ADDENDUM TO "THE MINIMAL SPANNING TREE IN A COMPLETE GRAPH AND A FUNCTIONAL LIMIT THEOREM FOR TREES IN A RANDOM GRAPH"

SVANTE JANSON AND JOHAN WÄSTLUND

In the article "The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph" by Janson [6] it is shown that the minimal weight W_{n} of a spanning tree in a complete graph K_{n} with independent, uniformly distributed random weights on the edges has an asymptotic normal distribution. The same holds with exponentially distributed weights with mean 1 . The mean converges, as shown in the classical paper by A. Frieze [3], to $\zeta(3)$, and the asymptotic variance is σ^{2} / n for a positive constant σ^{2}; more precisely, see [6, Theorem 1],

$$
n^{1 / 2}\left(W_{n}-\zeta(3)\right) \xrightarrow{\mathrm{d}} N\left(0, \sigma^{2}\right)
$$

as $n \rightarrow \infty$. The constant σ^{2} was given in [6] by the complicated expression

$$
\begin{equation*}
\sigma^{2}=\frac{\pi^{4}}{45}-2 \sum_{i=0}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{(i+k-1)!k^{k}(i+j)^{i-2} j}{i!k!(i+j+k)^{i+k+2}} \approx 1.6857 . \tag{1}
\end{equation*}
$$

This expression has now been evaluated by Wästlund [7], who found the simple result

$$
\begin{equation*}
\sigma^{2}=6 \zeta(4)-4 \zeta(3) \tag{2}
\end{equation*}
$$

For the proof, see [7]. The proof of Lemma 1 there may be simplified since (3) was shown by N. H. Abel [1]; this has also been noted by Piet Van Mieghem in a personal communication.

In principle, (2) lies within the scope of automated summation techniques. Let

$$
a(i, j, k)=\frac{(i+k-1)!k^{k}(i+j)^{i-2} j}{i!k!(i+j+k)^{i+k+2}} .
$$

If we introduce the new summation variable $n=i+j+k$ and write the triple sum as

$$
\sum_{n=2}^{\infty} \sum_{j=1}^{n-1} \sum_{i=0}^{n-j-1} a(i, j, n-i-j)
$$

(as in the proof in [7]), then provided that intermediate results are simplified, Maple (version 8) correctly returns $2 \zeta(3)-\pi^{4} / 45$.

The result (2) fits into an interesting pattern, where the values $\zeta(m)$ for small integer m appear in several similar results, without any obvious
explanation. A well-known example is the random assignment problem, where D. Aldous [2] proved that the mean converges to $\zeta(2)$ and Wästlund [8] proved that the variance is asymptotically $(4 \zeta(2)-4 \zeta(3)) / n$. Similarly, R. van der Hofstad, G. Hooghiemstra and P. Van Mieghem [4, 5] have studied the shortest path tree from a distinguished root in the complete graph with random exponential weights, finding an asymptotic normal distribution with the asymptotic mean $\zeta(2)$ and variance $4 \zeta(3) / n$.

References

[1] N.H. Abel, Beweis eines Ausdruckes, von welchem die Binomial-Formel ein einzelner Fall ist. J. Reine Angew. Math. 1 (1826), 159-160. The article is available at http://dz-srv1.sub.uni-goettingen.de/cache/toc/D270794.html
[2] D. Aldous, The $\zeta(2)$ limit in the random assignment problem. Random Struct. Alg. 18 (2001), 381-418.
[3] A.M. Frieze, On the value of a minimal spanning tree problem. Discrete Appl. Math. 10 (1985), 47-56.
[4] R. van der Hofstad, G. Hooghiemstra \& P. Van Mieghem, Size and weight of shortest path trees with exponential link weights. Combin. Probab. Comput., to appear.
[5] R. van der Hofstad, G. Hooghiemstra \& P. Van Mieghem, The weight of the shortest path tree. Random Struct. Alg., to appear.
[6] S. Janson, The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph. Random Struct. Alg. 7 (1995), 337-355.
[7] J. Wästlund, Evaluation of Janson's constant for the variance in the random minimum spanning tree problem. Linköping Studies in Mathematics, 7 (2005) http://www.ep.liu.se/ea/lsm/2005/007/
[8] J. Wästlund, The variance and higher moments in the random assignment problem. Linköping Studies in Mathematics, 8 (2005)
http://www.ep.liu.se/ea/lsm/2005/008/
Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, SWEdEn

E-mail address: svante.janson@math.uu.se
URL: http://www.math.uu.se/~svante/
Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden

E-mail address: jowas@mai.liu.se
URL: http://www.mai.liu.se/~jowas/

