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PROBABILITY DISTRIBUTIONS WITH SUMMARY

GRAPH STRUCTURE

By Nanny Wermuth∗

Mathematical Statistics at Chalmers/ University of Gothenburg, Sweden

A set of independence statements may define the independence
structure of interest in a family of joint probability distributions. This
structure is often captured by a graph that consists of nodes repre-
senting the random variables and of edges that couple node pairs.
One important class are multivariate regression chain graphs. They
describe the independences of stepwise processes, in which at each
step single or joint responses are generated given the relevant ex-
planatory variables in their past. For joint densities that then result
after possible marginalising or conditioning, we use summary graphs.
These graphs reflect the independence structure implied by the gen-
erating process for the reduced set of variables and they preserve
the implied independences after additional marginalising and con-
ditioning. They can identify generating dependences which remain
unchanged and alert to possibly severe distortions due to direct and
indirect confounding. Operators for matrix representations of graphs
are used to derive these properties of summary graphs and to trans-
late them into special types of path in graphs.

1. Motivation, some previous and some of the new results.

1.1. Motivation. Graphical Markov models are probability distributions
defined for a dV × 1 random vector variable YV whose component vari-
ables may be discrete or continuous and whose joint density fV satisfies the
independence statements specified directly as well as those implied by an as-
sociated graph. The set of all such statements is the independence structure
captured by the graph.

One such type of graph had been introduced for multivariate regression
chains by Cox and Wermuth (1993, 1996) for which special results have been
derived by Drton (2009), Kang and Tian (2009), Marchetti and Lupparelli
(2010), Wermuth and Cox (2004), Wermuth, Wiedenbeck and Cox (2006),
Wermuth, Marchetti and Cox (2009).
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2 N. WERMUTH

A multivariate regression chain graph consists of nodes in set, V , that rep-
resent random variables and of edges that couple node pairs such that a re-
cursive order of the joint responses is reflected in the graph and each defining
independence constraint respects the given ordering; see Marchetti and Lupparelli
(2010). This distinguishes multivariate regression graphs from all other cur-
rently known types of chain graphs; see Drton (2009) for implications on
associated discrete distributions.

Because of this property, multivariate regression chain graphs are par-
ticularly well suited for studies of effects of hypothesized causes on joint
responses, see Cox and Wermuth (2004), and more generally for modeling
developmental processes, such as in panel studies. These provide data on a
group of individuals, termed the ‘panel’, collected repeatedly, say over years
or decades. Often one wants to compare corresponding analyses with results
in other studies that have core sets of variables in common, but that have
omitted some of the variables or that were carried out for subpopulations.

It is the outstanding feature of multivariate regression chains that conse-
quences of a model can be derived, for instance regarding implications after
marginalizing over some variables, in set M , or after conditioning on others,
in set C. In particular, graphs can be obtained for node set N = V \{C,M}
which capture precisely the independence structure implied by a generating
graph in node set V for the distribution of YN given YC , the distribution of
interest for the variables in the reduced node set N .

Such graphs are named independence-preserving, when they can be used
to derive the independence structure that would have resulted from the gen-
erating graph by conditioning on a larger node set {C, c} or by marginalising
over a larger node set {M,m}. Two types of such classes are a subclass of the
much larger class of MC-graphs of Koster (2002) and the typically more com-
pact MAGs (maximal ancestral graphs) of Richardson and Spirtes (2002).
We speak of two corresponding graphs if they result from a given generating
graph relative to the same sets C,M .

A third class of this type are the summary graphs of Wermuth, Cox and Pearl
(1994). This class is presented in the current paper in simplified form to-
gether with proofs based on operators for binary matrix representations of
the graphs. In contrast to a MAG, a corresponding summary graph can be
used to identify those dependences of a given generating process for families
of distributions of YV that remain unchanged and those generating depen-
dences that may be severely distorted in the MAG model for YN given YC .
This is especially helpful at the planning stage of new studies when several
alternative sets M and C are considered that may result from a given, much
larger generating graph. The annotated, undirected graphs of Paz (2007),
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SUMMARY GRAPHS 3

defined for C = ∅, serve a similar purpose.
The warning signals provided by summary graphs are essential for un-

derstanding consequences of a given data generating process with respect
to dependences in addition to independences. For this, some special prop-
erties of the types of generating graph will be introduced as well as specific
requirements on the types of generating process. These lead to families of
distributions that are said to be generated over parent graphs.

1.2. Some notation and concepts. Some definitions for graphs are almost
self-explanatory. If pair i 6= k of V is coupled by a directed edge such that
an arrow starts at node k and points to node i, then k is named a parent of i
and i the offspring of k. For two disjoint subsets α and β of V , an ik-arrow,
i≺ k, is said to point from β to α if the arrow starts at a node k in β
and points to a node i in α. For three or more nodes, an ik-path connects
the path endpoint nodes i and k by a sequence of edges that couple nodes.
Nodes other than the endpoint nodes are the inner nodes of a path; only the
latter have to be distinct.

An edge is regarded as a path without inner nodes. Both a graph and
a path, are called directed if all its edges are arrows. If all arrows of a
directed ik-path point towards node i, then node k is an ancestor of i and i a
descendant of k. Such a path is direction-preserving and called a descendant-
ancestor path.

Directed acyclic graphs form an important subclass of MRC graphs. They
arise from recursive stepwise generating processes of exclusively univariate
response variables, see also Section 2 below. These graphs have no directed
cycles, that is they have no descendant-ancestor ik-path such that i = k.

As we shall show, two different types of undirected graph are also sub-
classes of MRC graphs that can be derived from directed acyclic graphs. For
joint Gaussian distributions, they give models for zero constraints on covari-
ances and on concentrations, see e.g. Wermuth and Cox (1998) and (2.5),
(2.16) below. To distinguish between them in figures, edges in concentration
graphs are shown as full lines, i k, and in covariance graphs by dashed
lines, i k .

Separation criteria provide what is called the global Markov property of
a graph which in turn gives all independence statements that belong to the
graph’s independence structure.

Definition 1. A graph, consisting of a node set and of one or more edge
sets, is an independence graph if node pairs are coupled by at most one edge
and each missing edge corresponds to at least one independence statement.
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4 N. WERMUTH

MRC graphs and MAGs are independence graphs but, in general, sum-
mary and MC graphs are not, even with at most one edge for each node
pair; see the discussion of Figure 3b) below.

The same graph theoretic notion of separation applies to both types of
undirected graph. Let α and β be two nonempty, disjoint subsets of their
node set V and let {α, β,m, c} partition V , then we write Yα is conditionally
independent of Yβ given Yc compactly as α⊥⊥ β|c. In a concentration graph,
α is separated by c from β if every path from α to β has a node in c, while
in the covariance graph, α is separated by m from β if every path from α to
β has a node in m. Given separation of α and β by set c, a concentration
graph implies α⊥⊥ β|c; see Lauritzen (1996). Given separation of α and β
by set m, a covariance graph implies α⊥⊥ β|c; see Kauermann (1996), who
expresses the result in a different but equivalent way.

When a graph is directed or contains different types of edge then its
separation criterion is more complex than the one for undirected graphs.
For directed acyclic graphs, there are several different separation criteria
that permit to obtain all independence statements implied by the graph, see
Marchetti and Wermuth (2009) for proofs of equivalence.

The criterion due to Geiger, Verma and Pearl (1990), has been extended
in almost unchanged form by Koster (2002) to the much larger class of MC-
graphs. A path-based proof, due to Sadeghi (2008), is for the subclass of
MC-graphs that is of interest here, the graphs that can be derived from a
directed acyclic graph. For summary graphs, it is stated below as Lemma 1.

A list of independence statements associated with missing edges of an
independence graph is the graph’s pairwise Markov property. Whenever it
defines the graph’s independence structure, then the pairwise Markov prop-
erty is said to be equivalent to the global Markov property.

For all disjoint subsets a, b, c, d of node set V , the following general def-
initions are relevant, respectively, for combining pairwise independences in
covariance graph and in concentration graph models

Definition 2. the composition property:

a⊥⊥ b|d and a⊥⊥ c|d imply a⊥⊥ bc|d ,

Definition 3. the intersection property:

a⊥⊥ b|cd and a⊥⊥ c|bd imply a⊥⊥ bc|d .

Given these properties, the independence structure of interest in a covari-
ance or concentration graph model can be specified in terms of independence
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SUMMARY GRAPHS 5

constraints on a set of variable pairs. For general searching discussions; see
Dawid (1979), Pearl (1988), Lauritzen (1996), Studený (2005).

Necessary and sufficient conditions under which discrete and Gaussian dis-
tributions satisfy the intersection property, have been derived by San Martin, Mouchart and Rolin
(2005). They show in particular that of the commonly specified sufficient
conditions, some may be much too strong, for instance requiring exclusively
positive probabilities for discrete distributions. For joint Gaussian distribu-
tions, a positive definite joint covariance matrix is sufficient. In both cases,
no component of the involved random variables is degenerate.

Definition 4. A family of joint distributions is said to vary fully if
its random variables contain no degenerate components and it satisfies the
intersection property.

In distributions without the composition property, there may be sub-
sets of variables with pairwise but no mutual independence. For families of
joint distributions with the composition property that are associated with
a MRC graph, the global and the pairwise Markov property are equivalent;
see Kang and Tian (2009).

For a long time, only the family of Gaussian distributions was known to
satisfy both the composition and the intersection property provided it varies
fully. Under the same type of constraint, this is now known to hold for the
special family of distributions in symmetric binary variables introduced by
Wermuth, Marchetti and Cox (2009).

The notion of completeness had been introduced and studied in quite
different contexts; see Lehmann and Scheffé (1955), Brown (1986) Theorem
2.12, and Mandelbaum and Rüschendorf (1987). It means that the joint fam-
ily of distribution of vector variable Y is such that a zero expectation of any
function g(y) implies that the function itself is zero with probability one,
that is almost surely (a.s.).

Definition 5. Let f(y) denote the density of a member of a complete
family of distributions and g(y) be some function of Y , then it holds for
every f(y) that

∫

g(y)f(y) dy = 0 =⇒ g(y) = 0 a.s. .

For any trivariate family of distributions with precisely two associated
variable pairs, say (Y1, Y2) and (Y1, Y3), but 2⊥⊥ 3, completeness of the joint
distribution is sufficient to conclude that Y2 is conditionally dependent on
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6 N. WERMUTH

Y3 given Y1. This follows from Corollary 3 of Wermuth and Cox (2004) and
properties of completeness. In this situation, the generating graph

2 ≻1≺ 3

is inducing a 23-edge in the summary graph obtained by conditioning on
node 1 and a non-vanishing conditional association for Y2, Y3 given Y1.

In Section 2, we define parent graphs as directed acyclic graphs with
special properties and corresponding types of stepwise generating processes
such that edge-inducing paths are also association-inducing. The families of
distributions generated over parent graphs are complete and each member
of the families satisfies the intersection and the composition property in
addition to the general laws of probability that govern independences in any
joint family of distribution; for a discussion of the latter see Studený (2005).

1.3. Definition and construction of summary graphs. In contrast to MC-
graphs and MAGs, MRC graphs are not closed under marginalising and
conditioning, that is one can get with a MRC graph outside the given class
after marginalizing and conditioning; as illustrated with Figure 3 below. But
the graph resulting in this way from a MRC graph is always within the class
of summary graphs. This explains partly why we consider the larger class of
summary graphs.

Definition 6. A summary graph, GNsum, has node set N which consists
of two disjoint subsets u, v, ordered as (u, v). The graph has a mixture of a
directed acyclic graph and of a covariance graph within u and a concentration
graph within v. Between u and v, only arrows point from v to u.

The notions of parents, offsprings, ancestors and descendants remain un-
changed in a summary graph compared to a directed acyclic graph. As will
be shown, every summary graph in node set N can be generated from a
directed acyclic graph in node set V = {◦} by conditioning on C = {2◦ }
and marginalising over M = {6 6◦} so that N = V \ {C,M}. This graph is

denoted by G
V \ [C,M ]
sum , an associated density by fN |C which results from fY ,

the given density of the generating graph, which factorizes according to this
graph; see (1.3) below.

The density fN |C may concern discrete, continuous or mixed variables,
as implied by fV . It has a factorization according to (u, v) which is written
compactly in terms of node sets as

(1.1) fN |C = fu|vCfv|C .
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SUMMARY GRAPHS 7

In the larger generating graph in node set V , every node in v and no node
in u is an ancestor of the conditioning set C. Thus, each component of Yv
has been generated before Yu; see Figure 2 for an example.

Figures 1 to 3 illustrate how summary graphs may be generated. For
this, the stepwise construction of a summary graph by marginalizing over
m = {t} or conditioning on c = {j} in GNsum is given in Table 1.

If a node t is coupled to both of the nodes i and k then t is said to be their
common neighbor. In two-edge paths, the inner node is named a collision
node, s, for

◦ ≻s≺ ◦, ◦ ≻s ◦ ◦ s ◦,

and a transmitting node, t, otherwise. A path for which all inner nodes are
collision nodes is a collision path and a path for which all inner nodes are
transmitting nodes is a transmitting path.

Table 1

Types of induced edge when each of m or c contains a single node in GNsum.

Types of induced edge when marginalizing over the common neighbor node t

t ≻◦ t ◦ t ≺ ◦ t ◦
◦≺ t ◦ ◦ ◦≺ ◦ ◦≺ ◦ ◦ ◦
◦ t · ◦ ◦ ◦ ◦ ◦ ≻◦

and types of induced edge when conditioning on the common neighbor node s or
on one of the descendants of s

s ≺ ◦ s ◦
◦ ≻ s ◦ ◦ ◦ ≻◦
◦ s · ◦ ◦

where the · notation indicates a symmetric entry.

Table 1 is taken from Wermuth, Cox and Pearl (1994); see also Appendix
A here. It implies that a collision node is edge-inducing by conditioning on
it while a transmitting node is edge-inducing by marginalising over it.

Let now a summary graph, GNsum, be given and nodes j 6= t of N be
selected. Suppose one intends to marginalize over node t and to condition
on node j and dj denotes the ancestors of j within u of GNsum. Then, a new
summary graph in node set N ′ = N \ {j, t} results by use of Proposition
1. It has its concentration graph in v′ = v \ {j, t} for both nodes in v, in
v′ = v \ {j} for only j in v, in v′ = {v \ {t}, dj} for only t in v and in
v′ = {v, dj} for both nodes in u.
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8 N. WERMUTH

Proposition 1. Generating a summary graph from GNsum by operating
on at most two nodes. From GNsum, the independence-preserving summary

graph G
N\ [j,t]
sum is generated, with t the marginalising node and j the condi-

tioning node, by inducing edges as prescribed in Table 1
(1) first for the neighbors of t, second for the neighbors of both j and of all

of its ancestors (ignoring in the second step additional edges with t) or,
reversing the first and the second step (and thereby ignoring in the second
step additional edges involving j),

(2) changing each edge present within v′ into a full line and each edge
present between u′ and v′ into an arrow pointing from v′ to u′,

(3) keeping for each node pair of several edges that are of the same kind
just one and deleting all nodes and edges involving j or t.

See Section 3 for proofs in terms of operators for matrix representations

of graphs. The proofs imply for any node subset {m, c} of N that G
N\ [∅,m]
sum

may be derived before conditioning on set c, or G
N\ [c,∅]
sum before marginalizing

over set m and that within sets c or m any order of the nodes can be chosen.

The matrix formulations lead more directly to G
N\ [c,m]
sum , but Proposition

1 gives an algorithm for operating on one node at a time. It is also helpful
for small graphs as illustrated below with Figures 1 to 3. Proposition 1
implies that no coupled pair gets ever uncoupled and that the two types of
path which may occur when constructing a summary graph are replaced in

G
N\ [j,t]
sum :

◦ ≻◦ ◦ by ◦ ◦ ◦,

◦ ◦ ◦ by ◦≺ ◦ ◦.

The starting summary graph of Figure 1 is in 1a). For j = 5 and t = 4,
Figure 1b) shows the edges induced by operating first on j, Figure 1c) those

induced by operating first on t and Figure 1d) displays G
N\ [5,4]
sum .

By construction, a summary graph contains no directed cycle, but possibly
mixed directed cycles. These are direction-preserving ik-paths with i = k
that contain some undirected edges; see Figure 3b) for examples.

Corollary 1. MRC and summary graphs. A multivariate regression
chain graph is a summary graph without mixed directed cycles.

In contrast to a summary graph, a MRC graph is an independence graph
graph which has at most one edge coupling any node pair; compare Figures
2b) and 3b). Figure 2b) shows a MRC graph generated from a directed acyclic
graph and Figure 3b) a summary graph with mixed cycles.
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SUMMARY GRAPHS 9

Fig 1. a) A summary graph with node 4 to be marginalized over and node 5 to be con-
ditioned on, b) the graph of a) including edges induced for conditioning on node 5, c) the

graph of a) including edges induced for marginalising over node 4, d) G
N\ [5,4]
sum .
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Fig 2. a) A directed acyclic graph generating b) a summary graph without mixed cycles;
u = {1, 2, 3, 4} and v = {5, 6, 7, 8}.
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By replacing each dashed ik-edge by an ik-path i≺ 6 6◦ ≻k, every sum-
mary graph has a virtual generating directed acyclic graph for the nodes
within u even though a dashed line might actually have been generated by
over-conditioning, i.e. by including an offspring into the conditioning set of
two of its parents; see for example 6 6◦ ≻2◦ ≺ 6 6◦ as the inner nodes of
the 6,7-path in Figure 3a).

Fig 3. a) A directed acyclic graph generating b) a summary graph with v the empty set
and several mixed directed cycles; the 4,4-path with inner nodes 1, 2, 3, the 6,6-path via
inner node 5 and the double edge for (6,7)
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Similarly, each chordless cycle within v may be generated by including
additional nodes, 2◦ and 6 6◦, in appropriate ways; see Cox and Wermuth
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10 N. WERMUTH

(2000). The summary graph is uniquely defined if generated from a directed
acyclic graph in node set V for given sets M,C, but typically many different
directed acyclic graphs in node set V , or having nodes added to V , may lead
to the same summary graph.

1.4. Independence interpretation of summary graphs. A criterion to de-

cide whether a given summary graph, G
V \[C,M ]
sum , implies α⊥⊥ β|cC is given

next. For this, the node set N is partitioned as N = {α, β, c,m} where only
subsets c or m may be empty, for a ⊂ V .

Lemma 1. Koster (2002), Sadeghi (2008). Path criterion for the global

Markov property. The graph G
V \[C,M ]
sum implies α⊥⊥ β|cC if and only if it has

no ik-path between α and β such that of its inner nodes every collision node
is in c or has a descendant in c and every other node is outside c.

In addition to the directly described path, Lemma 1 specifies implicitly
many special types of forbidden path. We name a path of n > 2 nodes
an a-line path if all inner nodes are within set a. The marginalising set is

defined by m = N \ {α, β, c}. Then, in G
V \[C,M ]
sum there should be for node i

in α and node j in β no ik-edge, no m-line transmitting ik-path, no c-line
collision ik-path, no ik-path with all inner transmitting nodes in m and all
inner collision nodes in c.

Corollary 2. Active ik-paths. An ik-path in GNsum is active relative to
[c,m] if and only if it is an ik-edge or every inner transmitting node is in
m and every inner collision node is in c or has a descendant in c.

If an active ik-path relative to [c,m] has uncoupled endpoints, the path is

closed by an ik-edge in G
N\[c,m]
sum . If an active ik-path has coupled endpoints,

the path is edge-inducing in the construction process of G
N\ [c,m]
sum . Thus, we

often replace ‘active’ by the more concrete term ‘edge-inducing’. Figure 2b)
represents a multivariate regression chain graph, hence each missing edge
corresponds to at least one independence statement. This contrasts with
Figure 3b), which has three mixed directed cycles with an arrow starting at
nodes 4, 5 and 6, respectively, and no independence statement implied for
pairs (1,5), (5,7), (5,8), (6,8). For pair (1, 5), we give more detailed argu-
ments.

In the graph of Figure 2b), node 3 has no descendants and is an inner
collision node in every path connecting 1 and 5. Hence, when node 3 is
marginalized over, 1⊥⊥ 5|C is implied. In the graph of Figure 3b), pair (1, 5)
is connected by a descendant-ancestor path with inner nodes in {2, 3, 4}.
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SUMMARY GRAPHS 11

Therefore, a 1,5-edge is induced by marginalizing over nodes 2,3,4 and hence
1⊥⊥ 5|C is not implied. An 1,5-edge is induced by conditioning on node 4 or
on any of its descendants in {1, 2, 3} so that 1⊥⊥ 5|cC is not implied, c 6= ∅.

The following Figure 4 shows special cases of summary graphs, noting
that C and one of u, v may be empty sets. Figure 4 shows that summary

Fig 4. Important special cases of summary graphs. The two pairs X,Y and Z, U are
constrained given YC ; with X ⊥⊥ Y |ZU in a),b),c), with X ⊥⊥ Y |U in d),e), and with X ⊥⊥ Y
in f); with Z ⊥⊥ U in c),e), f ), with Z ⊥⊥ U |Y in b),d) and with Z ⊥⊥ U |XY in a).

i

a) b) c) f)e)d)

X

YZ

U

graphs cover all six possible combinations of independence constraints on
two non-overlapping pairs of four variables X,Z,U, Y . Substantive research
examples with well-fitting data to linear models of Figure 4 have been given
by Cox and Wermuth (1993) to the concentration graph in Figure 4a), the
directed acyclic graph in 4b), the graph of seemingly unrelated regression
graph in 4d) and the covariance graph in 4f).

1.5. Markov equivalence. The notion of Markov equivalence is impor-
tant, because for any given set of data, one cannot distinguish between two
Markov equivalent graph models on the basis of goodness-of-fit tests.

Definition 7. Two different graphs in node set N are Markov equiva-
lent if they capture the same independence structure.

Since a different set of two independence statements is associated with
each of the graphs in Figure 4, none of the six graphs are Markov equivalent.

Known conditions, under which a concentration graph or a covariance
graph is Markov equivalent to a directed acyclic graph, may be proven by
orienting the graphs that is by changing each edge present into an arrow.
The same type of argument can be extended to other independence graphs
such as to a MRC graphs; see also Proposition 2 below. For this, we need a
few more definitions for graphs.

For a ⊂ N , the subgraph induced by a is obtained by keeping of the
graph all nodes in a and all edges coupling nodes in a. Subgraphs induced
by three nodes are named V-configurations if they have two edges. A path
is said to be chordless if each inner node forms a V-configuration with its
two neighbors.

For the V-configurations of a MRC graph that are collision paths with
endpoints i and k, the inner node is excluded from the conditioning set of

imsart-aos ver. 2007/04/13 file: papsum16Mar10.tex date: March 18, 2010



12 N. WERMUTH

any independence statement for Yi, Yk implied by the graph. In contrast,
for V-configurations of a MRC graph that are transmitting paths, the inner
node is included in the conditioning set of any independence statement for
Yi, Yk implied by the graph. Thus, the independence structure of the graph is
changed whenever any collision-oriented V-configuration is exchanged with
a transmitting-oriented V-configuration.

A concentration graph with a chordless 4-cycle, as in Figure 4a), or with
any larger chordless cycle, is not Markov equivalent to a directed acyclic
graph; see Dirac (1961) and Lauritzen (1996). The reason is that it is im-
possible to orient the graph without obtaining either a directed cycle or at
least one collision-oriented V-configuration.

Similarly, a covariance graph that contains a chordless path in four or
more nodes, i.e. a n-chain with n ≥ 4, is not Markov equivalent to a di-
rected acyclic graph; see Pearl and Wermuth (1994). The reason is that is
impossible to orient each edge without obtaining at least one transmitting-
oriented V-configuration.

For four nodes, there are three types of chordless collision paths in a
multivariate regression graph:

◦ ≻◦ ◦≺ ◦, ◦ ◦ ◦≺ ◦, ◦ ◦ ◦ ◦.

The following result explains why in general three types of edge are needed
after marginalising and conditioning in a directed acyclic graph.

Proposition 2. Lack of Markov equivalence. If a MRC graph has a
chordless collision path for n ≥ 4 nodes or a chordless cycle in n ≥ 4 nodes
within v then it is not Markov equivalent to any directed acyclic graph in
the same node set.

Proof. It is impossible to orient the graph with any one of the chord-
less collision paths for n ≥ 4 nodes into edges of a directed acyclic graph
without switching between the two types of inner nodes in at least one V-
configuration, that is between a collision and a transmitting node. And, for
the chordless cycle for n ≥ 4, the above result due to Dirac applies.

Currently, one knows how to generate three types of independence-preser-
ving graph from a given directed acyclic graph in node set V for the same
disjoint subsets M and C of V . In a MC-graph, four types of edge may
occur in combination. The summary graph may have up to three types of
edge and one type of double edge, while the maximal ancestral graph is an
independence graph with up to three types of edge. For proofs of Markov
equivalence of the three corresponding types see Sadeghi (2009).
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SUMMARY GRAPHS 13

1.6. Families of distribution generated over parent graphs. A distribu-
tion and its joint density fV is said to be generated over a directed acyclic
graph whenever fV factorizes recursively into univariate conditional densi-
ties that satisfy the independence constraints specified with the graph. Any
full ordering of V is compatible with a given directed acyclic graph if, for
each node i, all ancestors of i are in {i+1, . . . , dV }. The set of parent nodes
of i is denoted by pari.

For V = (1, . . . dV ) specifying a compatible ordering of node set V , a
defining list of constraints for a directed acyclic graph is

(1.2) fi|i+1,...,dV = fi|pari ⇐⇒ i⊥⊥ {i+ 1, . . . , dV } \ pari|pari ,

the factorization of the density generated over the graph is

(1.3) fV =
∏dV
i=1fi|pari .

To generate fV recursively, one can take any compatible ordering of V .

Definition 8. For a recursive generating process of fV , one starts with
the marginal density fdV of YdV , proceeds with the conditional density of
YdV −1 given YdV continues to fi|i+1,...,dV and ends with the conditional den-
sity of Y1 given Y2, . . . , YdV

To let a directed acyclic graph represent one of such recursive generating
processes, the graph is to capture both, independences and dependences.

Definition 9. A directed acyclic graph, with a given compatible order-
ing of V , is edge-minimal for fV generated over it if

fi|pari 6= fi|pari\l for each l ∈ pari .

Under this condition of edge-minimality of the generating graph for fV ,
all relevant explanatory variables are included for each Yi and no edge can
be removed from the graph without changing the independence statements
satisfied by Yi given its past, psti = {i+ 1, . . . , dV }.

An edge-minimal graph may represent a research hypothesis in a given
substantive context. For such a hypothesis, those dependences are considered
that are strong enough to be of substantive interest while others are trans-
lated into independence statements; see Wermuth and Lauritzen (1990).

Definition 10. A recursive generating process of fV in the order V =
(1, . . . , dV ) is said to consist of freely chosen components Yi if each Yi can
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14 N. WERMUTH

be discrete or continuous, the form of the family of distribution of Yi given
Ypsti may be of any type, and parameters of fi|psti are variation independent
of those of fpsti.

For exponential families of distributions, variation-independent factor-
izations of fi,psti = fi|pstifpsti coincide with the notion of a cut given by
Barndorff-Nielsen (1978), p. 50. These types of factorization imply that the
overall likelihood function can be maximized by maximizing each factor
fi|psti separately.

In families of distribution with fV consisting of freely chosen components
that satisfy the defining independences (1.2) of the given graph, some further
constraints on each fi|pari are possible such as no-higher-order interactions
or such as requiring Yi to have dependences of equal strength on several of its
explanatory variables, that is on several components of Ypari . Excluded are
for instance constraints across conditional distributions, such as dependences
of Yi on some of Ypari to be equal to those of Yk on some of Ypark .

Freely chosen components Yi are in general incompatible with distribu-
tions that are to be faithful to a generating directed acyclic graph. The no-
tion was introduced by Spirtes, Glymour and Scheines (1993). It means that
the independence structure of fV coincides with the independence structure
captured by the graph and it leads in general to complex constraints on the
parameter space for distributions generated over parent graphs; see Figure
1 of Wermuth, Marchetti and Cox (2009) for a simple example with three
binary variables. In contrast, variation independence permits special con-
stellations of parameter values that may lead to independencies in fV that
are additional to those implied by the graph.

For research hypotheses, defined in terms of recursive constraints on the
independence structure and on dependences of fV , appropriate specifications
and resulting properties can now be given. For this, only connected graphs
are considered, those with each node pair connected by at least one path.

Definition 11. A connected directed acyclic graph is named a parent
graph, GVpar, if the order of its node set V = (1, . . . , dV ) is given by the
recursive generating process of fV and it is edge-minimal for fV .

Definition 12. A family of distributions is said to be generated over a
given parent graph if it varies fully and each component fi|psti of fV is freely
chosen in the recursive generating process of fV .

Proposition 3. General properties of families of distribution generated
over GVpar. A family of distributions generated over GVpar is complete and each
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member satisfies the intersection and the composition property.

Proof. Freely chosen components of Yi contradict incompleteness of each
family of distributions fi,psti and joint families of distributions defined re-
cursively in terms of complete families of distributions are complete. Inde-
pendences implied by GVpar combine in fV generated over GVpar as in a non-
degenerate Gaussian distribution; see Lemma 1 of Marchetti and Wermuth
(2009).

Corollary 3. Association-inducing paths in GVpar. In a family fV gen-

erated over a parent graph, every ik-path present in GVpar, that induces an
ik-edge by marginalising or conditioning, is association-inducing for Yi, Yk.

Proof. Completeness of fV generated over GVpar is sufficient for unique-
ness of the independence statement attached to each V-configuration.

Impossible is then for instance, for an uncoupled node pair i, k with V-
configuration i≺ j≺ k and γ ⊆ pstk, that

∫

fij|γfjk|γ/fj|γ dyj = fi|γfk|γ, or equivalently

∫

(fi|jγ − fi|γ)fj|kγ dyj = 0.

1.7. Using summary graphs to detect distortions of generating depen-
dences. An ik-dependence in a MAG model may differ qualitatively from
the generating dependence of Yi on Yk in fV , in particular it may change the
sign but stay a strong dependence. If this remained undetected, one would
come to qualitatively wrong conclusions when interpreting the parameters
measuring conditional dependence of Yi on Yk in fu|vC .

The summary graph corresponding to a MAG detects, whether and for
which of the generating dependences, i≺ k, having both of i, k within
u, such distortions can occur due to direct or indirect confounding; see
Wermuth and Cox (2008) and Corollary 4, Lemma 1 below. We illustrate
here direct confounding with Figure 5 and indirect confounding with Figure
6.

For a joint Gaussian distribution, the distortions are compactly described
in terms of regression coefficients for variables Yi standardized to have mean
zero and variance one. For Figure 5a), the generating equations be

(1.4) Y1 = αY2 + δ Y4 + ε1, Y2 = λY3 + γY4 + ε2, Y3 = ε3, Y4 = ε4,

With residuals εi assumed to have zero means and to be uncorrelated,
the equations of the summary graph model that result from (1.4) for Y4
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16 N. WERMUTH

Fig 5. a) Generating graph for Gaussian relations in standardized variables, leading for
variable Y4 unobserved to b) the summary graph and c) the maximal ancestral graph for
the observed variables; with the generating dependences as attached to the arrows in a),
implied are as simple correlations ρ12 = α+ γδ, ρ13 = αλ, ρ23 = λ and θ = γδ/(1− λ2).

a) b) c)

1 1 1

2 2 2
a a a+q

q
d

dg g
3 3 3

l l

l

l

4

unobserved, have one pair of correlated residuals

Y1 = αY2 + η1, Y2 = λY3 + η2, Y3 = η3,

η1 = δ Y4 + ε1, η2 = γY4 + ε2, η3 = ε3, cov(η1, η2) = γδ.

The equation parameters to the standardized Gaussian associated with the
MAG of Figure 5c) are instead defined via

E (Y1|Y2 = y2, Y3 = y3), E (Y2|Y3 = y3),

with all residuals in the recursive equations being uncorrelated. The gener-
ating dependence α is retained in the summary graph model.

The parameter for the dependence of Y1 on Y2 in the MAG model, ex-
pressed in terms of the generating parameters of Figure 5a), is α+γδ/(1−λ2).
The summary graph is in Figure 2b) a graphical representation of the sim-
plest type of an instrumental variable model, used in econometrics, see
Sargan (1958), to separate a direct confounding effect, here γδ, from the
dependence of interest, here α.

In general, possible distortions due to direct confounding in parameters of
dependence in MAG models, are recognized in the corresponding summary
graph by a double edge i≺ k. In the following example for Gaussian stan-

dardized variables, there is no direct confounding of the generating depen-
dence α but there is indirect confounding of α while λ remains undistorted.

To simplify the figures, the coefficient attached to 2≺ 3 is not displayed
in any of three graphs of Figure 6. The generating graph in Figure 6a) is
directed and acyclic so that the corresponding linear equations in standard-
ized Gaussian variables, defined implicitly by Figures 6a) have uncorrelated
residuals. The example is adapted from Robins and Wasserman (1997). The
summary graph in Figure 6b) shows with a dashed line the induced associ-
ation for pair Y1, Y3 that results by marginalising fV over Y5.

The equations of the summary graph model, obtained for Y5 unobserved,
have precisely one pair of correlated residuals, cov(η1, η3) = γδ and

Y1 = λY2 + αY4 + η1, Y2 = ρ23Y3 + η2, Y3 = τY4 + η3, Y4 = η4.
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SUMMARY GRAPHS 17

Fig 6. a) Generating graph for linear relations in standardized variables, leading for
variable Y5 unobserved to b) the summary graph and c) the maximal ancestral graph for
the observed variables; with the generating dependences as attached to the arrows in the
a), implied are θ = γδ/(1− τ 2), generating dependence λ undistorted in both models to the
graphs b), c); generating dependence α preserved with b), distorted with c).
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The summary graph model preserves both λ and α as equation parameters.
In the corresponding MAG model, represented by the graph in Figure

6c), the equation parameters associated with arrows present in the graph
are unconstrained linear least squares regression coefficients. These coeffi-
cients, expressed in terms of the generating parameters of Figure 6a), are
shown next to the arrows in Figure 6c). Thus, the generating coefficient λ
is preserved, while α is changed into α− τθ, with θ = γδ/(1 − τ2).

Direct confounding of a generating dependence of Yi on Yk is avoided in
intervention studies, such as experiments and controlled clinical trials, by
randomized allocation of individuals to the levels of Yk, but severe indirect
confounding may occur nevertheless; see Wermuth and Cox (2008).

Let the set of ancestors of node i in GVpar be denoted by anci. Then,

the set ancestors of node i in G
V \[C,M ]
sum within u is ci = u

⋂

anci since no
additional ancestor of i is ever generated within u. Then, by conditioning
Yi on Yv and Yci , one marginalises implicitly over the nodes in set mi =
{{1, . . . , i}, {u ∩ psti \ ci}} and indirect confounding may result.

Corollary 4. Lack of confounding in measures of conditional depen-
dence. A generating dependence i≺ k present in GVpar is undistorted in the

MAG model in nodes V \ {C,M} (1) by direct confounding if in GVpar there
is no active ik-path relative to {C,M} and (2) by indirect confounding if in

G
V \[C,M ]
sum there is no active ik-path relative to {ci,mi}.

In distributions generated over GVpar, every active path is association-
inducing, hence a generating dependence will be confounded unless the
distortion is cancelled by other edge-inducing paths. When a distortion is
judged to be severe depends on the subject matter context. To detect indi-
rect confounding, we name k a forefather of i if it is an ancestor but not a
parent of i and three dots indicate more edges and nodes of the same type.

Lemma 2. Wermuth and Cox (2008). A graphical criterion. For i≺ k
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18 N. WERMUTH

of GVpar, indirect confounding in the absence of direct confounding is gener-
ated in the MAG model by marginalising over M = {l > k, l + 1, . . . , dV } if

and only if in the corresponding summary graph G
V \ [∅,M ]
sum which is without

double edges, associations for Yi, Yk do not cancel that result by conditioning
on all ancestors of node i, that is from the following types of collision ik-path
that have as inner nodes only forefathers of i and are edge-inducing:

(1.5) i 2◦ . . . 2◦ 2◦ k, i 2◦ . . . 2◦ 2◦ ≺ k.

An example of such a path of indirect confounding is given with the above
Fig. 6b), where for 1≺ 4, it is the path 1 3≺ 4.

In the following two sections, we give further preliminary results and those
proofs of new results for which we use more technical arguments.

2. Further preliminary results. The edge matrixA of a parent graph
is a dV × dV unit upper-triangular matrix, i.e. a matrix with ones along the
diagonal and with zeros in the lower triangular part, such that for i < k,
element Aik of A satisfies

(2.1) Aik = 1 if and only if i≺ k in GVpar.

Because of the triangular form of the edge matrix A of GVpar, a density fV
generated over a given parent graph, has also been called a triangular system
of densities.

2.1. Linear triangular systems. A linear triangular system is given by a
set of recursive linear equations for a mean-centred random vector variable
Y of dimension dV × 1 having cov(Y ) = Σ, i.e. by

(2.2) AY = ε,

where A is a real-valued dV × dV unit upper-triangular matrix, given by

Elin(Yi|Yi+1 = yi+1, . . . , YdV = ydV ) = −Ai,pariypari ,

and Elin(·) denotes a linear predictor. The random vector ε of residuals has
zero mean and cov(ε) = ∆, a diagonal matrix. A Gaussian triangular system
of densities is generated if the distribution of each residual εi is Gaussian,
the corresponding joint Gaussian family varies fully if ∆ii > 0 for all i.

The covariance and concentration matrix of Y are, respectively,

(2.3) Σ = A−1∆(A−1)T, Σ−1 = AT∆−1A.
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Linear independences that constrain the equations (2.2) are defined by zeros
in the triangular decomposition, (A,∆−1), of the concentration matrix. For
joint Gaussian distributions

Aik = 0 ⇐⇒ i⊥⊥ k|pari for k ∈ psti \ pari.

The edge matrix A of GVpar coincides for Gaussian triangular systems

generated over GVpar with the indicator matrix of zeros in A, i.e. A = In[A],
where In[·] changes every nonzero entry of a matrix into a one. Furthermore,
since the parent graph in node set V is edge-minimal for fV , we have

Aik = 0 ⇐⇒ Aik = 0.

Edge matrices expressed in terms of components of a set of given gener-
ating edge matrices are called induced. Simple examples of edge matrices
induced by A of (2.1) are the overall covariance and the overall concentra-
tion graph, see Wermuth and Cox (2004). These two types of graph have as
induced edge matrices, respectively,

(2.4) SV V = In[A−(A−)T], and SV V = In[ATA],

where A− has all ones of A and an additional one in position (i, k) if and
only if k is a forefather of node i in GVpar. In the graph with edge matrix A−,
every forefather k of i is turned into a parent, that i≺ k is inserted.

By writing the two matrix products in (2.4) explicitly, one sees that for an
uncoupled node pair i, k in the parent graph, there is an additional edge in
the induced concentration graph of YV if and only if the pair has a common
offspring in GVpar. With a zero in position i, k of A−, there is an additional
ik-edge in the induced covariance graph if and only if an uncoupled pair has
a common parent in the directed graph with edge matrix A−.

Both of these induced matrices are symmetric. The covariance and the
concentration matrix, implied by a linear triangular system and given in
(2.3), contain all zeros present in the corresponding induced edge matrices,
but possibly more. This happens for (i, k) whenever the associations induced
for Yi, Yk cancel that are due to several edge-inducing ik-paths. Then there
are particular parametric constellations; see Wermuth and Cox (1998) for
examples in Gaussian distributions generated over parent graphs.

By contrast, the induced edge matrices capture consequences of the gener-
ating independence structure, they contain structural zeros, those that occur
for all permissible parametrizations, or, expressed differently, that occur for
each member of a family fV generated over a given GVpar.

imsart-aos ver. 2007/04/13 file: papsum16Mar10.tex date: March 18, 2010



20 N. WERMUTH

For distributions generated over parent graphs, a zero in position (i, k) of
SV V and of SV V means, respectively, that

(2.5) i⊥⊥ k, i⊥⊥ k|V \ {i, k}

is implied by GVpar. Thus, in contrast to the global Markov property, the
induced graphs answer all queries concerning sets of these two types of in-
dependence statements at once.

More complex induced edge matrices arise for instance in MRC-graphs
and in summary graphs derived from A. For transformations of linear sys-
tems, we use the operator named partial inversion introduced next; for proofs
and discussions seeWermuth, Wiedenbeck and Cox (2006), Marchetti and Wermuth
(2009), Wiedenbeck and Wermuth (2010).

2.2. Partial inversion. Let F be a square matrix of dimension dV with
principal submatrices that are all invertible. This holds for instance for every
A of (2.2) and for every covariance matrix of a Gaussian distribution which
varies fully, so that cov(Y ) is positive definite, i.e. Y has no degenerate
component.

For any subset a of V and b = V \ a, by applying the operator named
partial inversion to the linear equations FY = η, say, these are modified
into

(2.6) invaF

(

ηa
Yb

)

=

(

Ya
ηb

)

.

By applying partial inversion to b of V in equation (2.6), one obtains Y =
F−1η. Thus, full inversion is decomposed into two steps of partial inversion.

Partial inversion extends the sweep-operator for symmetric, invertible F

(2.7) invaF =

(

F−1
aa −F−1

aa Fab

FbaF
−1
aa Fbb.a

)

with Fbb.a = Fbb − FbaF
−1
aa Fab.

Lemma 3. Wermuth, Wiedenbeck and Cox (2006). Some properties of
partial inversion. Partial inversion is commutative, can be undone and is
exchangeable with selecting a submatrix. For V partitioned as V = {a, b, c, d}

(1) inva invbF = invb invaF ,
(2) invab invbcF = invacF,
(3) [invaF ]J,J = invaFJJ for J = {a, b}.

In contrast, the sweep operator cannot be undone; see Dempster (1972).
Example 1 shows how the triangular equations (2.2) are modified by partial
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inversion on a, where a consists of the first da components of Y . Instead of
the full recursive order V = (1, . . . dV ) with uncorrelated residuals, a block-
recursive order V = (a, b) results, where residuals within a are correlated,
but uncorrelated with the unchanged residuals within b.

Example 1. Partial inversion applied to a linear triangular system (2.2)
with an order-respecting split of V . For a = {1, . . . , da}, b = {da+1, . . . , dV }

invaA =

(

A−1
aa −A−1

aaAab

0 Abb

)

gives with Ya = −A−1
aa AabYb +A−1

aa εa,

the implied form of linear least-squares regression of Ya on Yb, where

E lin(Ya|Yb = yb) = Πa|byb , Ya|b = Ya −Πa|bYb , cov(Ya|b) = Σaa|b, and

Σaa|b = A−1
aa∆aaA

−T
aa where F−T = (F−1)T and FT is F transposed.

Example 2 shows how the triangular equations (2.2) are modified by par-
tial inversion on b, where V = (a, b, c) so that b consists of intermediate
components of Y . To use directly the matrix formulation in (2.7), one sets
b := (a, c), a := b, leaves components within a and within b unchanged to
obtain Ã which is not block-triangular in (a, b). After partial inversion of Ã
on a, the original order is restored for the results presented in Example 2.

Example 2. Partial inversion applied to a linear triangular system (2.2)
for an order-respecting partitioning V = (a, b, c). With a = {1, . . . , da},
b = {da + 1, . . . , (da + db)} and c = {(da + db) + 1, . . . , dV },

invbA =







Aaa AabA
−1
bb Aac.b

0 A−1
bb −A−1

bb Abc
0 0 Acc






gives Ya = −A−1

aaAac.bYc + ηa,

the implied form of the linear least-squares regression of Ya on Yc, with

ηa = A−1
aa εa +Πa|b.cA

−1
bb εb, Πa|bc = (Πa|b.c, Πa|c.b) = −A−1

aa (Aab, Aac).

For Π
a|c, a special form of Cochran’s recursive definition of regression coef-

ficients results; see also Wermuth and Cox (2004),

Πa|c = Πa|c.b +Πa|b.cΠb|c = −A−1
aa (Aac −AabA

−1
bb Abc) = −A−1

aa Aac.b.

For cov(Ya|c), Anderson’s recursive definition of covariance matrices results

Σaa|c = A−1
aa∆aaA

−T
aa +Πa|b.c(A

−1
bb ∆bbA

−T
bb )ΠT

a|b.c = Σaa|bc +Σab|cΣ
−1
bb|cΣba|c.
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For b, c, the result in Example 2 are is as in Example 1. For Ya, the original
recursive regressions given Yb, Yc are modified into recursive regressions given
only Yc. The residuals between Ya, Yb are correlated since cov(Ya|c, Yb|c) =
Σab|c but remain uncorrelated from those in c. In the modified equations, Yb
can be removed without affecting any of the other remaining relations.

For a more detailed discussion of the three different types of recursion re-
lations of linear association measures due to Cochran, Anderson and Demp-
ster; see Wiedenbeck and Wermuth (2010).

For Example 3, one starts with equations (2.2) premultiplied by A−T∆−1

and obtains linear equations in which the equation parameter matrix, Σ−1,
coincides with the covariance matrix of the residuals that is with

(2.8) Σ−1Y = A−T∆−1ε.

Example 3. Partial inversion with any split of V applied to Σ−1. The
covariance matrix Σ and the concentration matrix Σ−1 of Y are written,
partitioned according to (a, b) for a any subset of V , as

Σ =

(

Σaa Σab
. Σbb

)

, Σ−1 =

(

Σaa Σab

. Σbb

)

,

where the . notation indicates symmetric entries. Partial inversion of Σ−1 on
a leads to three distinct components, Πa|b, the population coefficient matrix
of Yb in linear least squares regression of Ya on Yb, the covariance matrix
Σaa|b of Ya|b and the marginal concentration matrix Σbb.a of Yb

(2.9) invaΣ
−1 =

(

Σaa|b Πa|b

∼ Σbb.a

)

,

where the ∼ notation denotes entries that are symmetric except for the sign.
Since (2.6) gives directly invaΣ

−1 = invbΣ, several well known dual ex-
pressions for the three submatrices in (2.9) result

(

(Σaa)−1 −(Σaa)−1Σab

∼ Σbb − Σba(Σaa)−1Σab

)

=

(

Σaa − ΣabΣ
−1
bb Σba ΣabΣ

−1
bb

∼ Σ−1
bb

)

,

where Σbb.a is Dempster’s recursive definition of concentration matrices.

A more complex key result is that for any block-triangular system of linear
equations for Y , with equation parameter matrix H and with possibly cor-
related residuals obtained from W = cov(HY ), the implied form of invaΣ

−1

can be expressed in terms of partially inverted matrices H and W .
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Linear equations in a mean-centred vector variable Y are block-triangular
in two ordered blocks (a, b) with a positive definite Σ−1 = HTW−1H if

(2.10) HY = η, with Hba = 0, E (η) = 0, cov(η) =W positive definite,

For K = invaH and Q = invbW, direct computations give

(2.11) inva(H
TW−1H)=

(

KaaQaaK
T
aa Kab +KaaQabKbb

∼ HT
bbQbbHbb

)

.

A simple special case is the triangular linear system (2.2). Example 4 shows
how a multivariate regression chain in blocks (a, b) results from it.

Example 4. For (2.10) with H = A of (2.2), W = ∆ diagonal and
a = 1, . . . , da,

inva(H
T∆−1H) =

(

Σaa|b Πa|b

∼ Σ−1
bb

)

=

(

Kaa∆aaK
T
aa Kab

∼ AT
bb∆

−1
bb Abb

)

Other special cases of linear block-triangular systems (2.10) are Gaussian
summary graph models; see Section 3.

2.3. Partial closure. Let F be a binary edge matrix for node set V =
{1, . . . , dV } associated with F . The operator called partial closure transforms
F into zeraF so that in the corresponding graph a-line paths of special type
become closed. For instance, applied to A, every a-line ancestor of node i is
turned into a parent of i and, applied to the edge matrix of an undirected
graph, such as SV V , every a-line path is closed. Zeros in the new binary
matrix zeraF are the structural zeros that remain of invaF .

In matrix form, with n− 1 = da and Iaa a da × da identity matrix,

(2.12) zeraF = In[

(

F−
aa F−

aaFab

FbaF
−
aa Fbb.a

)

] with Fbb.a = In[Fbb +FbaF
−
aaFab],

(2.13) F−
aa = In[(n Iaa −Faa)

−1].

The inverse in (2.13) assures nonnegative entries in F−
aa and is a type of

regularization; see Tikhonov (1963). It generalizes limits of scalar geometric
series; see Neumann (1884), p. 29.
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Lemma 4. Wermuth, Wiedenbeck and Cox (2006). Some properties of
partial closure. Partial inversion is commutative, cannot be undone and is
exchangeable with selecting a submatrix. For V partitioned as V = {a, b, c, d}

(1) zera zerbF = zerb zeraF ,
(2) zerab zerbcF = zerabcF,
(3) [zeraF ]J,J = zeraFJJ for J = {a, b}.

Given Gaussian parameter matrix components after partial inversion,
such as in equation (2.11), the corresponding induced edge matrices are
obtained using the following Lemma 5, provided each component matrix
belongs to the model of the starting graph and the expressions are minimal,
that is condensed in such a way that they do not contain any parameter
matrices that cancel, as for instance AaaA

−1
aa would.

Lemma 5. Marchetti and Wermuth (2009). Edges induced by a start-
ing graph obtained with minimal matrix expressions of Gaussian parameter
matrices. Edge matrices replace corresponding parameter matrices after
(1) changing each negative sign to a positive sign,
(2) replacing in the resulting expressions each diagonal matrix by an identity

matrix or deleting it if it arises within a matrix product,
and then applying the indicator function.

For instance, the matrix formulation of partial inversion in (2.12) can be
viewed as arising from (2.7) by use of Lemma 5.

EXAMPLE 1 continued. Let Kaa = A−
aa and Kab = A−

aaAab. After partial
closure in GVpar on a, there are two induced edge matrix components. For
directed edges, it is zeraA, and for undirected dashed line edges, it is Saa|b

zeraA = In[

(

Kaa Kab

0 Abb

)

], Pa|b = In[Kab], Saa|b = In[KaaK
T
aa] .

The induced graph of two components is a multivariate regression graph.

EXAMPLE 2 continued. By marginalising over the intermediate node set
b of V = (a, b, c) in GVpar, a directed, acyclic graph results. The induced
Gaussian parameter and edge matrices are for N = V \ b, respectively,

[invbA]N,N =

(

Aaa Aac.b
0 Acc

)

, [zerbA]N,N = In[

(

Aaa Aac.b

0 Acc

)

].

EXAMPLE 3 continued. A concentration graph has for joint Gaussian
distributions Σ−1 as parameter matrix and SV V as edge matrix. By partial
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closure on a of SV V given any split V = {a, b}, every a-line path is closed.
Three edge matrix parts result Saa|b,Pa|b and Sbb.a. They give the structural

zeros in the corresponding parameter matrices Σaa|b,Πa|b and Σbb.a. In gen-

eral, the edge matrix Sbb.a is for the marginal concentration graph of Yb.
When the generating graph is GVpar, then a concentration graph is induced

for the node set which contains ancestors of C outside C. In Example 4,
the three components of invaΣ

V V are directly expressed in terms of the
triangular decomposition (A,∆−1).

EXAMPLE 4 continued. For the order-respecting split, V = (a, b), and
Kaa = A−

aa and Kab = A−
aaAab, a parent graph GVpar induces a MRC graph

for fa|b and fb with the following three edge matrix components

(2.14)

(

Saa|b Pa|b

. Sbb.a

)

= In[

(

KaaK
T
aa Kab

. AT
bbAbb

)

].

The result combines the one in (2.4) in slightly modified form with the
above continuation of Example 1 by considering the consequences of a given
parent graph for the distributions of Ya given Yb and of Yb.

For the more complex generating graphs connected with block-triangular
linear systems (2.10) and given edge matrices H,W, the three edge matrix
components in the induced MRC graph of just two components, are with

K = zeraH, Q = zerbW,

(2.15)

(

Saa|b Pa|b

. Sbb.a

)

= In[

(

KaaQaaK
T
aa Kab +KaaQabKbb

. HT
bbQbbHbb

)

].

From (2.15) for a = {α, δ}, the edge matrices induced by GVpar for fα|b are

Sαα|b = [Saa|b]α,α, Pα|b = [Pα|b]α,b,

and with a split of b as {β, γ}, the edge matrix induced for fβ|γ and for the
dependence of Yα|γ given Yβ|γ are

Sββ.a = [Sbb.a]β,β, and Pα|β.γ = [Pa|b]α,β .

In general, the induced graphs of (2.14) or (2.15) with dashed lines for
Saa|b, arrows for Pa|b and full lines for Sbb.a will not be independence-
preserving graphs. In both graphs, the global Markov property of Lemma 1
implies the meaning of a missing ik-edge as

(2.16) i⊥⊥ k|b in Saa|b, i⊥⊥ k|b \ k in Pa|b, i⊥⊥ k|b \ {i, k} in Sbb.a.
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Whenever every edge-inducing path is association-inducing, conditional
dependences correspond to edges present in the graph, that is in fa|b and fb,
unless the associations due to several edge-inducing paths cancel.

3. Summary graphs and associated models.

3.1. Gaussian summary graph models. Starting from a Gaussian trian-
gular system (2.2) generated over a parent graph in node set V , marginalising
over M and conditioning on C gives a linear system of equations for YN |C

for N = (u, v) = V \ {C,M} of the following form, where for the equations
in the ancestors v of C that are outside of C, the equation parameter matrix
and the covariance matrix coincide with a concentration matrix, as in (2.8).

Definition 13. Gaussian summary graph model. A Gaussian summary
graph model is a system of equations HYN |C = η, that is a block-triangular
and orthogonal in (u, v) with

(3.1)

(

Huu Huv

0 Σvv.uM

)(

Yu|C

Yv|C

)

=

(

ηu

ζv

)

, cov

(

ηu

ζv

)

=

(

Wuu 0

. Σvv.uM

)

,

where Huu is unit upper-triangular, Wuu and Σ−1
vv|C = Σvv.uM are symmetric,

and each of ηu and ζv have freely varying joint Gaussian distributions. The
independence structure is given by a summary graph in node set N ; see
Definition 6 and Section 3.2 below.

For Yv|C , equation (3.1) specifies a Gaussian concentration graph model.
These models had been studied under the name of covariance selection by
Dempster (1972); see also Speed and Kiiveri (1986). For each member of the
this family of models, the likelihood function has a unique maximum.

With Wuv = 0, the residuals of Yu|C and Yv|C are uncorrelated, therefore
the system of equations (3.1) is said to be orthogonal in (u, v). Because of this
orthogonality, Πu|v.C = −H−1

uuHuv is the population least-squares regression
coefficient matrix in linear regression of Yu|C on Yv|C ; compare Example 1
above. In econometrics, the equation in Yu|c resulting by premultiplication
with H−1

uu from the first equation of (3.1) is called the reduced form.
The equation in Yu|C of (3.1) can equivalently be written as a recursive

system in endogenous variables Yu|vC = Yu|C −Πu|v.CYv|C

(3.2) HuuYu|vC = ηu with cov(ηu) =Wuu,

where the equation parameter matrix Huu is, as in the linear triangular
system (2.2), of unit upper-triangular form, but some of the residuals ηu are
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correlated. For estimation, one speaks in econometrics of the endogeneity
problem; see Drton, Eichler and Richardson (2009) for a recent discussion.

Identification is an issue for estimating the equation parameters Huu in
(3.2). No necessary and sufficient condition is known yet; see for instance
Kang and Tian (2009). One general sufficient condition is the absence of any
double edge in the summary graph; see Brito and Pearl (2002). This says
that for any pair i, k within u, either Hik = 0, or Wik = 0, or both hold.

However, some models with double edges in the GNsum correspond to iden-
tified instrumental variable models; see the above example to Figure 5b).
For the identifiability of latent variable models, which arise here via larger
hypothesized generating processes, the notion of completeness is again rele-
vant; see San Martin and Mouchart (2007).

3.2. Generating G
V \[C,M ]
sum from GVpar. The summary graph G

V \[C,M ]
sum has

four edge matrix components. With Svv.uM a concentration graph results
in node set v, with Huu a directed acyclic graph within u, with Wuu a
covariance graph of the residuals ηu, and with Huv a bipartite graph for
dependence of Yu|C on Yv|C .

Starting from a Gaussian triangular system in (2.2) with parent graph
GVpar, the choice of any conditioning set C leads to an ordered split V =
(O,R), where we think of R = {C,F} as the nodes to the right of O, see
equation (3.3). Every node in F is an ancestor of a node in C outside C, so
that we call F the set of foster nodes of C. No node in O has a descendant
in R so that O is said to contain the outsiders of R. Equations, orthogonal
and block-triangular in (O,R), are in unchanged order

(3.3)

(

AOO AOR
0 ARR

)(

YO
YR

)

=

(

εO

εR

)

.

After conditioning on YC and marginalising over YM , the resulting system
preserves block-triangularity and orthogonality with u ⊆ O, v ⊆ F .

Proposition 4. Linear equations obtained from AY = ε after con-
ditioning on YC and marginalising over YM . Given a Gaussian triangu-
lar system (2.2) generated over GVpar, conditioning set C, marginalising set
M = (p, q) with

p = O \ u, q = F \ v,

and partially inverted parameter matrices arranged in the appropriate order,

D = invp Ã, invqΣ̃
FF.O =

(

Σqq|vC Πq|v.C

∼ Σvv.qO

)

,
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the induced linear equations (3.1) in YN |C have equation parameters

(3.4) Huu = Duu, Huv = Duv +DuqΠq|v.C , Σvv.uM

and covariance matrices

(3.5) Wuu = (∆uu +Dup∆ppD
T
up) + (DuqΣqq|vCD

T
uq), Σvv.uM .

Proof. Equations (3.3) in Y are first modified into equations for YO|C

and YF |C . As for Example 3 above, one takes ζR = ARR ∆−1
RRεR. After noting

that
Σ−1
FF |C = [ΣRR.O]F,F = ΣFF.O

and by the orthogonality in (O,R), these equations can be written as

AOOYO|C +AOFYF |C = εO, ΣFF.OYF |C = ζF .

Partial inversion on M = (p, q) gives, after appropriately ordering,

(3.6) invM

(

ÃOO ÃOF

0 Σ̃FF.O

)









εp
Yu|C
ζ ′q
Yv|C









=









Yp|C
εu
Yq|C
ζ ′v









,

where after deleting the equations in YM |C , the uncorrelated residuals are

ηu = (εu −Dupεp)−DuqΣqq|vCζq, ζv = ζ ′v +ΠT
q|v.Cζ

′
q

Thus, the equation parameter matrices of (3.4), the covariance matrices
(3.5) result, where Σ−1

vv|C = Σvv.qO = Σvv.uM .

It is instructive to check the relations of the parameter matrices in (3.4),
(3.5) to multivariate regression coefficients and to conditional covariance
matrices. With Πu|R = −D−1

uu (Duv , Duq, DuC), one may write

−DuuΠu|v.C = Duv +DuqΠq|v.C , Duu(Yu|C −Πu|v.CYv|C) = DuuYu|vC ,

and for Wuu defined in (3.2) and specialized in (3.5)

D−1
uuWuuD

−T
uu = Σuu|vqC +Πu|q.vCΣqq|vCΠ

T
u|q.vC = Σuu|vC ,

so that the required covariance matrix of Yu|vC is obtained.
The summary graph in node set N , induced by the generating parent

graph in node set V , results now directly with Lemma 5 applied to equations
(3.4) and (3.5) as is stated in Corollary 5.
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Corollary 5. With the partially closed edge matrices corresponding to
Proposition 4 and arranged in the appropriate order

D = zerpÃ, zerq S̃
FF.O =

(

Sqq|vC Pq|v.C

. Svv.qO

)

the induced edge matrix components of the summary graph G
V \[C,M ]
sum are

(3.7) Huu = Duu, Huv = In[Duv +DuqPq|v.C ], Svv.uM ,

(3.8) Wuu = In[(Iuu +DupD
T
up) + (DuqSqq|vCD

T
uq)].

3.3. Non-Gaussian models associated with summary graphs. As noted
before, the density fN |C of YN given YC is well-defined since it is obtained
from a density of YV generated over a parent graph by marginalising over
YM and conditioning on YC . As we have seen, this leads to the factorization
of fN |C into fu|vC and fv|C . The independence structure of Yv given YC is
captured by a concentration graph.

Corresponding models for discrete and continuous random variables have
been studied by Lauritzen and Wermuth (1989), extending the Gaussian co-
variance selection models and the graphical, log-linear interaction models for
discrete variables. Maximum-likelihood estimation is considerably simplified
for variation-independent parameters; see Frydenberg and Lauritzen (1989).

For a joint Gaussian density fV , the induced density fu|vC is again Gaus-
sian, but in general, the form and parametrization of the density fu|vC
induced by fV may be complex. Nevertheless, we conjecture that the pa-

rameters associated with G
V \[C,M ]
sum may often be obtained via the notional

stepwise generating process described in Section 1.3 that is by introducing
latent variables that are mutually independent and independent of Yv, YC .

If the additional latent variables are taken to be discrete and to have a
large number of levels, then it should be possible to generate, or at least
to approximate closely enough, any association corresponding to i k.
This follows for discrete variables by Theorem 1 of Holland and Rosenbaum
(1989) and otherwise presumably by using Proposition 5.8 of Studený (2005),
but a proof is pending.

3.4. Generating a summary graph from a larger summary graph. Let a
summary graph be given, where the corresponding model, actually or only
notionally, arises from a parent graph model by conditioning on Yc and by
marginalising over variables Ym.

imsart-aos ver. 2007/04/13 file: papsum16Mar10.tex date: March 18, 2010



30 N. WERMUTH

Then, the starting linear parent graph model is the triangular system of
equation (2.2) in a mean-centred Gaussian variable Y where

AY = ε, cov(ε) = ∆ diagonal, A unit upper-triangular.

With Proposition 4, one obtains for V \ {c,m} = (µ, ν) the following equa-
tions in Yµ|c, Yν|c, which coincide in form with equations (3.1),

(3.9)

(

Bµµ Bµν

0 Σνν.µm

)(

Yµ|c

Yν|c

)

=

(

η′µ

ζν

)

, cov

(

η′µ

ζν

)

=

(

W ′
µµ 0

. Σνν.µm

)

,

With added conditioning on a set cν ⊆ ν, no additional ancestors of cν are
defined, since every node in ν is already an ancestor of c. But, with added
conditioning on cµ ⊆ µ, the set µ \ cµ is split into foster nodes fµ of cµ and
into outsiders o of {r, ν}, where r = {cµ, fµ}.

The equations for Yµ are always block-triangular in (o, r). But, by con-
trast to the split of V into (O,R) in equation (3.3), these equations are not
orthogonal in (o, r) so that conditioning on cµ in the summary graph is more
complex than conditioning directly on a set in the parent graph.

Proposition 5. Linear equations obtained from (3.9) after conditioning

on Ycµ , Ycν and marginalising over Yh, Yl. Given (3.9) to G
V \{c,m}
sum , where o

contains all outsiders of {cµ, fµ, ν}, equations for Yµ are block-triangular in

µ = (o, r) where r = {cµ, fµ}.

The additional conditioning set {cµ, cν}, and additional marginalising sets
h ⊆ o and l ⊆ {fµ, ν \ cν} give C = {c, cµ, cν} and M = {m,h, l}. With
ψ = (r, ν), the new equations are block-triangular and orthogonal in (u, v),
where

u = o \ h, φ = ψ \ {cµ, cν}, v = φ \ l.

With orthogonalised residuals ξo = η′o−Qorη
′
r, orders µ = (h, u, r), φ = (l, v)

Qµµ = invr W̃ ′
µµ, Coψ = Boψ −QorBrψ, K = invhl

(

B̃oo C̃oφ

0 Σ̃φφ.om

)

,

the linear summary graph model to G
V \[C,M ]
sum is

(3.10)

(

Kuu Kuv

0 Σvv.uM

)(

Yu|C

Yv|C

)

=

(

ηu

ζv

)

, ηu = ξu −Kuhξh −KulΣll|vCζl,

and coincides with the linear model obtained from the triangular system (2.2)
by directly conditioning on YC and marginalising over YM .
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Proof. The conditioning set cµ splits the set of nodes µ into (o, r), where
o is without any descendant in r = {cµ, fµ} and where every node in fµ has
a descendant in c. This implies a block-triangular form of Bµµ in (o, r) in
the equations of Yµ|νc, however with correlated residuals η′o and η′r.

For ψ = (r, ν), block-orthogonality with respect to (o, ψ) in the equations
in Yo|c and Yψ|c is achieved by subtracting from η′o the value predicted by
linear least-squares regression of η′o on η′r and ζν . This reduces, because of
the orthogonality of the equations in (µ, ν), to subtracting Qorη

′
r from η′o.

The matrix of equation parameters of Yψ|c coincides with the concentra-
tion matrix of Yψ|c given by

(3.11) Σψψ.om = Σ−1
ψψ|c =

(

BT
rrQrrBrr BT

rrQrrBrν

. Σ−1
νν|c +BT

rνQrrBrν

)

.

By the block-triangularity and orthogonality in (o, ψ), the equations in
Yo|c can be replaced by equations in Yo|C . For the equations in Yφ|C , the

matrix of equation parameters is Σ−1
φφ|C = [Σ−1

ψψ|c]φ,φ = Σφφ.om. The resulting
equations give the Gaussian linear model to the summary graph in node set
V \ {C,m} = (o, φ).

In the linear model to GV \[C,m], marginalizing over Yh|C , where h ⊆ o,
and over Yl|C , where l ⊆ φ, is achieved with partial inversion on h, l of the
block-triangular matrix of equation parameters, just as in equation (3.6),
and keeping only the equations in Yu|C and Yv|C .

In the resulting equations (3.10), one knows by the commutativity and
exchangeability of partial inversion for m = (g, k), p = {g, h}, q = {k, l}
that

Kuu = [invhinvgA]u,u = [invpA]u,u,

so that Kuu = Duu, where D is defined for Proposition 4. Furthermore, by
the properties of reduced form equations

−KuuΠu|v.C = Kuv = Duv +DuqΠq|v.C ,

so that the parameter matrices of Yu|C and Yv|C given in (3.10) coincide with
those in (3.4), (3.5) of Proposition 4 that is they give the Gaussian linear
model to the summary graph in node set V \ {C,N} = (u, v).

Since partial closure has the same exchangeability property as partial
inversion and both operators are commutative, the same type of proof holds
for the edge matrix expression corresponding to (3.10).
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Corollary 6. For c ⊂ C and m ⊂ M , edge matrix components of the
summary graph GV \[C,M ] result from the edge matrix components Bµµ, Bµν,
W ′
µmu and Sνν.µm of GV \[c,m] by using the transformed edge-matrices

Qµµ = zerrW̃ ′
µµ, Coψ = In[Boψ +QorBrψ], K = zerhl

(

B̃oo C̃oφ

0 S̃φφ.om

)

to obtain Kuu, Kuv directly, Svv.uM as the edge matrix to (3.11), and

(3.12) Wuu = In[Quu +KuhQhhK
T
uh +KulSll|vCK

T
ul].

3.5. Path results derived from edge matrix transformations. If one starts

with the summary graph G
V \[c,m]
sum and conditions by using Corollary 6, edges

are induced by r-line collision paths, where we let r = {cµ, fµ} = {2◦ }:

(a) ◦µ ◦µ results with ◦µ 2◦ . . . 2◦ ◦µ,

(b) ◦ψ ◦ψ results with ◦ψ ≻2◦ 2◦ . . . 2◦ 2◦ ≺ ◦ψ,

(c) ◦µ≺ ◦ψ results with ◦µ 2◦ . . . 2◦ 2◦ ≺ ◦ψ.

The corresponding relevant edge matrix expressions are, respectively, Qµµ =
zerrWµµ, In[B

T
rψQrrBrψ], and In[QorBrψ]. For each pair, one keeps one edge

of several of the same kind. The subgraph induced by nodes (o, φ) isGV \[C,m].

By marginalising next over m′ = (h, l) = (6 6◦h , 6 6◦l) in the graph G
V \[C,m]
sum ,

three types of edges are induced when closing m′-line transmitting paths:

(d) ◦φ ◦φ results with ◦φ 6 6◦l . . . 6 6◦l ◦φ,

(e) ◦o≺ ◦o results with ◦o≺ 6 6◦h . . . 6 6◦h≺ ◦o,

(f) ◦o≺ ◦φ results with ◦o≺ 6 6◦h . . . 6 6◦h≺ 6 6◦l 6 6◦l . . . 6 6◦l ◦φ,

(g) ◦u ◦u results with ◦u≺ 6 6◦h 6 6◦h ≻◦u,

(h) ◦u ◦u results with ◦u≺ 6 6◦l 6 6◦l ≻◦u.

The corresponding relevant edge matrix expressions are, respectively, Kφφ,
Koo, Koφ, In[KuhQhhK

T
uh], and In[KulSll|vCK

T
ul]. After keeping just one edge

of several of the same kind, the subgraph induced by nodes (u, v) isGV \[C,M ].

Notice that the effect of the indicator function is to reduce several edges
the same kind to just one. The closed form expressions of the edge matrix
results imply that some of the paths are to be closed in the given order.

The edge matrices In[QorBrψ] and Koφ correspond in a Gaussian summary
graph model to orthogonalising that is to removing some residual correla-
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tions. By the associated steps, (c) or (f), ik-arrows may be generated for
which node k is not an ancestor of i in the generating graph.

In contrast, for the outsiders of the conditioning set, such as set o in
the summary graph in nodes (o, φ), there is an ik-arrow if and only if k
is a parent or a forefather of node i in the larger generating parent graph
because the only arrow-inducing paths for the subset o are those in (e).

Since a summary graph results after conditioning with steps (a) to (c)
and also after marginalising with steps (d) to (h), summary graphs are said
to be closed under marginalising and conditioning and one may reverse the
order of conditioning and marginalising. The following example illustrates
such reversed stepwise constructions.

Example 5. Path constructions of G
V \[C,M ]
sum for M = q and p = ∅.

The node set of the parent graph is V = (1, . . . , 8). The conditioning set

Fig 7. a) The generating graph GV
par, b) G

V \[C,∅]
sum , c) G

V \[∅,M ]
sum , d) GN

sum.
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C = {2, 4}, the marginalising set is M = {6, 7}. The foster nodes of C, are
in F = {3, 5, 6, 7, 8} and u = O = {1}, v = {3, 5, 8}.

In this example with graphs in Figure 7, the summary graph model is

equivalent to a triangular system in N = (1, 3, 5, 8) even though G
V \[∅,M ]
sum

is not Markov equivalent to any directed acyclic graph since it contains the
chordless collision path 3 ≻2 5≺ 8. It is typical, that further marginal-
izing or conditioning may again lead to simpler graphs and models.

With just one node in m′, the paths (d) to (h) have just two edges. In
addition, by the properties of partial inversion and partial closure, the paths
(a) to (c) can be closed by operating on one node at the time and in any
order. This leads to operating on one node at a time in any order; see Table
1 and the appendix, Table 1 and Proposition 1.

3.6. The MAG corresponding to G
V \[C,M ]
sum and local Markov properties.

The keys to deriving the MAG corresponding to G
V \[C,M ]
sum are the definition

of the variables in the Gaussian MAG model and the result (2.15). For Yv,
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the summary graph and the MAG specify the same concentration graph and
dependences to arrows pointing from v to u also coincide.

A full order of the nodes in u of G
V \[C,M ]
sum may sometimes be given by

the arrows, such as in Figure 3b), sometimes there is none as in Figure 2b),
more often there is a partial order, such as in Figures 1d) or 7c). Then
one may take any compatible full ordering of the nodes in u in which the

ancestors within u of each node i in G
V \[C,M ]
sum are in the past of i, that is in

{i+ 1, . . . , du}.
For each node i, we let ci ⊆ {i + 1, . . . , du} denote the ancestors of i in

G
V \[C,M ]
sum and c̄i = {i + 1, . . . , du} \ ci. Next, we derive for each node pair

i, k with k in ci and each node pair i, l with l in c̄i, the edges in the MAG

corresponding to G
V \[C,M ]
sum by applying (2.15) to equations (3.2).

For a = (1, . . . , i, c̄i) and b = ci, the vector Pi|b = In[Kib + QibKbb] gives
zeros and ones for the dependence of Yi on Yci given Yv, YC and

(3.13) in the MAG, i≺ k for In[Pi|k.b\k] = 1, i, k uncoupled, otherwise.

Similarly, for i, l we let eil = ci ∪ cl and ēil = {i + 1, . . . , du} \ eil, take
a = (1, . . . , i, l, ēil) and b = eil. With Saa|b = In[KaaQaaKaa] of (2.15),

Kil = 0 and Wuu the edge matrix of the covariance graph of G
V \[C,M ]
sum :

(3.14) in the MAG, i l for In[Wil.b] = 1, i, l uncoupled, otherwise.

The correspondingMAG results after inserting or replacing edges inG
V \[C,M ]
sum

according to (3.13), (3.14) and keeping just one of several same edges.

Proposition 6. Local Markov properties of summary graphs. Let the

edge matrix components, HuN , Wuu and Svv.uM of G
V \{C,M}
sum be given from

Corollary 5. Let node l and sets ci, eil be defined as above, but their subscripts
dropped. Let further β denote subsets of nodes uncoupled to node i, then

(1) i⊥⊥ β|Cv \ {i, β} ⇐⇒ Siβ.uM = 0 for i ∈ v and β ⊂ v,

(2) i⊥⊥ β|Cv \ β ⇐⇒ Hiβ.c = 0 for i ∈ u and β ⊂ v,

(3) i⊥⊥ l|Cve ⇐⇒ (Wil = 0 and WieW
−
eeWel = 0) for i ∈ u, and l ∈ c̄.

(4) i⊥⊥ β|Cvc \ β ⇐⇒ (Hiβ = 0 and WicW
−
ccHcβ = 0) for i ∈ u and β ⊂ c.

Notice that pairwise independences result if β’s contain single elements.

Proof. The independences in (1) within v are those of a concentration
graph; see also (2.16) in Example 4. The independences in (2) are those ob-
tained when regressing Yi|C on Yv|C ; see also Example 2. The independences
in (3) and (4) are reformulations of (3.14), (3.13), respectively.
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4. Discussion. The common attractive feature of a maximal ances-
tral graph and of the corresponding summary graph is that they elucidate
consequences of a possibly much larger generating graph regarding inde-
pendences. The smaller graphs capture the independence structure implied
by the generating graph and they can be used to understand additional
consequences of the generating graph for independences that result after
additional marginalising and conditioning.

An advantage of the MAG is that each edge corresponds a conditional
association, each missing edge to a conditional independence. A disadvantage
of a MAG is that a dependence, say to i≺ k, may be severely distorted
compared to the dependence to i≺ k in the generating process. With the
corresponding summary graph one can identify which of the conditional
dependences in the MAG remain undistorted and which do not.

Given the summary graph, the corresponding MAG is derived in a few
steps. But in general, one cannot obtain from a given MAG the correspond-
ing summary graph and also not the information about distortions. Both
types of graph may contain semi-directed cycles. These are typically of in-
terest only in connection with a larger generating process.

In contrast, their common subclass of multivariate regression chain graphs
gives a substantial and much needed enlargement of the types of research hy-
potheses that can be formulated with directed acyclic graphs. They model
stepwise generating processes not only in univariate but also in joint re-
sponses. This leads to a corresponding recursive factorization of the joint
density in these vector variables.

In addition, every independence constraint for a component of a joint
response is conditional on variables in the past of the joint response. This
is an important distinction from all other types of currently known chain
graphs and in line with research in many substantive fields where the study
of dependences on past variables is judged to be more fruitful than those of
associations and of independences among variables arising at the same time.

For Gaussian multivariate regression chains, properties of estimators and
test statistics have been quite well understood for a considerable time. For
discrete random variables all multivariate regression chains are smooth; see
Drton (2009). Such smooth models are curved exponential families, see e.g.
Cox (2007) Section 6.8, so that they have desirable properties regarding
estimation and asymptotic properties of tests.

Much less is known for joint responses of discrete and continuous ran-
dom components. Thus, though we now can derive important consequences
of any type of multivariate regression chain, more results on equivalence,
identification, estimation and goodness-of-fit criteria are needed.
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However, if the multivariate regression chain can be generated, as dis-
cussed, via special types of hidden variables in a larger parent graph model,
then its independence structure is defined by a list of independence state-
ments for variable pairs. This permits local fitting with univariate gener-
alised linear models, with checks for linearity, interaction and conditional
independence based on observed associations of variable pairs and triples.

This requires no knowledge about the form of the joint distribution and
it permits to formulate research hypotheses that are well-compatible with a
given set of data and that are to be investigated in further empirical studies.

APPENDIX A: TWO-EDGE PATHS OF SUMMARY GRAPHS

The following arguments show that the types of induced edge of Table 1
are self-consistent. A node to be marginalised over by indicated 6 6◦ and a
node to be conditioned on by 2◦ .

The three types of edge-inducing, two-edge paths (1) to (3) in a parent
graph that have as inner node a transition, a source or a sink node, respec-
tively, are defined to generate the following three different types of edge:

(1) ◦≺ 6 6◦≺ ◦ =⇒ ◦≺ ◦,

(2) ◦≺ 6 6◦ ≻◦ =⇒ ◦ ◦,

(3) ◦ ≻2◦ ≺ ◦ =⇒ ◦ ◦,

The arrow has one, the dashed line two and the full line no edge endpoints
that define a collision node when the edge is mirrored at the same node.
Dashed lines denote edges in covariance graphs and full lines in concentra-
tion graphs. Closing paths in such graphs is defined to preserve the type of
edge:

(4) ◦ 2◦ ◦ =⇒ ◦ ◦,

(5) ◦ 6 6◦ ◦ =⇒ ◦ ◦.

The next two paths (6) and (7) are equivalent and both induce an arrow:

(6) ◦ 2◦ ≺ ◦ =⇒ ◦≺ ◦,

(7) ◦≺ 6 6◦ ◦ =⇒ ◦≺ ◦,

Paths (4) to (7) arise from active alternating paths in a parent graph for
which inner source nodes in {6 6◦} alternate with inner sink nodes in {2◦ } :

The two-edge paths (4) to (7) result from Figure 8 as follows: path (4)
from a) by only marginalising, path (5) from b) by only conditioning, path
(6) from c) by only marginalising and path (7) from c) by only conditioning.
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Fig 8. Active alternating paths that generate two-edge paths a) of type (4) inducing
◦ ◦, b) of type (5) inducing ◦ ◦, c) of type (6) or (7) inducing ◦≺ ◦.

a) b) c)

The paths a), b), c) of Figure 8 generalise paths (2), (3) and (1), respectively.

The three remaining edge-inducing paths of two edges in G
V \[C,M ]
sum are

(8) ◦≺ 2◦ ◦ =⇒ ◦ ◦,

(9) ◦ 6 6◦≺ ◦ =⇒ ◦ ◦,

(10) ◦ 2◦ ◦ =⇒ ◦≺ ◦.

The three active paths of Figure 9 result by substituting the undirected

Fig 9. Active paths that generate two-edge paths a) of type (8) inducing ◦ ◦, b)
of type (9) inducing ◦ ◦, and of type (10) inducing ◦≺ ◦.

a) b) c)

edges in (8) to (10) by the appropriate generating components (2) or (3).
By marginalising over the transition node in Figures 9a) to 9c), one gen-

erates, respectively, path (2), path (3) and the path in Figure 8c).
The construction of the summary graph simplifies considerably for special

types of parent graphs, for instance for the graphs to the lattice conditional
independence models, studied by Andersson et al. (1997), and for the graphs
corresponding to labeled trees, studied by Castelo and Siebes (2003).
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