proof. Let E be an open event with probability f(p). Let En be the event
that the outcomes of X1, . . . , Xn determine that E occurs, that is,

En = {X ∈ Ω : U(X1, . . . , Xn) ⊆ E}.

Since E is open, Pp(En) → f(p) pointwise as n → ∞. Since Pp(En) is
continuous (being a polynomial in p), and Pp(En) is increasing with n, it
follows that f is lower semicontinuous. The second statement of the theorem
now follows as above by noting that if f represents the probability of an
observable event, then both f and 1 − f are probabilities of open events.
Hence both f and 1 − f are lower semicontinuous, which implies that f is
continuous.

We now turn to the proof of the sufficiency of the conditions given in
Theorem 1.2. We first need to establish a couple of lemmas.

Definition 2. A function α : Ω → N is observable, if α−1(n) is observable
for every n.

In other words, with probability 1 for every p, we will know the value of
α after a finite number of tosses.

Lemma 3.4. If (0, 1) is covered by countably many open subintervals Ui,

i ∈ N, and k is a positive integer, then there is an observable function

α : Ω → N such that for every p ∈ (0, 1),

Pp

(

α−1{n : p /∈ Un}
)

< pk(1 − p)k. (4)

This means that there is a method by which we can stop after a finite
number of tosses, and make a guess of the form “p ∈ Ui”, in such a way
that, for any given p, the probability that the guess is incorrect is bounded
by pk(1 − p)k.

The number of tosses after which we stop and make a guess need not be
specified in advance, but may depend on the outcome of the tosses.

To do this, we begin by tossing the coin until we have observed at least
2k + 1 heads and at least 2k + 1 tails. Suppose that this happens after m
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tosses. With a very rough estimate, since there are 2m binary strings of
length m, and since each string containing 2k + 1 heads has probability at
most p2k+1 of occurring, the probability of observing at least 2k + 1 heads in
m tosses is at most

2mp2k+1 < p2k < pk(1 − p)k,

if p < 2−m. Similarly, the probability of observing at least 2k + 1 tails in
m tosses is smaller than pk(1 − p)k if p > 1 − 2−m. We can therefore safely
decide to guess on an interval intersecting [2−m, 1 − 2−m].

By compactness, we can choose a finite number of Ui’s, say U1, . . . , Un,
which cover [2−m, 1−2−m]. We can also find an ǫ > 0 such that pk(1−p)k > ǫ
throughout [2−m, 1 − 2−m]. For positive integers N , we let

pN =
X1 + · · ·+ XN

N
.

It is now sufficient to note that, if p ∈ Ui, then as N → ∞, Pp(pN ∈ Ui) → 1.
This is a consequence of the Law of Large Numbers (see for example [2]).

We now choose a closed subinterval Fi of Ui, for 1 ≤ i ≤ n, in such a
way that the Fi’s cover [2−m, 1 − 2−m]. We choose N large enough that for
any p ∈ [2−m, 1 − 2−m], the probability (with respect to Pp) that, for some
Ui ,1 ≤ i ≤ n, pN ∈ Fi and p /∈ Ui, is smaller than ǫ. We flip the coin N
times, and let α = α(X) be such that pN ∈ Fα, if pN ∈ [2−m, 1 − 2−m]. If
pN /∈ [2−m, 1 − 2−m], we define α arbitrarily.

We have now shown that if we condition on the value of m, then the
inequality (4) holds for every p. This proves Lemma 3.4.

The next lemma shows that any function satisfying the conditions of The-
orem 1.2 can be approximated well by a function representing the probability
of an observable event.

Lemma 3.5. If f is any continuous function (0, 1) → (0, 1), and l is any

positive integer, then there is a function g representing the probability of an

observable event, such that for every p in (0, 1),

|f(p) − g(p)| < pl(1 − p)l.

Proof. Since f is continuous, we can choose countably many open subinter-
vals U1, U2, U3, . . . covering (0, 1), and numbers q1, q2, q3, . . . so that for every
p ∈ Ui,

|f(p) − qi| < pl+1(1 − p)l+1.
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By Lemma 3.4, there is an observable function α : Ω → N such that for every
p, Pp(α : p /∈ Uα) < pl+1(1 − p)l+1. Since α is observable, with probability
1 there exists an r such that X1, . . . , Xr determine the value of α = α(X).
We assume that r is minimal with this property.

Now let E be the event

R(Xr+1, Xr+2, Xr+3, . . . ) < qα,

By Lemma 2.5, E is observable. We let g(p) = Pp(E). Then we have

g(p) =
∞
∑

i=1

Pp(α
−1(i))qi.

Hence for every p, the error |f(p) − g(p)| is bounded by

Pp (p /∈ Uα) + sup{|f(p) − qi| : p ∈ Ui},

which is smaller than

2pl+1(1 − p)l+1 < pl(1 − p)l.

We notice that it is possible to deduce the Weierstrass approximation the-
orem from Lemma 3.5 (or from Theorem 1.2). If [a, b] is a compact subinterval
of (0, 1), then, with the notation of Lemma 3.5, there exists an observable
event E with probability given by a function g approximating f to within
ǫ throughout [a, b]. Let gn(p) be the probability that after tossing a coin n
times, we know that the event E occurs. Then gn(p) is a monotone sequence
of polynomials converging pointwise, and hence uniformly, to g(p) on [a, b].
In particular, there is a polynomial approximating f to within 2ǫ on [a, b].

A proof of the Weierstrass approximation theorem using probabilistic
arguments was given by S. N. Bernstein in [1].

We now conclude the proof of Theorem 1.2. Let f : (0, 1) → (0, 1) be any
continuous function satisfying (2). If we apply Lemma 3.5, with l = k + 1,
we find that there exists a function f1, representing the probability of an
observable event, such that

|f1(p) − f(p)| < pk+1(1 − p)k+1,

13



for every p. We then have

f1(p) > f(p) − pk+1(1 − p)k+1.

Since f(p) < 1 − pk(1 − p)k, we see that

f1(p) > 2f(p)− pk+1(1− p)k+1 − 1+ pk(1− p)k > 2f(p)− 1 + pk+1(1− p)k+1.

Similarly,
f1(p) < f(p) + pk+1(1 − p)k+1.

Since f(p) > pk(1 − p)k, we have

f1(p) < 2f(p) + pk+1(1 − p)k+1 − pk(1 − p)k < 2f(p) − pk+1(1 − p)k+1.

Combining the inequalities for f1, we get

2f(p) − 1 + pk+1(1 − p)k+1 < f1(p) < 2f(p) − pk+1(1 − p)k+1,

which can be rearranged as

pk+1(1 − p)k+1 < 2f(p) − f1(p) < 1 − pk+1(1 − p)k+1.

If we repeat this argument, replacing f(p) by 2f(p) − f1(p), and k by
k + 1, we find that there exists a function f2 which is the probability of an
observable event, such that

pk+2(1 − p)k+2 < 4f(p) − 2f1(p) − f2(p) < 1 − pk+2(1 − p)k+2.

Continuing in this way, we can find functions f1, f2, f3, . . . , each representing
the probability of an observable event, such that for every n,

pk+n(1 − p)k+n < 2nf(p) − 2n−1f1(p) − · · · − fn(p) < 1 − pk+n(1 − p)k+n.

If we replace the lower and upper bounds by 0 and 1, and divide by 2n, we
get

0 < f(p) − 1

2
f1(p) − 1

4
f2(p) − · · · − 1

2n
fn(p) <

1

2n
.

Letting n → ∞, we obtain

f(p) =
∞
∑

n=1

1

2n
fn.

14



By Theorem 2.7, this shows that f is the probability of an observable
event. This completes the proof of Theorem 1.2.

Once Theorem 1.2 is established, the proof of Theorem 1.3 is a relatively
simple matter. We have already shown that the conditions of Theorem 1.3
are necessary for the existence of an open event with probability function f .

Lemma 3.6. If g1, g2, g3, . . . are functions (0, 1) → (0, 1) representing the

probabilities of observable events E1, E2, E3, . . . , then there is an open event

E such that

Pp(E) = 1 −
∞
∏

n=1

gn(p). (5)

Proof. With probability 1, for every p ∈ (0, 1), X = (X1, X2, X3, . . . ) can be
divided into blocks b1 = (X1, . . . , Xk1

), b2 = (Xk1+1, . . . , Xk2
), . . . , such that

for every i, U(bi) ⊆ Ei, or U(bi) ⊆ Ec
i .

We assume that every ki be minimal with this property, given that all kj

for j < i have already been chosen. This means that k1, k2, k3, . . . are stop-
ping times, so that the events U(bi) ⊆ Ec

i are independent. It may happen
that only finitely many ki’s can be chosen in this way, so that only finitely
many blocks are well defined. The probability that the blocks b1, . . . , bn

are well-defined, and that U(bi) ⊆ Ec
i for some i, 1 ≤ i ≤ n, is given by

1 − g1g2g3 . . . .
Let E be the event that for some i, the blocks b1, . . . , bi are well defined,

and U(bi) ⊆ Ec
i . Then E is an observable event, with probability given by

(5).

Let f be any lower semicontinuous function (0, 1) → (0, 1] satisfying
f(p) > pk(1 − p)k for some k. We extend the domain and range of f by
letting f(0) = f(1) = 0, and define, for n ≥ 0, functions fn : (0, 1) → [0, 1]
by

f0(p) = 0,

fn(p) = inf
x∈[0,1]

{f(x) + n |x − p|} − pk+n(1 − p)k+n.

The function fn is continuous for every n. Since f is lower semicontinuous,
fn(p) → f(p) as n → ∞.

To be able to apply Lemma 3.6, we let

gn =
1 − fn

1 − fn−1
, n ≥ 1,
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so that 1 − fn = g1g2g3 . . . gn, and

f = 1 −
∞
∏

n=1

gn.

Since for every p, fn(p) > fn−1(p), gn is a continuous function (0, 1) → (0, 1).
We have to show that, for some l,

pl(1 − p)l < gn(p) < 1 − pl(1 − p)l. (6)

¿From the definition we see that, for every n, fn(p) → 0 as p → 0 or p → 1
(this is why we defined f(0) and f(1) to be 0). Hence gn(p) → 1 as p → 0 or
p → 1, so that the left inequality of (6) is satisfied. For the right inequality,
we have

gn(p) = 1 − fn(p) + fn−1(p)gn(p) < 1 − fn(p) + fn−1(p) ≤
≤ 1 + pk+n(1 − p)k+n − pk+n−1(1 − p)k+n−1 < 1 − pk+n(1 − p)k+n.

Hence by Theorem 1.2, every gn represents the probability of an observ-
able event, so that by Lemma 3.6, f is the probability of an open event. This
proves Theorem 1.3.

4 Finite events

Even if an event E is observable, it may happen that for some 0-1-string
X, we cannot tell from any finite number of outcomes X1, . . . , Xn whether
E occurs or not. If we demand that this should never happen, that is,
that BdE = ∅, then by compactness, there must be a number N such that
X1, . . . , XN always determine whether or not E occurs. Such an event will
be called finite, and the minimal value of N such that E is determined by
X1, . . . , XN will be called the degree of E.

Lemma 4.1. A function f(x) represents the probability of a finite event if

and only if for some N we can express it as:

f(x) =

N
∑

i=0

aix
i(1 − x)N−i, (7)

with 0 ≤ ai ≤
(

N
i

)

for every i.
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Proof. Suppose E is a finite event of degree N , and let ai be the number of
strings of length N containing exactly i heads, for which E occurs. Then

Pp(E) =

N
∑

i=0

aip
i(1 − p)N−i. (8)

In (8), for each coefficient ai we have 0 ≤ ai ≤
(

N
i

)

. Conversely, if a polyno-
mial f(p) can be expressed as (8), then it represents a finite event of degree
at most N , since we can choose, for every i, ai sequences of i heads and N − i
tails, and consider the event that one of these occurs.

In particular, the probability of E is a polynomial with integer coefficients.

Example 4.2. The polynomial 2x − 2x2 represents a finite event, since it
can be written 2x(1−x). It represents the probability that, if a coin is tossed
twice, the two outcomes are different.

The polynomial 3x(1 − x) does not represent an event of degree 2, since
3 >

(

2
1

)

. However, it can be written 3x(1 − x)2 + 3x2(1 − x), from which it
follows that it represents the probability that, if a coin is flipped three times,
not all outcomes are the same.

We say that a polynomial representing the probability of a finite event
is a coin flipping polynomial. We define the coin flipping degree of a coin
flipping polynomial f(x) to be the minimal degree of a finite event having
probability represented by f . Clearly the coin flipping degree is larger than
or equal to the degree of the polynomial, and we see from the example above
that equality need not hold.

The following lemma shows that it is easy to determine, for a given num-
ber N , whether or not a specific polynomial f(x) represents an event of
degree at most N .

Lemma 4.3. Every polynomial f(x) of degree at most N with integer coef-

ficients can be expressed as

f(x) =

N
∑

i=0

aix
i(1 − x)N−i, (9)

with integers ai, which are uniquely determined by f .
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Proof. The term corresponding to i = 0 is the only one which has a nonzero
constant. Hence ai must be taken to be the constant term of f . By induction,
the degree N − 1 polynomial

f(x) − ai(1 − x)N

x

can be expressed in a unique way as

N−1
∑

i=0

bix
i(1 − x)N−1−i,

with integers bi. Now we can, and must, take ai+1 = bi for every i.

In order to determine whether or not f is the probability of an event of
degree at most N , we need only compute the coefficients ai, and compare
them with the binomial coefficients

(

N
i

)

.

Example 4.4. A computation shows that the degree 3 polynomial 1− 8x +
20x2 − 13x3 is a coin flipping polynomial of coin flipping degree 46.

Apparently, the coin flipping degree of a polynomial can be much larger
than the degree. This suggests that the question whether a given polynomial
is a coin flipping polynomial or not might be nontrivial. Although there
seems to be no simple criterion in terms of the coefficients of the polynomial,
it turns out that the answer is given by the direct analogue of Theorem 1.2.

By Theorem 1.2, if a coin flipping polynomial is not identically 0 or
identically 1, then it must map the open unit interval (0, 1) to itself. We show
that this condition is also sufficient for a polynomial to be “coin flipping”.

Theorem 4.5. A function f(x) is the probability of a finite event if and

only if f(x) is a polynomial with integer coefficients which is identically 0,

identically 1, or maps (0, 1) to itself.

Proof. Let f(x) be a polynomial of degree d with integer coefficients. Then
f can be expressed as

f(x) =

d
∑

i=0

ad,ix
i(1 − x)d−i, (10)
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with integer coefficients ad,i. Let N be an integer, and suppose N ≥ d.
Multiplying (10) with the factor

1 =

N−d
∑

j=0

(

N − d

j

)

xj(1 − x)N−d−j , (11)

and collecting terms, we obtain

f(x) =
N
∑

j=0

aN,jx
j(1 − x)N−j, (12)

where

aN,j =
d
∑

i=0

ad,i

(

N − d

j − i

)

. (13)

We wish to compare aN,j to
(

N
j

)

for large N . We have

aN,j
(

N
j

) =
d
∑

i=0

ad,i

(

N−d
j−i

)

(

N
j

) =
d
∑

i=0

ad,i
j!(N − j)!(N − d)!

(j − i)!(N − d − j + i)!N !
=

=
d
∑

i=0

ad,i
j(j − 1) . . . (j − i + 1)(N − j) . . . (N − j − d + i + 1)

N(N − 1) . . . (N − d + 1)
. (14)

We now assume that for every N there is some j such that aN,j < 0 or
aN,j >

(

N
j

)

. Under this assumption, we wish to find a number x, 0 < x < 1,

such that f(x) ≤ 0 or f(x) ≥ 1. Without loss of generality, we can assume
that for infinitely many values of N , there is a j such that aN,j < 0. Otherwise
there are infinitely many N such that aN,j >

(

N
j

)

, but then we can replace

f(x) by

1 − f(x) =
N
∑

j=0

((

N

j

)

− aN,j

)

xj(1 − x)N−j .

Since the interval [0, 1] is compact, there has to be a sequence of numbers
N1, N2, N3, . . . , and a corresponding sequence j1, j2, j3, . . . such that aNn,jn

<
0 for every n, and such that jn/Nn converges to a number ξ ∈ [0, 1], as
n → ∞. We now consider two cases depending on whether ξ lies in the
interior of [0, 1], or is one of the endpoints 0 or 1. Suppose first that 0 < ξ < 1.
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We can write (14) as

d
∑

i=0

ad,i ·
j

N
· j − 1

N − 1
. . .

j − i + 1

N − i + 1
· N − j

N − i
. . .

N − j − d + i + 1

N − d + 1
. (15)

If we let N and j tend to infinity through a sequence of values Nn and jn

in such a way that jn/Nn → ξ as n → ∞, then (15) becomes

d
∑

i=0

ad,i

(

jn

Nn

)i(
Nn − jn

Nn

)d−i

+ O(1/N), (16)

which converges to

d
∑

i=0

ad,iξ
i(1 − ξ)d−i = f(ξ), as n → ∞. (17)

Since we assumed that Nn and jn run through values for which aNn,jn
is

negative, it follows that f(ξ) ≤ 0.
Suppose on the other hand that ξ equals 0 or 1. Without loss of generality,

we may assume ξ = 0, since otherwise we can replace f(x) by f(1 − x) =
∑

j=0 NaN,N−jx
j(1 − x)N−j . In (14), the values of i for which i ≤ j and

ad,i 6= 0 will give nonzero terms. Of the nonzero terms, the one with the
largest number of factors of order of magnitude N will dominate. This will
be the nonzero term corresponding to the smallest value of i. If N is large,
then the sign of the first nonzero coefficient ad,i will determine the sign of
(14). Note that for this value of i, we must have i ≤ j, since otherwise all
the terms would be zero, and we have assumed that aN,j < 0. This shows
that the first nonzero coefficient ad,i is negative. For this value of i, we will
have f(x) = ad,ix

i + O(xi+1), as x → 0. This shows that for small positive
values of x, f(x) < 0.

Example 4.4 raises the question how large the coin flipping degree of a
polynomial can be, in terms of the degree. As the following theorem shows,
there are only finitely many coin flipping polynomials of a certain degree.

Theorem 4.6. There are only finitely many coin flipping polynomials of a

given degree.
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Proof. For a fixed d, we consider the set C of vectors (a0, . . . , ad) such that
∣

∣a0 + a1x + · · ·+ adx
d
∣

∣ ≤ 1 for every x ∈ [0, 1]. The function

max
x∈[0,1]

∣

∣a0 + a1x + · · ·+ adx
d
∣

∣ (18)

defines a norm on Rd+1. Hence C, being the unit ball, is compact. It contains
only finitely many points with integer coordinates, and the coefficients of
every coin flipping polynomial of degree d must be among these points.

This shows that it must be possible to give a bound on the coin flipping
degree of a polynomial in terms of its degree. Let N(d) be the maximal
coin flipping degree among all coin flipping polynomials of degree at most
d. Then it is easily verified that N(1) = 1 and N(2) = 3, and it seems that
N(3) = 46. The example f(x) = 13x(1 − x)3 − 21x2(1 − x)2 + 14x3(1 − x)
shows that N(4) ≥ 735.
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