Discrete Comput Geom 26:173-181 (2001)

Discrete & Computational
DOI: 10.1007/500454-001-0011-5 G eom et r y

© 2001 Springer-Verlag New York Inc.

A Smaller Sleeping Bag for a Baby Snake

J. Hastad,! S. Linusson,? and J. Wastlund?

INADA, Royal Ingtitute of Technology,
S-100 44 Stockholm, Sweden
johanh@nada.kth.se

2Department of Mathematics, Linkdping University,
S-581 83 Linkdping, Sweden

linusson@mai.liu.se

johan.waestlund@telia.com

Abstract. By aseeping bag for a baby snake in d dimensions we mean a subset of RY
which can cover, by rotation and trand ation, every curve of unit length. We construct sleep-
ing bagswhich are smaller than any previously known in dimensions 3 and higher. In partic-
ular, we construct athree-dimensional sleeping bag of volume approximately 0.075803. For
large d we construct d-dimensiona sleeping bags with volume less than (c,/log d)d /d34/2
for some constant c.

To obtain the last result, we show that every curve of unit length in RY lies between two
parallel hyperplanes at distance at most ¢;d=%2, /logd, for some constant c;.

1. Introduction

The“worm problem” of Leo Moser asksfor aplane set of minimal areawhich can cover
(by rotation and translation) every arc of unit length. The problem has been popul arized
by severa authors, see [St], [NPL] and the references therein. It has been referred to
as “mother worm'’s blanket”, while other mathematicians have discussed the form of a
hammer head to smash the entire worm in a single stroke.

The smallest known “universal blanket” was discovered by Norwood et a. [NPL].
This region, shown in Fig. 1, consists of a 60°-sector of a circle of radius % with a
30°—60°—90° triangle with sides 3, +/3/3 and +/3/6 attached on each side. The area is
V/3/12 + 7 /24, or approximately 0.27524. No positive lower bound is known for the
area of a universal blanket, although in [M] it is shown that no plane set of measure
zero will cover every smooth curve. If we add the requirement that the blanket should
be convex, then it is shown in [SW] that the area must be at least 0.21946.
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Fig. 1. The smallest known universa blanket.

In[St], Stewart asks for a“sleeping bag”, that is, a three-dimensional region which
will cover every arc of unit length. This challenge was answered by Lindstrom [L], who
constructed avalid sleeping bag of approximatevolume0.15953. Inthisnotewe construct
asleeping bag in three dimensionswith lessthan half the volume of Lindstrom’s. We also
construct higher-dimensional sleeping bags which, as far as we know, are smaller than
any previously known, also asymptotically. The higher-dimensional problem has aso
been studied by Schaer and Wetzel [SW], who proved that the cube with hyperdiagonal
lisavalid sleeping bag in every dimension.

We begin by constructing a sleeping bag with the shape of arectangular box.

Theorem 1. Therectangular 1 x % x z x --- x 1/d boxisavalid slegping bagind

dimensions.

1
3

Proof. Suppose we are given an arc y of unit length in d dimensions. We can assume
that y: [0, 1] — RY isaparametrization by arc length, that is, the arc y[a, b] haslength
la—b|. Let H be a hyperplane intersecting y in the points y(1/2d), y(3/2d), ...,
y((2d — 1)/2d). Since no point on y can be at a distance more than 1/2d from H, y
lies completely between the two hyperplanes parallel to H at a distance 1/2d from H.
These two hyperplanes, whichwe call H; and H,, are at adistance 1/d from each other.
By induction on d, we can assume that the projection of y on H can be covered by a
1x 3 x 2 x---x 1/(d — 1) box. The part of the region between H; and H, which is
projected into this box by orthogonal projection on H isal x % X % x -+ x 1/d box
containing y. O

Thisbox has volume 1/d!, which is smaller than the volume 1/d%/? of the cube with
diagonal 1 (see Table 1). We make two different refinements of this construction. The
first one gives slightly smaller sleeping bagsin low dimensions, by removing some parts
of the box in Theorem 1. The second one gives considerably smaller rectangular boxes
in higher dimensions.

We use the following notation. Let y beacurvein RY and let = be a projection of RY
to R. Then we let w, (y) be the length of the interval 7 (y). For a hyperplane H we let
wHy (¥) = w, (y) where 7 is the orthogonal projection projecting H to a single paint.
We let the width w(y) of y be min, w, (y). Findly, we let t(d) be the supremum of
w(y) over al curves y of length 1in RY. Theorem 1 is a combination of the two facts
that t(d) < d~! and that there is a rectangular sleeping bag of volume ]_[id:lt(i). In
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Section 3 we prove that

2/Togd + 1

—3/2
d <t@d) < d_377

2. A Construction for Small Sleeping Bagsin L ow Dimensions

We can reduce the volume of the sleeping bag in Theorem 1 by a constant factor by
taking the blanket of Norwood et al. asthe starting point of theinduction. Thefollowing
theorem makes amore substantial improvement on this construction by rounding off the
corners of the box. Recall that aset Sisstar convex if thereisacentral point p € Ssuch
that for every point X € S, the line segment from p to x liesentirely in S.

Theorem 2. Let Rbeastar convexdeepingbagind —1dimensions. Let p beacentral
point of R. Let R’ be the subset of RY contained between the hyperplanes x4 = 0 and
Xg = 1/d, such that the intersection of R with the hyperplane x4 = h isa copy of R
scaled down by a factor
1 1
R = __h2
1 q + 7 h
around p. Then R’ isavalid slegping bag in d dimensions.

Proof. Lety beacurveinRY of unit length parameterized by arclength. Asin the proof
of Theorem 1, let H be ahyperplane passing through the points y (1/2d), y (3/2d), .. .,
y((2d —1)/2d). Let H; and H, bethe hyperplanes paralel to H touching y, such that y
lies between them. Clearly, wy (y) isthe distance between H; and H,, and for notational
convenience we denote this number by w. We let ¢ denote the length of the projection
of y on H and we start by deriving an inequality relating w to £.

Let wy and w, be the distances from H to H; and Hy, respectively. We divide y into
2d arcs yy, . . ., y2q Of equal length. Note that each of them has an endpoint in H. If the
arc y = yI(k — 1)/2d, k/2d] contains a point at distance w; from H, then the length
£(yx) of the projection of y, on H isat most

1

4d?2

Thereisaso an arc y containing apoint at distance w, from H on the other side of H.
The sum w () + w(n) of the lengths of the projections of y and 1 on H isat most

2
- Wy.

1 1
aﬁ‘%+/aﬁ‘@- @

Under the condition that wy + w, = w, thisismaximized by taking w; = w,, sothat 1

becomes
1
Va "
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Under the assumption that k # 1, it follows that

We will show that w cannot be greater than thiseven if k = |. Even without taking into
account that y, must returnto H after visiting H; and H,, we get
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Hence the projection of y on H can be covered by a copy R,, of R scaled down by a
factor

1 1
J— = 2
1 3 + o w4,
Thisshowsthat y can always be covered by aprism over R,, of width w. Since Ris star
convex, this prism, and hence y, can be covered by R'. O

We now compute the volume of the sleeping bag obtained in Theorem 2. The volume

of R, is
d-1
vol(R) l—l—i- i—w2
d d?2 '

Hence

d-1
I(R) = vol(R) /w -2 /2 u2) dw
Yol = : - = — —
0 d ' Va2

— VoI(R) - % : /01 <1— g (1— V1= x2>>dldx, @)

by the substitution w = x/d.
The integral in 2 can of course be evaluated for any d. If we let R be the two-
dimensional blanket of Norwood et a., then Theorem 2 gives us a three-dimensiona

deeping bag with volume
14 7\ (V3 =
(8_1 + E) (E + 2_4> ’

or about 0.079597.



A Smaller Sleeping Bag for a Baby Snake 177

Wenow estimatethequotient vol (R') / vol (R) for larged. Usingtheinequality 1—y <
e Y, withy = (1 - +/1—x2)/d, weobtain

1 2 M d 1-x2-1
(1_6(1_m)) <9 oo

d-—1

Hence

/ 1
volRy _ 1 / o/ I%-1 gy
vol(R) —d—-1/J,
Since R’ is aso star convex, it follows by induction on d that there exists a d-
dimensional valid sleeping bag with volume (at most)

Cdfl
d—-1

where

1
c= / eV 1¥*-1qyx ~ 0.82550.
0

An Even Smaller Seeping Bag in R3

In three dimensions we can find an even smaller deeping bag. Recall that t(3) is the
maximal width of any curve of length 1in R3. Let R be the two-dimensional blanket
described by Norwood et a. pictured in Fig. 1.

Theorem 3. The prism over R scaled down by a factor /1 — t(3)2 and with height
t(3) isavalid sleeping bag. It hasvolumet (3)(1—t(3)2)(v/3/12+ 7 /24). In particular
sincet(3) < 0.30331, thereisavalid sleeping bag in R with volumelessthan 0.075803.

Proof. Lety beanarcinR3. If w,(y) < t(3) for every direction r, then y fitsin a
cubewith sidet (3). Since asquare can easily be placed in R aslong asthe diagonal isat
most 2, the cube will fit in the described prism aslong as 3,/1 — t(3)2 > t(3)+/2. This
istrueif t(3) < %, which we aready know is the case.

Supposethereforethat thereisaprojection ' for which w,/ (y) > t(3). By continuity
there is a = for which w,(y) = t(3). Now the projection of y to the hyperplane
orthogonal to =z isatwo-dimensional arc of length at most /1 — t(3), which will fitina
copy of R scaled down by the same factor. It isnow clear that al of ¢ can befitted into
the given prism.

The last statement of the theorem follows from the lemma bel ow. O

Lemmad4.

td) =
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Tablel. Comparison of the volumes of some sleeping bags.

Dimension
Method 3 4 5 6 7
The cube with diagonal 1 0.19245  0.0625 0.017889  4.63-10% 1.10-10°3
Lindstrom’s sleeping bag 0.15953
The box of Theorem 1 0.16667  0.041667 833-10° 1.39.10% 1.98-10~*

Therounded prism of Theorem2  0.079597 0.017037 2.90-10% 4.08-10"* 4.91.-107°
The prism of Theorem 3 0.075803

Proof. Let y be a curve of unit length in R3. Let o be the orthogonal projection to
the line through the endpoints of y, and let H be a plane orthogona to this line. Let
w = w, (y). Thelength of the projection of y to H isat most +/1 — w2. Note that the
projection of y to H isaclosed curve.

It is a well known fact from convex geometry (see for example p. 6 of [Sa]) that
the average width, taken over all directions, of a closed curve of unit length in two
dimensionsisat most 1/ (with equality if the curve equals the boundary of its convex

hull).
Hence in some direction, the width of y isat most /1 — w?/x. We therefore have
/1 — w2
w(y) < min (w, —w) . 3
g

To get an upper bound for the right-hand side of 3, we put w = +/1 — w?/m, and
solvefor w, toget w = 1/4/1+ 2. O

Table 1 compares the different constructions.

3. Boundsfor t(d) in Higher Dimensions

In this section we estimatet (d) for large d. Apart from the immediate application to the
deeping bag problem we believe that the estimation of t(d) is an interesting problem
initself. An exact calculation of t(2) (approximately 0.438925) can befoundin [Sc]. A
description of the curve giving the lower bound on t(2) can be found in [SW].

Theorem 5. t(d) > d=%2,
Proof. Takethecurvey that consistsof d segmentsof length 1/d, wherethei th segment
isin the direction of theith coordinate axis. Now take any linear function 7: RY — R,

(X1 Xo -, Xa) = Y0, & X, where Y a2 = 1. There has to be some g > d~%/2.
This means that the i th segment of y has a projection of size at least d—%/2. O

Therest of the section is devoted to the following upper bound on t (d).
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Theorem 6.

2/Togd + 1

td) < d_377

We need afew preliminary results.

Lemma7. The surface area of the spherical cap defined by x; > ¢, ||x|| = 1inRY,
equals

2 (@-1/2

1
_ y2\(d-3)/2
r((d—l)/2>[c (1 =)™ ex.

Proof. We use the fact that the volume of the (d — 1)-dimensional unit ball equals

2 d-1)/2
(d-Dr(d-13/2°

The surface areain question equals d times the volume of the region in RY defined
by x|l < 1, x1/[Ix]| = c. Thisis

2d7@-b/2 (/‘C <mx>d_ldx+/l( 1——x2)d_1dx)
0 c

d-1rqd-1/2 C
27 d-1)/2
S d-1r(d-1)/2

1
(c(l —cH@ D24 d f (1—x?)@-b/2 dx) N
[
Differentiating the second factor of 4 with respect to ¢, we obtain
(1 _ C2)(d—3)/2(1 o dc2) _ d(l _ CZ)(d—l)/27

which simplifiesto (1 — d)(1 — ¢?)¥-3/2, Hence 4 equals

2 d-1)/2 1 20972 4
_— (1—-x5' X + constant . (5)
I'(d-1/2 /c
Since both 4 and 5 tend to 0 asc — 1, the constant is zero. O

Lemma8. Supposex € RY, ¢ € [0, 1] and let = be a random projection from R¢ to
R. Then

Pr(lmx| = clx|) < (L - ¢&)@I72
Proof. By symmetry we can clearly assume that x = ey, the unit vector in the first
dimension. The surface area of the part of S¥ with x; > cisequal to

27 (=12

1
L 2\d-3)/2
r((d—1>/2>/c (@ =)™ dx.
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Hence
Prijex| > S|y = fcl a- x2)(d—3)/2 dx B fcl (1— X2)(d—3)/2 dx
- - [ @ —x)@-32dx ~ [7°(1 - x2)@-3/2dx
=g — 2 (d—3)/2
= Jo 1(—1c (X+0)) dx < (1—c))©-32, ©)
[37°(1— x2)-3/2dx
the maximal value of the quotient of the integrands. -

As in the proof of Theorem 1, let y be a curve parameterized by arc length. We
choose two integers d; and d», to be specified later, such that d; + do = d + 1. Take
an orthogonal linear projection t that projects RY to R%, such that all y ((2i + 1)/2d),
i =0,...,d; — 1, projects to the same point, which we can assume to be the origin.
We compose this projection with arandom projection o from R% to R. We analyze the
combined projectionr = o o 1.

Lemma9. Let p beany pointony,andleth > 0. Then
Pr(iz(p)| > h) < (1_ 4d]2_h2)(d2_3)/2_

Proof. Note that the distance from p to the nearest point y ((2i + 1)/2d,) is a most
1/2d;. We now apply Lemma 8 (in d, dimensions). O

Proof of Theorem6. We now divide the curve y into N parts. The probability that at
least one of the midpoints of these partsis mapped by = to apoint at distance more than
h from the origin is at most

N - (1— 4d2h?) * 972

If di, dp, N and h are chosen so that
1— N (1-4d2h?) 972~ o

then with positive probability none of the points (y ((2i +1)/2N)) isat adistance more
than h from the origin, and hence no point on 7z () isat adistance morethan h + 1/2N
from the origin. It will follow that t (d) < 2h + 1/N.

By continuity, having chosen dy, d, and N, we can choose h so that

1— N (1—4d2h?)* 9% =0,
Putting d, = d — d; + 1, and solving for h, we get

V1= N-2/@&-2

h=
20, '

and, consequently,

q V1= N-2/@d&-2 1
t(d) < —.
(d) < a + N
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Using theinequality 1 — e™* < x, withx =logN - 2/(d — d; — 2), we obtain

JIogN-2/d—d1—2) 1 2 1
t(d 2 flgN. [—— < =
@ = dr TNV Ea—2—a) TN

We now optimize our choice of d; and d,. To maximize df(d — 2 —dy), we choose
d; ~ %d. We have to take into account that d; has to be an integer, but in any case we
can make sure that d?(d — 2 — dy) > o (d — 3)%.

We then have

27 1
t(d) < /m,/log N + N

We now choose N to be d*? rounded to the nearest integer. Thisis slightly smaller
than the optimal value, but the exponent g isthe best one.
We obtain

27 1 9«/I0ga +1
/ 3/2 2
MO =\ 5a gV T G = Ta—ger .

This gives a better bound than that of Theorem 1 when d > 128. Theorem 5 imme-
diately gives the following corollary:

Corollary 10. Therectangular t(1) x t(2) x - -- x t(d) box has volume less than

(cy/Togd)¢

g3z

for some constant c.
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