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 Summary

 We propose a non-iterative model search technique to find simple patterns of association
 for several variables. Our selection procedure is restricted to multiplicative models, therefore all
 patterns under consideration are interpretable in terms of zero partial associations of variable
 pairs. Wie illustrate the selection technique on two sets of data, one in a contingency table, one in
 a covariance matrix.

 1. Introduction

 The interrelations among several variables can more easily be understood and communi-
 cated if they can be characterized by a pattern of association. Multiplicative models form
 ,one class of such patterns of association. There are some advantages in considering only
 multiplicative models in a model search procedure used to find well-fitting patterns for a
 given set of data: multiplicative models are not tied to a specific form of a distribution
 function; their interpretations are relatively easy because in each pattern or model one can
 distinguish variables that belong together from variables that can be separated. Further-
 more, in a selection procedure among multiplicative models no iterative fitting algorithms
 are needed.

 Multiplicative models have previously been discussed for contingency tables by Darroch
 [1962], Bishop [1969], Goodman [1970] and Wermuth [1976], and for covariance matrices
 by Wermuth [1976]. In the case of a multinomial distribution, multiplicative models are a
 subclass of log-linear models (Birch [1963]), and in the case of a multivariate normal distri-
 bution they are a subclass of covariance selection models (Dempster [1972]). Model search
 procedures that are not restricted to multiplicative models-hence techniques requiring
 iterative fitting algorithms-have for instance been proposed by Goodman [1971] for
 contingency tables and by Dempster [1972] for covariance matrices.

 2. Definitions and Notation

 We speak of a multiplicative model if the joint distribution of several variables can be
 factored into the marginal distributions of subgroups of variables (and vice versa). In
 order to characterize such a model we may either write out how the joint distribution is
 factored, or we can use some condensed notation. Suppose, for instance, that the joint
 distribution of five variables can be factored into the marginal distributions of variables
 (145), (245), (345) and (45), as in
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 f(XlX2X3X4X5) _ f(*xlx4X5)f(X2X4X5)f(X3X4X5)
 f (X4X5)f (X4X5) ' (1)

 where f denotes probability functions or probability density functions. Then, if we concen-
 trate only on the indices of the five variables, (1) becomes

 (12345) = (145)(245)(345)
 (45)(45) (2)

 A condensed notation for this multiplicative model is 145/245/345, that is a list of the

 variable groups in the numerator of (2) separated by dashes. This list of variable groups
 shows the variables that belong together, and implicitly the variable pairs that have been

 separated. In our example the latter are the pairs (1, 2), (1, 3) and (2, 3). Each of these

 pairs has zero partial association (z.p.a.), that is, each variable pair is conditionally inde-
 pendent given the remaining three variables.

 The familiar interpretation for model 145/245/345 is that the variables 1, 2 and 3 are

 independent given the joint variable 45. They are independent after the influence of vari-

 ables 4 and 5 has been removed. This interpretation as well as the interpretation of any

 other multiplicative model may be derived from the independencies that are implied by

 the number and the constellation of z.p.a.'s (Wermuth [1976]). Generally, the more z.p.a.'s
 required for a model, the simpler is the interpretation of the resulting pattern of association.

 Without giving proofs we now list and illustrate some properties of multiplicative models
 that make them attractive for a model search procedure:

 1) Each multiplicative model can be characterized by its z.p.a.'s, that is by its condi-

 tionally independent variable pairs;

 2) Each multiplicative model may be conceptually derived by eliminating in a stepwise

 manner the partial associations among variable pairs;
 3) If two multiplicative models differ such that the second model has exactly one addi-

 tional z.p.a., then in the second model the corresponding variable pair is conditionally

 independent not only in the joint distribution of all variables but also in some marginal
 distribution.

 For instance, to obtain model 145/245/345 we could successively eliminate the partial

 associations for the variable pairs (1, 2), (1, 3) and (2, 3). This would yield model 1345/2345
 in the first step, model 145/2345 in a second step and model 145/245/345 in a third step.

 For such a stepwise elimination in general, it is convenient to use the index combination

 notation introduced in (2) as well as the following rule:

 Call (ij) the indices of the variable pair that is to have z.p.a. Now look at the index
 combinations of the previous step: If (ij) is contained in an index combination of the

 denominator, then the resulting pattern will not be a multiplicative model. Otherwise,

 pick out that index combination in the numerator that includes (ij). Call this combina-
 tion (ijK) such that K denotes all indices in the combination except for i and j. Then
 replace (ijK) by (iK) (jK) in the numerator and (K) in the denominator and cancel.

 Applying this rule to our example we obtain

 Step 1

 z.p.a. for (1, 2):

 (12345) (1345)(2345)
 (345)
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 Step 2
 z.p.a. for (1, 3) after (1, 2):

 (1345)(2345) (145)(2345)

 (345) (45)

 Step 3

 z.p.a. for (2, 3) after (1, 2), (1, 3):

 (145)(2345) (145)(245)(345)

 (45) (45)(45)

 We now look at the changes in index combinations at each step. We have

 Step 1
 z.p.a. for (1, 2):

 (12345) (1345)(2345)
 (345)

 Step 2
 z.p.a. for (1, 3):

 (1345) (145)(345)
 (45)

 Step 3
 z.p.a. for (2,3):

 (2345)) (245)(345)
 (45)

 and we see that the additional z.p.a. at each step is equivalent to the conditional inde-
 pendence of the variable pair within the joint distribution of a subset of all variables, that
 is within some marginal distribution. If we define i, j and K as in the "rule," the change
 in models at two successive steps may be described as

 z.p.a. for (i, j): (ijK) -> (iK)(K)(3)
 -(K)

 Because of this simple relationship a test for an additional z.p.a. will always be a test for
 conditional independence in some marginal distribution, and likelihood-ratio test statistics
 for an additional z.p.a. will always be of the same form.

 The precise test statistics in the case of a multivariate normal distribution are

 2 D-2 i KDiK/DK]

 where, for instance, Di jK or DK denote determinants of observed correlation matrices with
 variables (ijK) or (K), respectively; n is the sample size. These tests will always have one
 degree of freedom (d.f.).

 The test statistics in the case of a multinomial distribution with observed cell counts

 nijK1 will be

 1 We hope that the the double meaning of i, j, K as indices of variables and as running indices for
 variable categories is not confusing. We accept this ambiguity in order to emphasize the similarities of the
 test statistics in (4) and (5).
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 2 Fni Kn.iK/n. KlntiK x = -2lIn ir n (5)

 where ni.K = Ej niiK , n..K = Eii njiK . These tests have (It - l)(Ii - 1) UrEK Ir d.f.
 with II as the number of categories for the lth variable.

 With these definitions and with the "rule" we can formulate the backward selection.

 3. A Backward Selection Procedure

 A model search like the one proposed here is appropriate when little is known about the
 interrelations among several variables. In such a situation no specific hypotheses that

 could be tested are available yet. The main interest lies in finding a condensed description

 of possibly complex interrelations and in generating hypotheses that later on can be tested
 on a different set of data.

 The rationale of the proposed model search is simple: we wish to determine in a stepwise
 manner how many and which variable pairs can be assumed to have z.p.a. given the evidence

 of the data. For the reasons stated previously we do not consider all possible models with

 z.p.a.'s but only the multiplicative ones. The most complex type of pattern for p variables

 is a model with exactly one z.p.a. The simplest model is the one with (2) z.p.a.'s, that is

 the model with mutual independence of all p variables. For a systematic description of all

 possible multiplicative models in the case of four variables compare for instance Bishop
 [1971] or Wermuth [1976].

 In a first step of the selection procedure we try to find a variable pair for which the

 assumption of z.p.a. is consistent with the data. Thus, for all (2) variable pairs the likeli-

 hood-ratio test statistics for exactly one z.p.a. are computed. The test statistic with the
 highest probability is then selected, that is, the variable pair with the smallest partial
 association is selected to have zero partial association. If its likelihood-ratio test statistic
 is significant, then the decision at the first selection step is that no simple pattern fits the

 data. The selection then stops. In the case of an insignificant test statistic we proceed to
 find-among all variable pairs still available-that pair with the smallest additional z.p.a.
 To compute the appropriate test statistics for each additional z.p.a. we use the "rule."
 Again, the test statistic with the highest probability is selected, and the selection process
 is terminated if this test gives a significant result.

 To evaluate the significance of a result in a model search procedure a number of different
 rules are available. A survey of such rules and of their effects on the selection results in
 regression analysis may be found in Dempster, Schatzoff and Wermuth [1976]. In the
 examples described below we speak of significance whenever the test statistic exceeds the
 95 percent quantile of the corresponding chi-square distribution. Experience shows that
 different rules will frequently lead to the same decisions on well-fitting patterns of asso-
 ciation.

 Another problem connected with search techniques is well known from regression
 analysis: in general, it cannot be expected that a backward selection technique will lead to
 the same result as a forward selection technique. Similarly, the technique described here
 will not necessarily select the same patterns of association as a model search not restricted
 to multiplicative models. In any case, a selected pattern of association should be judged
 on how plausible its interpretation seems to the investigator.
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 Table 1
 OBSERVED CORRELATIONS FOR FIVE MATURITY INDICATORS

 (LOWER HALF: MARGINAL; UPPER HALF: PARTIAL)

 Variables 1 2 3 4 5

 1 1.0000 0.1401 0.1273 0.1345 0.2599

 2 0.4314 1.0000 0.3450 0.0925 -0.0263

 3 0.5146 0.6263 1.0000 0.6213 0.1507

 4 0.4891 0.5466 0.7830 1.0000 0.0232

 5 0.4112 0.2604 0.3926 0.3433 1.0000

 4. Non-iterative Backward Selection in the Case of a Multivariate Normal Distribution

 To illustrate the backward selection in a covariance matrix we use data from the

 prospective study, "Pregnancy and Child Development," initiated by the Deutsche
 Forschungsgemeinschaft (German Research Society) in 1964.

 We are interested in the question: How many and which indicators are necessary to
 obtain a good picture of an infant's maturity? Available is information on five indicators
 for n = 2,473 male infants. The data contain no outlying or missing values; the five variables
 are

 1 = length of gestation (in days)

 2 = head circumference (in mm.)

 3 = birth weight (in gm.)

 4 = length at birth (in mm.)

 5 = constructed indicator

 The last variable contains only integer values ranging from 0 to 18. It is constructed from

 the Apgar score, length of fingernails, the amount of lanugo, and from similar information
 (Koller [1974]). An inspection of normal probability plots revealed that the data on the first

 four variables can certainly be regarded as samples from normal distributions, while for the
 fifth variable this assumption was still roughly justified.

 From the marginal correlations in Table 1 it is difficult to detect any simple structure
 in the data. However, from the partial correlation coefficients (given the remaining three

 variables), we see that the variable pairs (2, 4), (2, 5) and (4, 5) are most likely to have
 z.p.a.'s. Table 2 shows the result of several backward selection steps.

 At the first step, the smallest non-significant chi-square statistic (on one d.f.) is 1.34:
 it is the likelihood-ratio test result for z.p.a. between variables 4 and 5. It is computed as

 -2,473 [In D12345- (in D,1234 + In D1235 - In D123)]

 = 2,473 [2.0586 - (1.8171 + 1.0736 - .8326)] = 1.34,

 where, for instance, D1234 denotes the determinant of the observed correlation matrix with

 variables (1234).
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 Table 2

 MODEL SEARCH FOR THE FIVE MATURITY INDICATORS

 Step 1 Step 2 S tep 3

 Variable x2 -statistic sub- x2 -statistic sub- X2-statistic
 pair for z.p.a. matrix for z.p.a. matrix for z.p.a.

 ( 1, 2) 55.62 __ ) 1234 54.33

 (1,3) 40.38 __ __ __ __

 (1,4) 45.13 1234 52.96 1234 52.96

 (1,5) 173.02 1235 180.85 135 180.41

 (2,3) 313.39 -- -- 1234 313.58

 (2,4) 21.26 1234 21.00 1234 21.00

 (2,5) 1.71 1235 1.45 X X

 (3,4) 1206.43 1234 1262.04 1234 1262.04

 (3,5) 56.82 1235 112.44 135 136.31

 (4,5) 1.34 X*) X X X

 selected 1234/1235 1234/135 123/134/135

 X means that the corresponding variable pair was in a previous step selected
 to have zero partial association

 -- means that the corresponding pattern requires iterative fitting

 In the second selection step we test for z.p.a. of an additional variable pair. For instance,
 to test that P14.235 = 0 given that P45.123 = 0 is the same as testing whether the pair (1, 4)
 is conditionally independent in the submatrix with variables (1234). In other words, to
 test P14.235 = 0, the likelihood-ratio test statistic can be computed as

 52.96 = -2,473 [In D1234- (In D123 + In D234 -In D23)].

 The decision at this second step of the selection is that the partial association for variable
 pair (2, 5) does not differ significantly from zero. This decision is equivalent to accepting
 pattern 1234/135. At step three the smallest chi-square statistic has a value of 21.00 for
 pair (2, 4). Since this result is significant even at a .01 level, the selection stops.

 One interpretation for pattern 1234/135 is the following: given information on the length
 of gestation (1) and on birth weight (3), the constructed indicator (5) is independent of
 the two indicators length at birth (4) and head circumference (2). In other words, to judge
 the maturity of infants with the same length of gestation and with the same birth weight,
 the constructed indicator gives information about the maturity that cannot be obtained
 from the indicators length at birth and head circumference.

 In Table 3 we display the estimated correlations for model 1234/135. Except for the
 two variable pairs (2, 5) and (4, 5) all marginal correlations agree with the observed corre-
 lations in Table 1. For the same two variable pairs the partial correlations have been forced
 to zero.
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 Table 3

 CORRELATIONS IMPLIED BY PATTERN 1234/135
 (LOWER HALF: MARGINAL; UPPER HALF: PARTIAL)

 Variables 1 2 3 4 5

 1 1.0000 0.1423 0.1261 0.1406 0.2593

 2 0.4314 1.0000 0.3409 0.0920 0.0000

 3 0.5146 0.6263 1.0000 0.6245 0.1554

 4 0.4891 0.5466 0.7830 1.0000 0.0000

 5 0.4112 0.2763 0.3926 0.3319 1.0000

 5. Non-iterative Backward Selection in the Case of a Multinomial Distribution

 To illustrate the backward selection in a contingency table, we use data from Coppen

 [1966], previously analyzed by Lienert [1971]. The type of interrelations among several
 symptoms on psychiatric patients is of interest. Available is information for 362 patients

 on the following symptoms:

 1 = validity (psychasthenic -; energetic +)
 2 = solidity (hysteric -; rigid +)
 3 = stability (extroverted-; introverted +)

 4 = acute depression (no-; yes +).

 Table 4 shows the observed cell counts niikl for each of the symptom combinations as well
 as the expected cell counts for pattern 13/14/24. This pattern was the result of the back-
 ward selection procedure displayed in Table 5.

 At the first step of the selection, variable pair (2, 3) was selected to have z.p.a., the
 corresponding chi-square statistic was computed as

 2[(E ni~ijk InnXjkl) - ((Z nii., Innin.-) + (, fnik Inni.kl) ni..- In n..,1))] = 3.93.

 Denote the number of categories for each variable as I, = 2, I2 = 2, I3 = 2, I4 = 2, then
 the degrees of freedom for z.p.a. of (2, 3) given variables 1 and 4 are

 (I2 - 1)(I3 - 1)14 = 4.

 At the second step, we test for z.p.a. of an additional variable pair. After pattern 124/134
 is already accepted, the test, for instance, for additional independence of variables 1 and 2

 given variables 3 and 4 jointly, is the same as the test for conditional independence of

 variables 1 and 2 given variable 4 alone. Hence, the likelihood-ratio test statistic can be

 computed from subtables as

 5.49 = 2[(E ni>. In ni1) - ((Z n1 .l In ni..1) + (a n.s. In n.f.1) (a n...l In n...1))].

 The degrees of freedom for this statistic are (I - 1) (I2 - 1)I4 = 2.

 At step four no further zero partial associations can be accepted, since the smallest

 chi-square statistic is significant even at a .01 level of significance. Therefore, we accept
 pattern 13/14/24 as the simplest pattern of association consistent with the data.
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 Table 4
 CELL COUNTS ON FOUR SYMPTOMS FOR PATIENTS RECEIVING PSYCHIATRIC TREATMENT

 Symptom- Observed Expected cell counts
 combinations cell counts for pattern 13/14/24
 1 2 3 4

 + + + + 15 16.785

 - + + + 30 36.716

 + _ + + 9 13.241

 - - + + 32 28.965

 + + - + 23 17.315

 - + - + 22 19.185

 + - - + 14 13.659

 - - - + 16 15.135

 + + + - 25 22.305

 - + + - 22 15.557

 + + - 46 42.670

 - - + - 27 29.762

 + + - - 14 23.009

 - + - - 8 8.129

 + - - - 47 44.017

 - - - - 12 15.551

 This means that we assume the variable pairs (1, 2), (2, 3) and (3, 4) to have z.p.a.'s,
 and that the marginal associations of the symptoms (1, 3), (1, 4) and (2, 4) are sufficient
 to explain the interrelations among all four symptoms. One possible interpretation of

 pattern 13/14/24 is the following: Patients in an acute depression (4+) and convalescents
 (4-) are two heterogeneous groups with respect to the symptoms validity and solidity,
 and therefore the two groups should be considered separately (Koller [1964]). When we

 do this, we recognize that solidity is independent of the symptoms validity and stability,

 jointly. Furthermore, the association between these latter two symptoms (1, 3) is similar
 whether we look at it within each of two groups of patients (4+, 4-) or within the collective
 of all patients.

 Table 6 shows the observed marginal associations as well as those implied by pattern
 13/14/24.

 Again it can be seen that the implied marginal associations coincide with the observed
 marginal associations except for the selected variable pairs (1, 2), (2, 3) and (3, 4).

 6. A Disadvantage of Multiplicative Models

 We restricted the model search to multiplicative models. The advantages were that the
 test statistics can readily be computed without evaluating maximum-likelihood estimates7
 implied marginal associations can be expressed in a closed form (Wermuth [1976]), and the
 interpretation of the resulting patterns is relatively easy. Nevertheless, there are situations

 in which these advantages are outweighed by the danger of misinterpreting the evidence
 in the data.
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 Table 5

 MODEL SEARCH FOR THE FOUR SYMPTOMS

 Step 1 Step 2 Step 3 Step 4

 Variable X2 -statistic d . f. sub- X2 d . f. sub- X2 d . f. sub- X2 d . f.
 pair for z.p.a. table table table

 (1,2) 4.78 4 124 5.49 2 124 5.49 2 X X X

 (1,3) 12.87 4 134 13.58 2 13 10.02 1 13 10.02 1

 (1,4) 33.00 4 - _ 124 30.80 2 14 28.03 1

 (2,3) 3.93 4 X*) X X X X X X X X

 (2,4) 22.38 4 124 19.73 2 124 19.73 2 2.4 16.97 1

 (3,4) .7.64 4 134 4.99 2 X X X X X X

 selected
 pattern 124/134 124/13 13/14/24 3/14/24

 )X means that the corresponding variable pair was in a previous
 step selected to have zero partial association

 - means that the corresponding pattern requires iterative fitting

 d.f. means degrees of freedom

 Consider the following example on the interrelation among only three variables in a

 3 X 2 X 9 contingency table: smoking habits of fathers (variable 1), perinatal mortality
 of the infant (variable 2) and clinics (variable 3). Again the data are taken from the "Preg-
 nancy and Child Development" study.

 An increased danger of perinatal mortality in those cases where the fathers are heavy
 cigarette smokers has been reported by Mau and Netter [1974]. The corresponding data
 are shown in Table 7. For our purposes we ignore the difficulty of explaining the seemingly
 protective effect of smoking one to ten cigarettes.

 Since both perinatal mortality rates and smoking habits of fathers differ with the nine

 clinics, it is possible that there is no real association between smoking habits and perinatal
 mortality if one controls for the clinic heterogeneities.

 Table 6

 MARGINAL ASSOCIATIONS FOR THE FOUR SYMPYOMS

 (LOWER HALF: OBSERVED; UPPER HALF: IMPLIED BY PATTERN 13/14/24)

 Variables 1 2 3 4

 1 - 0.0598 0.1658 0.2767

 2 0.0867 - 0.0099 0.2160

 3 0.1658 0.0170 - 0.0458

 4 0.2767 0.2160 0.0631
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 Table 7
 PERINATAL MORTALITY AND SMOKING HABIT OF THE FATHER

 Number of PerTnatal mortal Sty
 .cigarettes

 per day % from

 none 3.0 1995

 1 to 10 2.2 861

 more than 10 4.2 1204

 A test for the independence of variables 1 and 2 after controlling for a clinics effect is

 the test for model 13/23. It has 18 d.f. and a chi-square value of 25.95, hence gives an insig-
 nificant result. Therefore we could be led to believe that the observed association between
 variables 1 and 2 in the collective of all patients is due to a mere clinic's effect. But a more
 careful analysis (compare Bishop [1971]) which requires the fitting of an iterative model

 (pattern 12/13/23) reveals the contrary. The test for no three-factor interaction, the test
 for pattern 12/13/23, has 16 d.f. and a chi-square statistic of 18.59. After this pattern has
 been accepted, the two-factor interaction between smoking habit and perinatal mortality
 can no longer be assumed to be zero (the conditional test for the interaction between vari-
 ables 1 and 2 has one d.f. and a value of 7.33).

 Table 8
 PERINATAL MORTALITY AND SMOKING HABIT OF THE FATHER IN NINE CLINICS

 Number of Perinatal mortal Ity
 cigarettes
 per day Clinic 1 Clinic 2 Clinic 3

 % from % from % from

 none 3.1 160 3.7 109 2.2 405

 1 to 10 0.0 51 1.6 63 I.8 164

 more than 10 10.2 44 3.2 95 2.3 270

 Clinic 4 Clinic 5 Clinic 6

 % from % from % from

 none 3.7 188 2.5 160 3.9 129

 1 to 10 0.0 77 2.1 97 0.0 56

 more than 10 6.6 151 3.8 104 5.7 105

 Clitnic 7 Cltnic 8 Clinic 9

 % from % from % from

 none 1.1 176 3.0 538 6.7 120

 1 to 10 3.3 60 3.0 231 6.5 62

 more than 10 0.9 114 4.5 222 6.4 94
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 This example shows that in contingency tables it might be necessary to split the overall

 test for z.p.a. into different components to avoid -misinterpretations. Thus, the backward

 selection procedure described above should not be used if the investigator wants to test a
 specific hypothesis, such as the question of clinic heterogeneities.

 Acknowledgment

 I wish to thank the referees for their helpful comments, and T. Wehner and H. Gonner

 for programming and testing the algorithms.

 Recherche D'un Modele Parmi des Modeles Multiplicatifs

 Resuing

 Nous proposons une technique non-ite'rative de recherche du mode'le pour trouper des struc-
 tures simples d'association de plusieurs variables. Notre proc ede ne s'applique qu'aux mode'les
 multiplicatifs, ce qui nous permet d'interpreter toutes les structures etudiees en termes d'associa-
 tions partielles de paires de variables. Nous presentons application de notre technique a deux
 ensembles de donnees, l'un dans une table de contingence, l'autre dans une matrice de covariances.
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