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Abstract. By a sleeping bag for a baby snake in d dimensions we mean a subset of R
d

which can cover, by rotation and translation, every curve of unit length. We construct sleep-
ing bags which are smaller than any previously known in dimensions 3 and higher. In partic-
ular, we construct a three-dimensional sleeping bag of volume approximately 0.075803. For
large d we construct d-dimensional sleeping bags with volume less than (c

√
log d)d/d3d/2

for some constant c.
To obtain the last result, we show that every curve of unit length in R

d lies between two
parallel hyperplanes at distance at most c1d−3/2

√
log d, for some constant c1.

1. Introduction

The “worm problem” of Leo Moser asks for a plane set of minimal area which can cover
(by rotation and translation) every arc of unit length. The problem has been popularized
by several authors, see [St], [NPL] and the references therein. It has been referred to
as “mother worm’s blanket”, while other mathematicians have discussed the form of a
hammer head to smash the entire worm in a single stroke.

The smallest known “universal blanket” was discovered by Norwood et al. [NPL].
This region, shown in Fig. 1, consists of a 60◦-sector of a circle of radius 1

2 , with a
30◦–60◦–90◦ triangle with sides 1

2 ,
√

3/3 and
√

3/6 attached on each side. The area is√
3/12 + π/24, or approximately 0.27524. No positive lower bound is known for the

area of a universal blanket, although in [M] it is shown that no plane set of measure
zero will cover every smooth curve. If we add the requirement that the blanket should
be convex, then it is shown in [SW] that the area must be at least 0.21946.
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Fig. 1. The smallest known universal blanket.

In [St], Stewart asks for a “sleeping bag”, that is, a three-dimensional region which
will cover every arc of unit length. This challenge was answered by Lindström [L], who
constructed a valid sleeping bag of approximate volume 0.15953. In this note we construct
a sleeping bag in three dimensions with less than half the volume of Lindström’s. We also
construct higher-dimensional sleeping bags which, as far as we know, are smaller than
any previously known, also asymptotically. The higher-dimensional problem has also
been studied by Schaer and Wetzel [SW], who proved that the cube with hyperdiagonal
1 is a valid sleeping bag in every dimension.

We begin by constructing a sleeping bag with the shape of a rectangular box.

Theorem 1. The rectangular 1 × 1
2 × 1

3 × · · · × 1/d box is a valid sleeping bag in d
dimensions.

Proof. Suppose we are given an arc γ of unit length in d dimensions. We can assume
that γ : [0, 1] → R

d is a parametrization by arc length, that is, the arc γ [a, b] has length
|a − b|. Let H be a hyperplane intersecting γ in the points γ (1/2d), γ (3/2d), . . . ,
γ ((2d − 1)/2d). Since no point on γ can be at a distance more than 1/2d from H , γ

lies completely between the two hyperplanes parallel to H at a distance 1/2d from H .
These two hyperplanes, which we call H1 and H2, are at a distance 1/d from each other.
By induction on d , we can assume that the projection of γ on H can be covered by a
1 × 1

2 × 1
3 × · · · × 1/(d − 1) box. The part of the region between H1 and H2 which is

projected into this box by orthogonal projection on H is a 1 × 1
2 × 1

3 × · · · × 1/d box
containing γ .

This box has volume 1/d!, which is smaller than the volume 1/dd/2 of the cube with
diagonal 1 (see Table 1). We make two different refinements of this construction. The
first one gives slightly smaller sleeping bags in low dimensions, by removing some parts
of the box in Theorem 1. The second one gives considerably smaller rectangular boxes
in higher dimensions.

We use the following notation. Let γ be a curve in R
d and let π be a projection of R

d

to R. Then we let wπ(γ ) be the length of the interval π(γ ). For a hyperplane H we let
wH (γ ) = wπ(γ ) where π is the orthogonal projection projecting H to a single point.
We let the width w(γ ) of γ be minπ wπ(γ ). Finally, we let t (d) be the supremum of
w(γ ) over all curves γ of length 1 in R

d . Theorem 1 is a combination of the two facts
that t (d) ≤ d−1 and that there is a rectangular sleeping bag of volume

∏d
i=1 t (i). In
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Section 3 we prove that

d−3/2 ≤ t (d) ≤
9
2

√
log d + 1

(d − 3)3/2
.

2. A Construction for Small Sleeping Bags in Low Dimensions

We can reduce the volume of the sleeping bag in Theorem 1 by a constant factor by
taking the blanket of Norwood et al. as the starting point of the induction. The following
theorem makes a more substantial improvement on this construction by rounding off the
corners of the box. Recall that a set S is star convex if there is a central point p ∈ S such
that for every point x ∈ S, the line segment from p to x lies entirely in S.

Theorem 2. Let R be a star convex sleeping bag in d −1 dimensions. Let p be a central
point of R. Let R′ be the subset of R

d contained between the hyperplanes xd = 0 and
xd = 1/d , such that the intersection of R′ with the hyperplane xd = h is a copy of R
scaled down by a factor

1 − 1

d
+
√

1

d2
− h2

around p. Then R′ is a valid sleeping bag in d dimensions.

Proof. Let γ be a curve in R
d of unit length parameterized by arc length. As in the proof

of Theorem 1, let H be a hyperplane passing through the points γ (1/2d), γ (3/2d), . . . ,

γ ((2d −1)/2d). Let H1 and H2 be the hyperplanes parallel to H touching γ , such that γ

lies between them. Clearly, wH (γ ) is the distance between H1 and H2, and for notational
convenience we denote this number by w. We let 	 denote the length of the projection
of γ on H and we start by deriving an inequality relating w to 	.

Let w1 and w2 be the distances from H to H1 and H2, respectively. We divide γ into
2d arcs γ1, . . . , γ2d of equal length. Note that each of them has an endpoint in H . If the
arc γk = γ [(k − 1)/2d, k/2d] contains a point at distance w1 from H , then the length
	(γk) of the projection of γk on H is at most√

1

4d2
− w2

1.

There is also an arc γl containing a point at distance w2 from H on the other side of H .
The sum w(γk) + w(γl) of the lengths of the projections of γk and γl on H is at most√

1

4d2
− w2

1 +
√

1

4d2
− w2

2. (1)

Under the condition that w1 + w2 = w, this is maximized by taking w1 = w2, so that 1
becomes √

1

d2
− w2.



176 J. Håstad, S. Linusson, and J. Wästlund

Under the assumption that k = l, it follows that

	 ≤ 1 − 1

d
+
√

1

d2
− w2.

We will show that w cannot be greater than this even if k = l. Even without taking into
account that γk must return to H after visiting H1 and H2, we get

	 ≤ 1 − 1

2d
+
√

1

4d2
− w2 = 1 − 1

d
+
√

1

4d2
− w2 + 1

2d

= 1 − 1

d
+
√

1

2d2
− w2 + 1

d

√
1

4d2
− w2 ≤ 1 − 1

d
+
√

1

2d2
− w2 + 1

d

√
1

4d2

= 1 − 1

d
+
√

1

d2
− w2.

Hence the projection of γ on H can be covered by a copy Rw of R scaled down by a
factor

1 − 1

d
+
√

1

d2
− w2.

This shows that γ can always be covered by a prism over Rw of width w. Since R is star
convex, this prism, and hence γ , can be covered by R′.

We now compute the volume of the sleeping bag obtained in Theorem 2. The volume
of Rw is

vol(R) ·
(

1 − 1

d
+
√

1

d2
− w2

)d−1

.

Hence

vol(R′) = vol(R) ·
∫ 1/d

0

(
1 − 1

d
+
√

1

d2
− w2

)d−1

dw

= vol(R) · 1

d
·
∫ 1

0

(
1 − 1

d

(
1 −

√
1 − x2

))d−1

dx, (2)

by the substitution w = x/d.
The integral in 2 can of course be evaluated for any d. If we let R be the two-

dimensional blanket of Norwood et al., then Theorem 2 gives us a three-dimensional
sleeping bag with volume

(
14

81
+ π

27

)(√
3

12
+ π

24

)
,

or about 0.079597.
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We now estimate the quotient vol(R′)/ vol(R) for large d. Using the inequality 1−y ≤
e−y , with y = (1 − √

1 − x2)/d , we obtain

(
1 − 1

d

(
1 −

√
1 − x2

))d−1

≤ d

d − 1
e
√

1−x2−1.

Hence

vol(R′)
vol(R)

≤ 1

d − 1

∫ 1

0
e
√

1−x2−1 dx .

Since R′ is also star convex, it follows by induction on d that there exists a d-
dimensional valid sleeping bag with volume (at most)

cd−1

(d − 1)!
,

where

c =
∫ 1

0
e
√

1−x2−1 dx ≈ 0.82550.

An Even Smaller Sleeping Bag in R
3

In three dimensions we can find an even smaller sleeping bag. Recall that t (3) is the
maximal width of any curve of length 1 in R

3. Let R be the two-dimensional blanket
described by Norwood et al. pictured in Fig. 1.

Theorem 3. The prism over R scaled down by a factor
√

1 − t (3)2 and with height
t (3) is a valid sleeping bag. It has volume t (3)(1− t (3)2)(

√
3/12+π/24). In particular

since t (3) ≤ 0.30331, there is a valid sleeping bag in R
3 with volume less than 0.075803.

Proof. Let γ be an arc in R
3. If wπ(γ ) ≤ t (3) for every direction π , then γ fits in a

cube with side t (3). Since a square can easily be placed in R as long as the diagonal is at
most 1

2 , the cube will fit in the described prism as long as 1
2

√
1 − t (3)2 ≥ t (3)

√
2. This

is true if t (3) ≤ 1
3 , which we already know is the case.

Suppose therefore that there is a projection π ′ for which wπ ′(γ ) > t (3). By continuity
there is a π for which wπ(γ ) = t (3). Now the projection of γ to the hyperplane
orthogonal to π is a two-dimensional arc of length at most

√
1 − t (3), which will fit in a

copy of R scaled down by the same factor. It is now clear that all of γ can be fitted into
the given prism.

The last statement of the theorem follows from the lemma below.

Lemma 4.

t (3) ≤ 1√
1 + π2

.
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Table 1. Comparison of the volumes of some sleeping bags.

Dimension

Method 3 4 5 6 7

The cube with diagonal 1 0.19245 0.0625 0.017889 4.63 · 10−3 1.10 · 10−3

Lindström’s sleeping bag 0.15953
The box of Theorem 1 0.16667 0.041667 8.33 · 10−3 1.39 · 10−3 1.98 · 10−4

The rounded prism of Theorem 2 0.079597 0.017037 2.90 · 10−3 4.08 · 10−4 4.91 · 10−5

The prism of Theorem 3 0.075803

Proof. Let γ be a curve of unit length in R
3. Let σ be the orthogonal projection to

the line through the endpoints of γ , and let H be a plane orthogonal to this line. Let
w = wσ (γ ). The length of the projection of γ to H is at most

√
1 − w2. Note that the

projection of γ to H is a closed curve.
It is a well known fact from convex geometry (see for example p. 6 of [Sa]) that

the average width, taken over all directions, of a closed curve of unit length in two
dimensions is at most 1/π (with equality if the curve equals the boundary of its convex
hull).

Hence in some direction, the width of γ is at most
√

1 − w2/π . We therefore have

w(γ ) ≤ min

(
w,

√
1 − w2

π

)
. (3)

To get an upper bound for the right-hand side of 3, we put w = √
1 − w2/π , and

solve for w, to get w = 1/
√

1 + π2.

Table 1 compares the different constructions.

3. Bounds for t(d ) in Higher Dimensions

In this section we estimate t (d) for large d. Apart from the immediate application to the
sleeping bag problem we believe that the estimation of t (d) is an interesting problem
in itself. An exact calculation of t (2) (approximately 0.438925) can be found in [Sc]. A
description of the curve giving the lower bound on t (2) can be found in [SW].

Theorem 5. t (d) ≥ d−3/2.

Proof. Take the curve γ that consists of d segments of length 1/d, where the i th segment
is in the direction of the i th coordinate axis. Now take any linear function π : R

d → R,
π(x1, x2, . . . , xd) = ∑d

i=1 ai xi , where
∑d

i=1 a2
i = 1. There has to be some ai ≥ d−1/2.

This means that the i th segment of γ has a projection of size at least d−3/2.

The rest of the section is devoted to the following upper bound on t (d).
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Theorem 6.

t (d) ≤
9
2

√
log d + 1

(d − 3)3/2
.

We need a few preliminary results.

Lemma 7. The surface area of the spherical cap defined by x1 > c, ‖x‖ = 1 in R
d ,

equals

2π(d−1)/2

� ((d − 1)/2)

∫ 1

c
(1 − x2)(d−3)/2 dx .

Proof. We use the fact that the volume of the (d − 1)-dimensional unit ball equals

2π(d−1)/2

(d − 1)� ((d − 1)/2)
.

The surface area in question equals d times the volume of the region in R
d defined

by ‖x‖ ≤ 1, x1/‖x‖ ≥ c. This is

2dπ(d−1)/2

(d − 1)� ((d − 1)/2)


∫ c

0

(√
1 − c2

c
x

)d−1

dx +
∫ 1

c

(√
1 − x2

)d−1
dx




= 2π(d−1)/2

(d − 1)� ((d − 1)/2)

(
c(1 − c2)(d−1)/2 + d

∫ 1

c
(1 − x2)(d−1)/2 dx

)
. (4)

Differentiating the second factor of 4 with respect to c, we obtain

(1 − c2)(d−3)/2(1 − dc2) − d(1 − c2)(d−1)/2,

which simplifies to (1 − d)(1 − c2)(d−3)/2. Hence 4 equals

2π(d−1)/2

� ((d − 1)/2)

∫ 1

c
(1 − x2)(d−3)/2 dx + constant . (5)

Since both 4 and 5 tend to 0 as c → 1, the constant is zero.

Lemma 8. Suppose x ∈ R
d , c ∈ [0, 1] and let π be a random projection from R

d to
R. Then

Pr(|πx | ≥ c‖x‖) ≤ (1 − c2)(d−3)/2.

Proof. By symmetry we can clearly assume that x = e1, the unit vector in the first
dimension. The surface area of the part of Sd with x1 > c is equal to

2π(d−1)/2

� ((d − 1)/2)

∫ 1

c
(1 − x2)(d−3)/2 dx .
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Hence

Pr(|πx | ≥ c‖x‖) =
∫ 1

c (1 − x2)(d−3)/2 dx∫ 1
0 (1 − x2)(d−3)/2 dx

≤
∫ 1

c (1 − x2)(d−3)/2 dx∫ 1−c
0 (1 − x2)(d−3)/2 dx

=
∫ 1−c

0 (1 − (x + c)2)(d−3)/2 dx∫ 1−c
0 (1 − x2)(d−3)/2 dx

≤ (1 − c2)(d−3)/2, (6)

the maximal value of the quotient of the integrands.

As in the proof of Theorem 1, let γ be a curve parameterized by arc length. We
choose two integers d1 and d2, to be specified later, such that d1 + d2 = d + 1. Take
an orthogonal linear projection τ that projects R

d to R
d2 , such that all γ ((2i + 1)/2d1),

i = 0, . . . , d1 − 1, projects to the same point, which we can assume to be the origin.
We compose this projection with a random projection σ from R

d2 to R. We analyze the
combined projection π = σ ◦ τ .

Lemma 9. Let p be any point on γ , and let h > 0. Then

Pr(|π(p)| > h) ≤ (
1 − 4d2

1 h2
)(d2−3)/2

.

Proof. Note that the distance from p to the nearest point γ ((2i + 1)/2d1) is at most
1/2d1. We now apply Lemma 8 (in d2 dimensions).

Proof of Theorem 6. We now divide the curve γ into N parts. The probability that at
least one of the midpoints of these parts is mapped by π to a point at distance more than
h from the origin is at most

N · (1 − 4d2
1 h2

)(d2−3)/2
.

If d1, d2, N and h are chosen so that

1 − N
(
1 − 4d2

1 h2
)(d2−3)/2

> 0,

then with positive probability none of the points π(γ ((2i +1)/2N )) is at a distance more
than h from the origin, and hence no point on π(γ ) is at a distance more than h + 1/2N
from the origin. It will follow that t (d) ≤ 2h + 1/N .

By continuity, having chosen d1, d2 and N , we can choose h so that

1 − N
(
1 − 4d2

1 h2
)(d2−3)/2 = 0.

Putting d2 = d − d1 + 1, and solving for h, we get

h =
√

1 − N−2/(d−d1−2)

2d1
,

and, consequently,

t (d) ≤
√

1 − N−2/(d−d1−2)

d1
+ 1

N
.
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Using the inequality 1 − e−x ≤ x , with x = log N · 2/(d − d1 − 2), we obtain

t (d) ≤
√

log N · 2/(d − d1 − 2)

d1
+ 1

N
=
√

log N ·
√

2

d2
1 (d − 2 − d1)

+ 1

N
.

We now optimize our choice of d1 and d2. To maximize d2
1 (d − 2 − d1), we choose

d1 ≈ 2
3 d . We have to take into account that d1 has to be an integer, but in any case we

can make sure that d2
1 (d − 2 − d1) ≥ 4

27 (d − 3)3.
We then have

t (d) ≤
√

27

2(d − 3)3

√
log N + 1

N
.

We now choose N to be d3/2 rounded to the nearest integer. This is slightly smaller
than the optimal value, but the exponent 3

2 is the best one.
We obtain

t (d) ≤
√

27

2(d − 3)3

√
log d3/2 + 1

(d − 1)3/2
≤

9
2

√
log d + 1

(d − 3)3/2
.

This gives a better bound than that of Theorem 1 when d ≥ 128. Theorem 5 imme-
diately gives the following corollary:

Corollary 10. The rectangular t (1) × t (2) × · · · × t (d) box has volume less than

(c
√

log d)d

d3d/2
,

for some constant c.
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