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Abstract

Let Mn be the minimum cost of a perfect matching on a complete
graph on n vertices whose edges are assigned independent exponential
costs. It follows from work of D. Aldous that Mn converges in probabil-
ity to π2/12. This was earlier conjectured by M. Mézard and G. Parisi.
We establish the more precise result that E

∣∣Mn − π2/12
∣∣ = O(n−1/2).

1 Introduction

We consider the exponential matching problem on the complete graph Kn,
where n is an even positive integer. The edges of Kn are assigned independent
costs from exponential (mean 1) distribution. The minimum matching is the
set of edges of minimum total cost subject to the constraint that each vertex
must be incident to exactly one edge in the set. We let Mn denote the cost
of the minimum matching.

Example 1.1. The vertices are labeled v1, . . . , vn, and the edge between vi

and vj has cost Xi,j. When n = 2, there is only one edge, and this edge
has cost X1,2. The unique matching consists of this single edge, and M2 is
therefore exponentially distributed with mean EM2 = 1.

We can compute the expectation of M4 as follows: There are three perfect
matchings of costs X1,2 + X3,4, X1,3 + X2,4 and X1,4 + X2,3 respectively. The
probability that a sum of two independent exp(1) variables is greater than t
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is equal to the probability that in a rate 1 Poisson process there is at most
one event in the interval [0, t]. Hence

P (X1,2 + X3,4 > t) = (1 + t)e−t.

Since the costs of the three matchings are independent, we can compute the
expectation of M4 as

EM4 =

∫ ∞

0

P (M4 > t) dt =

∫ ∞

0

P (all three matchings have cost > t) dt

=

∫ ∞

0

(1 + t)3e−3t dt =
26

27
.

For larger n there seems to be no simple description of the distribution of
Mn, but it has been known for some time that Mn converges in probability
to π2/12. Our main result is the following concentration inequality:

Theorem 1.2.

E

∣∣∣∣Mn − π2

12

∣∣∣∣ <
1.706√

n
. (1)

We also show that except for the constant, (1) is best possible in the
sense that the right hand side cannot be replaced by anything of smaller
order. This is a consequence of the following theorem:

Theorem 1.3. For every real number x,

P

(
|Mn − x| ≥ 1.114√

n

)
≥ 1

8
. (2)

2 Background and outline of our approach

In a series of papers in the 1980’s [5, 6, 7, 8, 9] Marc Mézard and Giorgio
Parisi conjectured that as n →∞,

Mn
p→ π2

12
. (3)

The conjectured mode of convergence was not explicitly stated, but it is
clear that at least convergence in probability was intended. In principle, (3)
follows from the results of David Aldous [1, 2], and so does the fact that

EMn → π2

12
, (4)
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which strictly speaking does not follow from (3). It is known that the method,
which in [1, 2] is applied to the assignment problem (bipartite matching), will
apply also to matching on the complete graph provided certain technical lem-
mas are modified. The same is true of the bound on the variance established
by Michel Talagrand in [10]. There, an upper bound of

O

(
(log n)4

n log log n

)

was established for the variance in the bipartite matching problem on Kn,n.
A self-contained proof of (4) was given in [13], where it was shown that

π2

12
< EMn <

π2

12
+

log n

n
. (5)

With related methods we here establish a O(1/n)-bound on the variance of
the cost Cn of a certain LP-relaxation of the matching problem. It is known
from [14, 15] that the expected value of this relaxation is given by the explicit
formula

ECn = 1− 1

4
+

1

9
− · · · − 1

n2
=

π2

12
+ O

(
1

n2

)
. (6)

Hence the expected difference between Mn and Cn is O(log n/n), smaller
than the standard deviation of either of them. Combining these results we
establish (1), thereby obtaining an explicit proof of (3).

3 The relaxed matching problem

Following [14, 15], we consider a certain LP-relaxation of the matching prob-
lem on Kn. This is a special case of the linear flow problem defined in
[15]. The relaxation is defined on a graph with random edge costs called the
friendly model [15]. In this model there are also loops (edges connecting a
vertex to itself). One of the features of the friendly model is that the feasible
solutions corresponding to perfect matchings exist also for odd n.

The vertices are labeled v1, . . . , vn. There are edges ei,j of cost Xi,j for
1 ≤ i ≤ j ≤ n. The edge costs are independent exponentially distributed,
and Xi,j has mean 1 if i 6= j and mean 2 if i = j. In [15], there are also
multiple edges between each pair of vertices, but these are irrelevant for the
matching problem.
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The relaxed k-matching problem asks for coefficients σ(i, j) ∈ [0, 1] min-
imizing ∑

1≤i≤j≤n

σ(i, j)Xi,j,

subject to the constraints
∑

1≤i≤j≤n

σ(i, j) = k, (7)

and for 1 ≤ i ≤ n, ∑
j≤i

σ(j, i) +
∑
j≥i

σ(i, j) ≤ 1, (8)

Notice that in (8), σ(i, i) is counted twice. Also notice that if we require
the coefficients σ(i, j) to be either 0 or 1, a feasible solution is a matching.
The expression (8) is called the degree of vi. The degree of vi in the optimum
solution is denoted δk,n(i).

A feasible solution (relaxed matching) is also called a flow. Let Ck,n

denote the cost of the minimum k-flow. One of the results of [15] is the
following formula for the expectation of Ck,n.

Proposition 3.1. Let k be such that 2k is an integer. Then

ECk,n =
∑

0≤i≤j
i+j<2k

1

(n− i)(n− j)
. (9)

It can be verified that (9) specializes to (6) if k = n/2 (also for odd n).

4 The extended graph

An important idea of [15] is to introduce an extended graph that contains an
extra vertex vn+1. Here we let the extra vertex have weight γ and unrestricted
capacity, and we shall explain what this means. The costs of the edges
connecting vn+1 to the ordinary vertices v1, . . . , vn are exponential of rate γ.
There is also a potentially infinite sequence of loops at vn+1, and the costs
of these loops are given by the times of the events in a Poisson process of
rate γ2/2. In particular the cost of the cheapest loop is exponential of rate
γ2/2. In the end, γ will tend to zero. Informally, it is natural to think of γ
as infinitesimal.
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The relaxed matching problem on the extended graph asks for the mini-
mum, denoted Ck,n+1, of ∑

e

σ(e)Xe,

where e ranges over the edge set, and the coefficients σ(e) are restricted to
the interval [0, 1]. Naturally the constraint (7) is replaced by

∑
e

σ(e) = k.

We still require (8) to hold for 1 ≤ i ≤ n, but we put no constraint on the
degree of vn+1. We let σk denote the minimum k-flow, assuming that the
edge costs are generic in the sense that no two flows have the same cost.

In [15], the formula (6) and its generalization (9) are established induc-
tively by computing the expectation of the degree δk,n+1(n + 1) of the extra
vertex in the extended problem. Similarly, knowledge about the correlation
of δk,n+1(n + 1) with the cost Ck,n+1 of the minimum flow would allow us to
inductively compute the variance of Ck,n.

We consider the extended problem, and condition on all edge costs except
the cost Xn,n+1 of the edge en,n+1. Let f(x) be the cost of the minimum k-flow
given that Xn,n+1 = x. In other words, f(x) = (Ck,n+1|Xn,n+1 = x).

Notice that f is continuous, and that f ′(x) = σk,n+1(n, n + 1) except at
a finite number of points where the right derivative is not equal to the left
derivative. It follows by partial integration that

E
(
f 2(x)

)
=

∫ ∞

0

f 2(x)γ exp(−γx)dx

= f 2(0) +
1

γ

∫ ∞

0

2f ′(x)f(x)γ exp(−γx)dx. (10)

We now want to let γ tend to zero, and for technical reasons we want to
take this limit for a fixed point in the probability space. We therefore think of
the costs of the edges to vn+1 as being generated from underlying exponential
variables (and a Poisson process for the loops) of rate 1. Then the actual
costs are obtained by dividing by the rate (that is, γ for the ordinary edges
and γ2/2 for the loops).

This means that as γ → 0, the costs of the edges at vn+1 except en,n+1

tend to infinity. It follows that (for fixed costs of the ordinary edges, as
γ → 0)

f 2(0) → C2
k−1,n−1.
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Similarly, by the principle of dominated convergence,

E(f 2(x)) → C2
k,n.

By the observation that f ′(x) = σk,n+1(n, n + 1), we can rewrite (10) as

lim
γ→0

2

γ
E(σk,n+1(n, n + 1) · Ck,n+1) = EC2

k,n − C2
k−1,n−1.

We now take average over all edge costs,and note that by symmetry,
σk,n+1(n, n + 1) can be replaced by 1/n · δk,n+1(n + 1). We conclude that

lim
γ→0

2

nγ
E(δk,n+1(n + 1) · Ck,n+1) = E(C2

k,n)− E(C2
k−1,n−1). (11)

By the same argument [13], it also follows that

lim
γ→0

1

nγ
E(δk,n+1(n + 1)) = E(Ck,n)− E(Ck−1,n−1). (12)

In order to inductively calculate the variance of Ck,n, it would be sufficient
to calculate the left hand side of (11). Unfortunately we are still unable to
calculate this exactly, but we will show that the correlation between δk,n+1(n+
1) and Ck,n+1 is negative. This gives an upper bound on the variance of Ck,n

which turns out to be of the right order of magnitude (and better than what
follows from the Talagrand inequality).

5 A correlation inequality

Let X1, . . . , Xm be random variables (not necessarily independent), and let f
and g be two real valued functions of X1, . . . , Xm. Let fi = E(f |X1, . . . , Xi),
and similarly gi = E(g|X1, . . . , Xi), supposing that these expectations exist.
Then f0 = E(fj) for every j, fm = f , and similarly for g. The following
lemma is crucial for our approach. It is valid whenever the expectations
under consideration exist. In our application, f will have finite expectation
and g will be bounded, but the lemma is valid under more general conditions.

Lemma 5.1. Suppose that for every i and every outcome of X1, . . . , Xm,

(fi+1 − fi)(gi+1 − gi) ≥ 0. (13)

Then f and g are positively correlated, in other words,

E(fg) ≥ E(f)E(g). (14)
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Proof. Equation (13) can be written

fi+1gi+1 ≥ (fi+1 − fi)gi + (gi+1 − gi)fi + figi.

Notice that E((fi+1 − fi)gi|X1, . . . , Xi) = giE(fi+1 − fi|X1, . . . , Xi) = gifi −
gifi = 0. It follows that E ((fi+1 − fi)gi) = 0, and similarly for the other
term. We conclude that E(fi+1gi+1) ≥ E(figi) and by induction that

E(fg) = E(fmgm) ≥ E(f0g0) = f0g0 = E(f)E(g).

6 The oracle process

We study the so called oracle process, which has been described in [13, 14, 15].
This is a stochastic process governed by the edge costs in the extended graph.
We think of an “oracle” who knows all the edge costs. We ask questions to the
oracle in order to determine the degree δk,n+1(n+1) of vn+1 in the minimum
relaxed k-matching in the extended graph. Here and in the next section, γ
will be a fixed positive number. The questions are chosen in such a way that
we can control the conditional distribution of the edge costs in the process.

In the process, we successively find the minimum relaxed r-matchings for
r = 1/2, 1, 3/2, . . . , k. The following three lemmas are proved in [15].

Lemma 6.1. If 2k is an integer, then there is a minimum relaxed matching
in which every edge has coefficient 0, 1/2 or 1.

Lemma 6.2. If the edge costs are fixed and generic, then the degree δk,n+1(i)
of a given vertex vi in the minimum k-flow is a nondecreasing function of k.
Moreover, supposing 2k is an integer, if δk,n+1(i) is an integer for every i,
then δk+1/2,n+1 is obtained from δk,n+1 by either increasing the value by 1/2
at two vertices, or increasing by 1 at one vertex. If δk,n+1(i) is not an integer
for every i, then there are precisely two vertices for which it is 1/2 plus an
integer. In this case δk+1/2,n+1 is obtained from δk,n+1 by adding 1/2 at these
two vertices.

Notice that δk,n+1(i) ∈ {0, 1/2, 1} except possibly when i = n + 1.

Definition 6.3. We say that a flow (in the extended graph) is stable if all
edges of coefficient other than 0 and 1 go between ordinary vertices that have
degree 1.
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Hence the minimum flow is stable if the edges of coefficient 1/2 form
closed cycles that do not contain vn+1. The other possibility is that they
form a cycle including vn+1 or a path (necessarily of odd length) with two
distinct endpoints.

Lemma 6.4. Suppose that the edge costs are generic. If 2k is an integer and
the minimum k-flow σk is not stable, then

σk+1/2 = 2σk − σk−1/2. (15)

In a generic step of the oracle process, we have found the minimum r-flow
σr for a certain r such that 0 ≤ r < k and 2r is an ineger. We assume that
σr is stable. Let Γ be the set of ordinary vertices of degree 1 in σr. The
following is known:

1. The costs of all edges for which both endpoints belong to Γ.

2. The cost of all other edges of nonzero coefficient in σr.

3. For each vertex v ∈ Γ, the minimum cost of the remaining edges that
connect v to a vertex not in Γ (but not the location of this edge).

4. The minimum cost of the remaining edges between vertices not in Γ
(but again not the location of the edge that has this minimum cost).

Using this information only, we can essentially compute the minimum
(r + 1/2)-flow. By Lemma 6.2, σr+1/2 is obtained from σr by “switching” an
alternating path that connects two vertices of degree 0, that is, the coefficients
of the edges in the path are alternatingly increased and decreased by 1/2.
The path can be degenerate in a number of ways, and in particular the two
endpoints need not be distinct. The information in 1–4 allows us to compute
everything except the location of the endpoints of this path.

By the memorylessness property of the Poisson process, the unknown
endpoints (whether one or two) are chosen independently among the vertices
outside Γ with probabilities proportional to the total rates of the competing
edge costs. Notice that this holds also if the path consists of only one edge
(and that this edge can in principle turn out to be a loop at vn+1).

After computing σr+1/2 (except for the unknown endpoints), we ask the
oracle for the information that will be needed according to (1–4) in the next
round of the process. We begin by asking for the locations of the endpoints
of the alternating path. There are essentially three possibilities.
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1. If there are two distinct endpoints vi and vj, then their degrees increase
by 1/2. In this case σr+1/2 is not stable, and by Lemma 6.4, σr+1 is
determined once σr+1/2 is known. The same two vertices will again
increase their degrees by 1/2, so that δr+1,n+1(i) = δr,n+1(i) + 1 and
δr+1,n+1(j) = δr,n+1(j) + 1. Since σr+1(e)− σr(e) is an integer for every
e, the flow σr+1 is stable.

2. Even if the alternating path starts and ends in two distinct edges, these
edges can turn out to go to the same vertex vi. Then δr+1/2,n+1(i) =
δr+1/2,n+1(i) + 1. In this case σr+1/2 is stable.

3. The third possibility is that the alternating path starts and ends with
the same edge. It is then clear that the endpoints of the path will
coincide. This endpoint vi is again chosen among the vertices not in
Γ, with probabilities proportional to the weights. In this case too,
δr+1/2,n+1(i) = δr+1/2,n+1(i) + 1, and σr+1/2 is stable.

7 Negative correlation

Lemma 7.1. For every γ > 0, we have

E(Ck,n+1 · δk,n+1(n + 1)) ≤ E(Ck,n+1) · E(δk,n+1(n + 1)).

Proof. When we apply Lemma 5.1 to the relaxed matching problem, we take
the variables X1, . . . , Xm to be the information driving the oracle process.
We let f be the cost of the minimum k-flow, and let g = −δk,n+1(n + 1).

There are two types of information we get from the oracle. One is about
the endpoints of certain edges whose cost is alread known. The other is
about the minimum cost of certain edge sets. The process is designed in
such a way that the latter, information about the minimum cost of certain
edge sets, does never change the conditional distribution of the δk,n+1(n + 1)
(that is, conditioning on the information we have received so far in the oracle
process).

We therefore consider what happens when we get information about an
endpoint of an edge (whose cost is known). By the stability assumption, all
ordinary vertices that are potential endpoints are vertices that have degree
zero in σr, and have no known edge to them. By symmetry, the conditional
expectation of f will change in the same way regardless of which of them is
chosen.
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Moreover it is clear, and can actually be verified by exact formulas, that
the conditional expectation of δk,n+1(n + 1) will increase if the unknown
endpoint turns out to be vn+1, and therefore decrease if it turns out to be
another vertex.

To clarify exactly what we are asking for in case we are asking for the
location of the minimum cost edge of all edges not in Γ, suppose that every
edge is randomly given an orientation (uniformly and independently). The
orientation is immaterial for the optimization problem, but it allows us to
ask the oracle about the two endpoints one at a time in a well-defined way.

We need only consider the case that the oracle tells us that an endpoint
goes to vn+1, and to show that in this case, the conditional expectation of
Ck,n+1 decreases. It then follows that the conditional expectation increases
in the other case. We first consider the case that the edge we are asking for
is the minimum cost edge from a given vertex v in Γ to the vertices not in
Γ. It does not matter whether this is the first or second edge we are asking
for in this round of the oracle process. Let E ′ be the set of edges that we
are comparing, that is, those that go from v to a vertex not in Γ. Now we
condition on the costs of all edges except those in E ′. We are going to use a
coupling argument to show that, given all other edge costs, if the minimum
cost edge in E ′ goes to vn+1, then Ck,n+1 is smaller than otherwise.

Now think of the edge costs in E as generated by a joint Poisson process,
so that we first see the edge costs, and then determine for each event in this
process to which vertex outside Γ the corresponding edge goes. Then it is
clear that if we want to find a cheap flow, it is advantageous if the first edge
goes to vn+1, since there is no capacity constraint on this vertex.

The same argument applies if we are asking for the cheapest edge con-
necting vertices not in Γ. Suppose we are asking for the first (in the sense of
the arbitrarily chosen orientation of the edges) endpoint of the cheapest edge
outside Γ. Then we condition on the costs of all edges, and the second end-
point of every edge (although in the oracle process, this information would
only be given to us later). Knowing the second endpoint of the cheapest
edge, the situation is now similar to that of the previous case.

Hence if at a certain point we ask the oracle about the endpoint of a
certain augmenting path, and we are informed that this endpoint goes to the
extra vertex vn+1, then the conditional expectation of Ck,n+1 decreases. By
Lemma 5.1, this shows that Ck,n+1 is negatively correlated with the degree
δk,n+1(n + 1) of vn+1.
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Corollary 7.2.

var(Ck,n) ≤ var(Ck−1,n−1) + (E(Ck,n)− E(Ck−1,n−1))
2.

Proof. We have previously proved (11), [13] the two equations

E((Ck,n)2)− E((Ck−1,n−1)
2) = lim

γ→0

2

nγ
E(δk,n+1(n + 1) · Ck,n+1), (16)

and

E(Ck,n)− E(Ck−1,n−1) = lim
γ→0

1

nγ
E(δk,n+1(n + 1)). (17)

Using (16) in Lemma 7.1 and taking the limit γ → 0 we find that

lim
γ→0

2

nγ
E(δk,n+1(n + 1) · Ck,n+1) ≤ lim

γ→0
E(Ck,n+1) · lim

γ→0

2

nγ
E(δk,n+1(n + 1)).

By the principle of dominated convergence we know that

lim
γ→0

E(Ck,n+1) = E(Ck,n),

which implies that

var(Ck,n) + (E(Ck,n))2 ≤ var(Ck−1,n−1)+

+ (E(Ck−1,n−1))
2 + 2E(Ck,n) lim

γ→0

1

nγ
E(δk,n+1(n + 1)).

By (17), this is equivalent to

var(Ck,n) ≤ var(Ck−1,n−1) + (E(Ck,n)− E(Ck−1,n−1))
2.

8 An explicit bound on the variance of Cn

By Proposition 3.1, we know the expected values of incomplete LP-relaxed
matchings. Hence using Corollary 7.2 we recursively obtain an upper bound
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on the variance of Cn/2,n = Cn. For even n,

varCn ≤ 1

n2

(
1 +

1

2
+ · · ·+ 1

n

)2

+
1

(n− 1)2

(
1

2
+ · · ·+ 1

n− 1

)2

...

+
1

(n/2 + 1)2

(
1

n/2
+

1

n/2 + 1

)2

. (18)

for odd n, a similar formula holds, but this is not relevant for our application
to the (non-relaxed) matching problem. It is straightforward to verify that
(18) implies that

var(Cn) = O

(
1

n

)
, (19)

but we shall be a little more careful.

Theorem 8.1.

var(Cn) ≤ 2(n + 3)2

(n + 1)(n + 2)2
. (20)

Proof. It follows from (18) that

varCn ≤ 1

n2
(log(n + 1/2)− log(1/2))2

+
1

(n− 1)2
(log(n− 1/2)− log(3/2))2

...

+
1

(n/2 + 1)2
(log(n/2 + 3/2)− log(n/2− 1/2))2 . (21)

Further simplifying, we obtain

(n/2 + 1)2

(n/2 + 3/2)2
· var(Cn)

≤ (log(n + 1/2)− log(1/2))2

(n + 1/2)2
+

(log(n− 1/2)− log(3/2))2

(n− 1/2)2
+ . . .

· · ·+ (log(n/2 + 3/2)− log(n/2− 1/2))2

(n/2 + 3/2)2
. (22)
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Now we put

f(x) =
(log x− log(n + 1− x))2

x2
.

We verify that f is a convex function on 0 < x < n + 1 by calculating the
second derivative of the function g(x) = (n + 1)2f(x(n + 1)):

d2g

dx2
=

(
6((1− x) log(x)− (1− x) log(1− x))2+

+ 2(5− 6x)(log(1− x)− log(x)) + 2
) 1

x4(1− x)2
. (23)

The only term in the parenthesis which is not positive is the second
one. But it is only negative from x0 = 1/2 to x4 = 5/6. Let x1 = 1/(1 +
exp(−1/2)), x2 = 1/(1+exp(−5/6)) and x3 = 1/(1+exp(−4/3)). The linear
factor and the logarithmic factor are both decreasing on the interval (x0, x4).
Hence on (x0, x1) the negative term is bounded from below by:

2(5− 6x0)(log(1− x1)− log(x1)) = −2.

The positive terms in the parenthesis is bounded from below on (x1, x4) by:

6((1− x1) log(x1)− (1− x1) log(1− x1))
2 + 2 > 2.2.

It is then simple to bound the negative term as above for the given points
and by this method confirming the convexity of the function:

2(5− 6x1)(log(1− x2)− log(x2)) > −2.11,

2(5− 6x2)(log(1− x3)− log(x3)) > −2.19,

2(5− 6x3)(log(1− x4)− log(x4)) > −0.82.

The convexity of f implies that the right hand-side of (22) can be esti-
mated as:

f(n/2 + 3/2) + · · ·+ f(n + 1/2) ≤
∫ n+1

n/2+1

f(x) dx ≤
∫ n+1

n/2+1/2

f(x) dx

=
1

n + 1

∫ 1

1/2

(log y − log(1− y))2

y2
dy =

2

n + 1
. (24)

This establishes (20).
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The integrand
(log y − log(1− y))2

y2

in (24) actually has the primitive

−(1− y) [(log(1− y)− log y)2 − 2(log(1− y)− log y)]− 2

y
.

We believe that the bound var(Cn) ≤ 2/n can be established from (21), but
we have not been able to prove this.

9 Proof of Theorem 1.2

We can now prove Theorem 1.2. By equation (9) of [13, p10],

EMn ≤ 1

2

(
1 +

1

4
+ · · ·+ 1

(n/2)2

)
+

1

n + 1

(
1 +

1

2
+ · · ·+ 1

n

)
.

Moreover, the alternating formula (6) for ECn can be rewritten as

ECn =
1

2

(
1 +

1

4
+ · · ·+ 1

(n/2)2

)
+

1

(n/2 + 1)2
+ · · ·+ 1

n2
.

Hence

E(Mn − Cn) ≤ 1

n + 1

(
1 +

1

2
+ · · ·+ 1

n

)
−

(
1

(n/2 + 1)2
+ · · ·+ 1

n2

)
.

By an integral estimate we further have

1

(n/2 + 1)2
+ · · ·+ 1

n2
≥

∫ n+1

n/2+1

dx

x2
+

1

2

(
1

(n/2 + 1)2
− 1

(n + 1)2

)

=
n(2n2 + 9n + 8)

2(n + 1)2(n + 2)2
≥ 1

n + 2
, (25)

provided n2 ≥ 2n + 4, which holds when n ≥ 4. Hence

E(Mn − Cn) ≤ 1

n + 1

(
1 +

1

2
+ · · ·+ 1

n

)
− 1

n + 2
.
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This inequality holds (actually with equality) also when n = 2.
Now we have all the necessary ingredients. It follows that

E

∣∣∣∣Mn − π2

12

∣∣∣∣ ≤ E |Mn − Cn|+ E

∣∣∣∣Cn − π2

12

∣∣∣∣

= (EMn−ECn)+E

∣∣∣∣Cn − π2

12

∣∣∣∣ ≤ (EMn−ECn)+

∣∣∣∣ECn − π2

12

∣∣∣∣+E |Cn − ECn|

≤ 1

n + 1

(
1 +

1

2
+ · · ·+ 1

n

)
− 1

n + 2
+

1

(n + 1)2
+

√
varCn

≤ 1

n + 1

(
1 +

1

2
+ · · ·+ 1

n + 1

)
− 1

n + 2
+

n + 3

n + 2

√
2

n + 1
. (26)

The last expression of (26) is

≤ 1

n + 1

(
1 +

1

2
+ · · ·+ 1

n + 1

)
+

√
2

n + 1

≤ 1 + log(n + 1)

n + 1
+

√
2

n + 1
≤ 1√

n

(
1 + log(n + 1)√

n
+
√

2

)
. (27)

We verify that for large n,

1 + log(n + 1)√
n

+
√

2 ≤ 1.706.

We have

1 + log(n + 1)√
n

+
√

2 ≤ 1√
n

+
1√
n

+
√

2 +
log n

n
< 1.48 +

log n√
n

, (28)

for n ≥ 1000. By differentiating, we see that log n/
√

n is decreasing for
n ≥ e2. Hence for n > 1000, (28) is smaller than

1.48 +
log 1000√

1000
< 1.7.

For n = 2, 4, . . . , 1000, we proceed by verifying the inequality (1) directly,
using the strongest bounds available. We therefore quote an even stronger
bound on EMn from [13, p9]:
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EMn ≤ 2

n

(
1 +

1

3
+

1

5
+ · · ·+ 1

n− 1

)

+
2

n− 1

(
1

2
+

1

4
+ · · ·+ 1

n− 2

)
+

...

+
2

n/2 + 1
· 1

n/2
. (29)

Using the best bounds thus available, together with (26), we obtain

E

∣∣∣∣Mn − π2

12

∣∣∣∣ ≤

8 ·
n/2∑

k=1

1

n + 2k

k∑
i=1

1

n− 2k + 4i− 2
− 2

n∑

k=1

(−1)k−1

k2
+

π2

12

+ 4

√√√√
n/2∑

k=1

1

(n + 2k)2
·
(

2k∑
i=1

1

n− 2k + 2i

)2

. (30)

It is straightforward to check by computer that this is smaller than 1.706/
√

n
for n = 2, 4, . . . , 1000 (the bound on the constant is worst for n = 16). This
establishes (1).

In view of what we have established so far, it seems more or less clear that
the variance of Mn must be of order 1/n. However, we have been unable to
find a proof of this. Since the variance in the bipartite matching problem on
Kn/2,n/2 is of order 1/n [11], it follows that the contribution to the variance
of Mn from the “tail” of values larger than say 10 (any constant larger than
π2/6) is O(1/n). From this we can establish that var(Mn) = O(log n/n).
The scenario that we cannot so far exclude is that with probability log n/n,
Mn − Cn is of order 1, while in the remaining cases it is very small.

10 Proof of Theorem 1.3

In this section we justify our claim that the bound in equation (1) is essen-
tially sharp, by proving Theorem 1.3. In the bipartite case the corresponding
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statement is easily proved. By conditioning on the cost of the minimum edge
from each vertex on one side of the graph, we see that the cost of the min-
imum assignment in Kn,n is the sum of n independent exponentials of rate
n plus a remainder which is independent of them all. Since the sum of ex-
ponentials has deviations of order n−1/2 (see Lemma 10.1 below), we are
done.

For the complete graph, things are not quite that simple. The problem is
that we cannot partition the edge set into a large number of subsets for which
a prescribed number of edges will participate in the minimum matching.
Our idea is based on the same approach as in the bipartite case, but the
remainder will not be independent of the sum of exponentials. Fortunately
the correlation is positive and monotone, so that by applying the Harris
inequality we can prove that the remainder cannot cancel the deviations of
the exponential sum.

We prove Theorem 1.3 by establishing the inequality (valid for every x)

P

(
|Mn − x| ≥ 4

9

√
2π

n

)
≥ 1

8
. (31)

Here 4
√

2π/9 ≈ 1.114, which leads to Theoem 1.3.

10.1 The distribution of a sum of independent expo-
nentials

Lemma 10.1. Let X = X1 + · · · + Xk+1 be the sum of k + 1 independent
exp(1)-variables. Let ζ be the median of X. Then

P

(
X − ζ ≥

√
2πk

4

)
≥ 1

4
, (32)

and

P

(
X − ζ ≤ −

√
2πk

4

)
≥ 1

4
. (33)

Proof. The density function of X is

xk

k!
e−x,
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and the derivative of this is

xk−1

k!
e−x · (k − x),

which is zero when x = k. Hence the maximum value of the density is

kke−k

k!
.

By Stirling’s formula,
k! ≥

√
2πk · kke−k,

which implies that the density of X is at most

1√
2πk

.

Hence

P

(
ζ < X < ζ +

√
2πk

4

)
≤ 1

4
.

The inequality (32) follows, and (33) is established in the same way as above.

10.2 An operation on the cost matrix

Consider a random matching problem on Kn where the edge costs are non-
negative linear combinations of a set of independent exponential random
variables X1, . . . , Xm. We start with each edge cost given by a single ex-
ponential random variable. Let k < n/2 be a positive integer that will be
chosen later as a function of n, and suppose that there is a set S of n − k
vertices such that every edge between two vertices of S has a variable Xi

occurring with coefficient 1 in its cost, such that Xi does not occur (in other
words has coefficient zero) in any other edge cost. Hence we can in the first
step pick any set S with n− k vertices. The following operation on the edge
costs will be referred to as reduction: Choose the set S, and for every edge
within S a variable Xi. Condition on the location of the minimum among
the chosen variables, and subtract this minimum from all of them. Then add
the same amount to all edges between vertices in V − S.

We first show that after reduction, the costs are still given by non-negative
linear combinations of exponential variables. The variable being minimal
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is replaced by a zero, and the minimum, which is itself exponentially dis-
tributed, is added to the edges in V −S. The variables that are not minimal
are still independent and exponentially distributed, which means that they
can be regarded as unchanged by the reduction.

Secondly, notice that if we start with independent exponential mean 1
edge costs, then reduction can be performed k + 1 times, since every round
removes only one of the original variables. After k rounds, we can choose
S by removing k vertices, one for each of the original variables that has
disappeared.

Thirdly, notice how reduction affects the cost of the minimum matching.
When the vertex set on n vertices is partitioned in two parts of sizes k and
n−k, the larger part, with n−k vertices, will always contain exactly n/2−k
more edges in any perfect matching than the smaller part on k vertices. Let
ξ1, . . . , ξk+1 be the values of the minima obtained in the k + 1 reductions.
Then

Mn =
(n

2
− k

)
(ξ1 + · · ·+ ξk+1) + R,

where R is the cost of the minimum matching given the edge costs after the
k+1 rounds of reduction. The ξi’s are exponential of rate (n−k)(n−k−1)/2.

We rescale by the factor

(n

2
− k

)
· 2

(n− k)(n− k − 1)
=

n− 2k

(n− k)(n− k − 1)
,

and apply Lemma 10.1 to conclude that if ζ is the median of (n/2− k)(ξ1 +
· · ·+ ξk+1), then

P

[(n

2
− k

)
(ξ1 + · · ·+ ξk+1)− ζ ≥

√
2πk · (n− 2k)

(n− k)(n− k − 1)

]
≥ 1

4
,

and similarly for deviations in the opposite direction.
Now we condition on the remaining random variables occurring in the

edge costs, that is, those except the ξi’s. Let ν be the median of R. Both
(n/2 − k)(ξ1 + · · · + ξk+1) and R are increasing as functions of ξ1, . . . , ξk+1.
Therefore by the Harris inequality [3], the events

(n

2
− k

)
(ξ1 + · · ·+ ξk+1)− ζ ≥

√
2πk · (n− 2k)

(n− k)(n− k − 1)
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and
R ≥ ν

are positively correlated. We conclude that

P

[
Mn − (ζ + ν) ≥

√
2πk · (n− 2k)

(n− k)(n− k − 1)

]
≥ 1

4
P (R ≥ ν) =

1

8
,

and by the same argument that

P

[
Mn − (ζ + ν) ≤

√
2πk · (n− 2k)

(n− k)(n− k − 1)

]
≥ 1

8
.

It follows that for every x,

P

[
|Mn − x| ≥

√
2πk · (n− 2k)

(n− k)(n− k − 1)

]
≥ 1

8
.

Notice that this conclusion holds regardless of the values of the variables on
which we have conditioned.

It remains to choose k as a function of n in order to maximize
√

k · (n− 2k)

(n− k)(n− k − 1)
. (34)

Fine tuning completely would give

k

n
≈
√

17− 3

4
,

but it suffices to plug in k = n/4 giving

√
k · (n− 2k)

(n− k)(n− k − 1)
≥
√

k · (n− 2k)

(n− k)2
=

4

9
√

n
,

and k = n/4 + 1/2 giving

√
k · (n− 2k)

(n− k)(n− k − 1)
=

4
√

n + 2

3(3n− 2)
≥ 4

9
√

n

in order to conclude that we can always choose k such that (34) becomes
at least 4/(9

√
n). This establishes (31), except that we have to check the
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case n = 2 separately, since this involved a division by zero in the algebraic

simplification above. If n = 2 then 4
9

√
2π
n

evaluates to

4
√

π

9
,

and checking the inequality (31) reduces to verifying that

∫ 8
√

π/9

0

e−x dx ≤ 7

8
.

Indeed, ∫ 8
√

π/9

0

e−x dx = 1− e−8
√

π/9 ≈ 0.793 ≤ 7

8
.

This shows that in (1), the right hand-side cannot be replaced by a func-
tion of smaller order, even if the number π2/12 is replaced by a function of
n.

11 A conjecture on asymptotic normal distri-

bution

The inequalities (1) and (31) show that

0.139 ≤ √
n · E

∣∣∣∣Mn − π2

12

∣∣∣∣ ≤ 1.706. (35)

Here the lower bound is
√

2π/18 ≈ 0.139. We conjecture that

√
n

(
Mn − π2

12

)
d→ N(0, 2ζ(2)− 2ζ(3)). (36)

The evidence for this conjecture is quite strong. We believe that Mn is
asymptotically normal, since the contributions to Mn from edges that are
not connected by a short (order 1/n) path are almost independent of each
other. We also believe that the dependencies of the contributions of “nearby”
edges will average out so that each edge that participates in the solution will
contribute by a certain constant times 1/n2 to the variance. This constant
should be the same in the complete graph Kn as in the complete bipartite
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graph Kn,n. In the bipartite case, the variance is given by an explicit for-
mula [11], and is asymptotically n−1(4ζ(2) − 4ζ(3)). Since in Kn, a perfect
matching has only n/2 edges, compared to n in the bipartite case, we expect
the variance of Mn to be roughly half of the variance for perfect matching on
Kn,n. This agrees very well with simulations up to n = 100. For larger n the
computations needed to run the simulation makes it hard to get a sufficient
number of samples. We have run simulations for n up to 400, but already
at n = 200 we are forced to limit the sample size so much that the approx-
imation of the variance of Cn/2,n was still changing considerably when the
simulation ended. But no simulation results contradict the conjecture (36).

Since for a N(0, σ2)-variable X, the expectation of |X| is σ
√

2/π, the
conjecture (36) would suggest that:

√
n · E

∣∣∣∣Mn − π2

12

∣∣∣∣ →
√

2 ·
√

2ζ(2)− 2ζ(3)√
π

= 2

√
π

6
− ζ(3)

π
≈ 0.751,

well within the bounds given by (35). From our knowledge about the variance
of the cost of a matching it is natural to guess that for large n, the cost will
behave approximately as a random variable with normal distribution. But
at the same time we can observe that the cost is strictly larger than zero,
and therefore for any fixed n the cost cannot be a random variable with a
normal distribution. It is therefore natural to ask how close the cost is to a
normal random variable for a fixed n. By simulation we can observe that it
is, apart from the expected truncation error, quite close.

We made a simulation with n = 100 and 2500 samples. By choosing a
sufficiently large sample size we can make a very good approximation of the
true distribution. Using Matlab we have made a so-called normal probability
plot of the data. The 2500 numbers are sorted, and their values can be seen
on the horizontal axis. The scaling of the vertical axis is such that a normal
distribution would be plotted to a straight line.
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The figure indicates that the sample of costs is taken from a distribution
which is close to normal. The straight line represents a normal distribution
with the same mean and variance as the plotted sample. In this case the
data gives

var(C50,100) ≈ 0.0088768.

This agrees well with the conjecture that the variance is asymptotically given
by

var(Cn/2,n) ≈ 2ζ(2)− 2ζ(3)

n
.

This formula gives that

E(C50,100) ≈ 0.0088575.

Certainly it seems to be a hard problem how to investigate the explicit
relation between the cost random variable and a normal distribution. But
the scope of such an investigation might be far larger than just the matching
problem described in this article.
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