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 SUMMARY

 We discuss two classes of models for contingency tables, graphical and recursive

 models, both of which arise from restrictions that are expressible as conditional

 independencies of variable pairs. The first of these is a subclass of hierarchical log linear

 models. Each of its models can be represented by an undirected graph. In the second

 class each model corresponds to a particular kind of a directed graph instead and can be

 characterized by a nontrivial factorization of the joint distribution in terms of response

 variables. We derive decomposable or multiplicative models as the intersecting class.

 This result has useful consequences for exploratory types of analysis as well as for the

 model interpretation: we can give an aid for detecting well-fitting decomposable models

 in a transformation of the observed contingency table and each decomposable model

 may be interpreted with the help of an undirected or directed graph.

 Some key words: Collapsibility; Conditional independence; Data reduction; Decomposable model; Directed
 graph; Hierarchical model; Log linear model; Maximum likelihood estimate; Multiplicative model; Path
 analysis; Reducible zero-pattern; Undirected graph; Zero partial association; Zero partial dependence.

 1. INTRODUCTION

 Log linear models for contingency tables as defined by Birch (1963) have received
 considerable attention during the last 20 years as documented in the books by
 Haberman (1974), Bishop, Fienberg & Holland (1975), Andersen (1980) and Plackett
 (1 981). The most appealing features of a hierarchical log linear model are: that it has a set
 of minimal sufficient statistics,which is a set of proper marginal contingency tables; and

 that each of the jointly sufficient tables matches exactly the corresponding table derived
 from the maximum likelihood estimate of the joint table. Variable sets corresponding to
 tables listed in the set of minimal sufficient statistics are the important ones in each given
 model, since their observed marginal tables contain the relevant information for the
 joint distribution of all variables. A well-fitting hierarchical log linear model then
 provides the researcher with a guide to classifying certain variable subsets as less
 important because knowledge of their observed tables is unnecessary for a good
 approximation of the observed table of all variables by the estimated table, and because
 their observed tables can be closely reproduced from the estimated joint table. It is in
 this sense that data reduction is well achieved by all hierarchical log linear models.

 Nevertheless, for most hierarchical log linear models it remains true that their
 meaning for the investigated subject matter is difficult to grasp and to communicate.
 One reason is that within these models all variables are treated alike. The models offer no
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 natural way of specifying one variable as being dependent or a response variable,
 another variable as being independent, a treatment or background variable, or yet
 another being both in relation to different subsets of variables.

 In contrast, the models for contingency tables proposed by Goodman (1973) as a kind

 of modified path analysis permit such a view of the variables. But Goodman's models
 have a disadvantage as far as their application to path analysis is concerned. There is no

 one-to-one correspondence between such models and directed graphs, which have been
 at the heart of path analysis as proposed by the geneticist Wright (1923, 1934) for

 quantitative variables. The graph is to represent a system of dependencies or, in the
 terminology of Wright, a system of causal relations. For quantitative variables directed

 graphs may represent systems of linear recursive equations with independent errors.
 These systems have been studied in econometrics, and they are used nowadays as a basis

 for path analysis. By defining recursive models of dependencies for qualitative variables,
 we specify a subclass of the models considered by Goodman. Each recursive model is
 shown to have a unique representation as a particular kind of a directed graph.

 One of the purposes of path analysis is to find out whether the hypothesized system of
 dependencies is compatible with the observations. To this Goodman's (1973) results on a
 larger class of models apply. But Goodman's models as well as their subclass of recursive
 models do not, in general, lead to good data reductions in the sense described above. Our
 aim is to specify decomposable models as the intersecting class of hierarchical log linear
 with recursive models. They combine advantages and avoid disadvantages tied to both
 classes. Furthermore, we want to show how to check, with the help of a simple well-
 known transformation of the observed contingency table, whether a particular decom-

 posable model is likely to fit the table or not.

 To this end, we first give an introductory discussion for only three variables; secondly
 we describe for t qualitative variables, denoted by the indices r E {1, ..., t}, a subclass of
 hierarchical log linear models in which each member has a one-to-one correspondence to
 an undirected graph. This property of the class, derived by Darroch, Lauritzen & Speed
 (1980), was the reason to call its members graphical models. They had previously been
 studied by Andersen (1974), and by Wermuth (1976a, b) under the name of zero partial
 association models. The models arise from conditional independence restrictions for
 variable pairs (i,j) of the following kind: a pair is to be conditionally independent given
 all other t-2 variables. In the notation used by Dawid (1979), we can write these

 restrictions as i 11 j I {I, ..., t}\{i,j}. Thirdly we specify a subclass of Goodman's path
 analysis models, the recursive models. Each of these has a one-to-one correspondence to
 a particular kind of a directed graph. We assume that the first k < t variables have been
 ordered so that variable i E { 1, ..., k} may be considered to be a response variable with
 respect to some or all variables j E {i + 1, ..., t}, but it is not thought of as a response to
 any one of the variables h E {1, ..., i- 1}. This accounts for the recursiveness in the
 system of variables. The different models stem from conditional independencies for
 variable pairs (i,j) given all other variables which may influence the response variable

 i: i 11 j I {i + 1, ..., t} \{ j}, referred to as zero partial dependence in the following. Models
 within each of the two classes are distinguished by distinct sets of restricted variable

 pairs, subsets of the 1t(t- 1) pairs, (1, 2), (1, 3), ..., (t, t- 1). Two models taken one from
 each class may have an identical set I of restricted variable pairs. In general, two such
 models are distinct since the zero restrictions involve associations for graphical models

 and dependencies for recursive models. But, fourthly we show that a set I characterizes a
 model belonging to both classes if and only if it is a reducible set defined as follows: a set
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 I c {(i, j) I I < i < j < t} is reducible if for each (i,j) E I and all h < i either (h, i) E I or
 (h,j) E I or both.

 For convenience, we speak of a reducible zero-pattern in partial associations and

 partial dependencies whenever the set I of a model is reducible. This name had been
 chosen by Wermuth (1980) in the context of a multivariate normal distribution, where a
 partial association is captured by a concentration and a partial dependence by a
 regression coefficient: for reducible zero-patterns in the concentrations of a t-dimensional
 normal distribution the dimension may be reduced or collapsed for all r less than t over
 the variables 1 to r- 1 with the result that the set of zero concentrations in the marginal
 distribution of variables r, ..., t is identical to the set of zero concentrations for variables

 r, ..., t in the joint distribution of all t variables.
 Since it is known that variables in a graphical model can be renumbered to imply a

 reducible set of zero partial associations if and only if it is a decomposable model
 (Wermuth, 1980), we have with this result derived decomposable log linear models as the
 intersecting class of graphical and recursive models. The reducible zero-pattern shows up
 in the maximum likelihood estimates of the usual log linear parameters, too. Therefore

 this result is shown to be useful for exploratory stages of data analysis. Finally, we

 illustrate the two different approaches to defining a structure in a contingency table on a
 set of data.

 2. THE THREE DIMENSIONAL TABLE

 2- 1. Notation

 Let the three variables be denoted by 1, 2 and 3 and their corresponding categories or

 levels by i = 1, ..., I; j = 1, ..., J and k = 1, ..., K; let Pijk > 0 be the probability that one
 of n given observations belongs to cell (i,j, k) of the corresponding I x J x K contingency
 table, nijk be the observed cell count. We denote summing over an index by a dot, so that

 for instance p. .k = Xi,jPijk is the probability that an observation belongs to category k of
 variable 3, and for instance Pjilk = P.jklP. .k is the conditional probability that an
 observation belongs to category j of variable 2 given this observation is known to be in
 category k of variable 3. For the log linear parameters we adopt the usual symmetry
 constraints as for instance "(l3) = -(123) - 23) - 0, in order to obtain exactly IJK- 1
 independent parameters. Log linear parameters for the marginal probabilities P.jk and

 P .k are distinguished from those for Pijk as follows:

 logPijk = A0 ? A1) + i(2) + )43) + )Q2) ? ) 3 ) ? ) +3)? )AJk23

 logP.jk = (l*)+?AR1*2)+4(l*3)+?Ai*23) iogp..k = 4(1*2*)+?41*2*3)

 2-2. No restrictions

 A model with no other restriction than p.. = 1 and the symmetry constraints on the
 log linear parameters is called saturated or unrestricted. Different equivalent para-
 meterizations for it result depending on how many variables are considered to be

 responses. After adopting by convention a numbering of the variables such that a
 response may depend only on variables denoted by larger indices, there are three distinct

 systems of interest: those with no, one or two response variables.
 For each response variable dependencies are expressed with the help of conditional

 probabilities. Recursive systems of dependencies can then be viewed as applications of
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 the factorization property of probability functions as stated, for instance, by Wilks

 (1962, p. 66). The two factorizations,

 Pijk = Piljk P. jk Pijk = PilikPjlk P. .k'

 give the recursive system with only one response, variable 1, and with two responses,

 variables 1 and 2, respectively.

 The graphical representation of the unrestricted model contains three points and three
 lines connecting each pair of points. Each point stands for a variable. With no variable as
 a response all lines are drawn without arrows or, as is conventional in path analysis, as

 two-headed arrows; see Fig. la. Each line represents the partial associations of the

 corresponding variable pair given the third variable.

 For the recursive system with only one response variable two single-headed arrows

 point at variable 1 each denoting dependencies of variable 1 in its conditional

 distributions given variables 2 and 3. Pair (2, 3) is still connected by a simple line or by a
 line with two-headed arrows as in Fig. Ib, but in contrast to Fig. la the line stands for the
 marginal association of this variable pair.

 (a) (b)22 ()
 222 2 2

 1 )3 ~ X 3 < 3 1C 3 1 3)
 Fig. 1. Graphs of the unrestricted model (a) with no response variable, (b) with one response

 variable and (c) with two response variables.

 In the graph for the recursive system with two responses, Fig. Ic, the arrows point

 from 2 and 3 to 1 as in Fig. Ib, the arrow from 3 to 2 denotes dependencies of variable 2 in
 the conditional distributions given variable 3.

 In order to relate the partial and marginal association of variable pair (2, 3) we equate

 parameters of the unrestricted model with no response and with one response. We obtain

 (241) from

 log Pijk = log pilik + log p. jk

 after substituting log linear parameters for Pijk and p jk and computing

 log Pijk - Xj log Pijk/J - Xk log Pijk / K + I:j, k log Pijk!(JK).

 Equation (2-2) is derived similarly by using the log linear parameterizations for the

 unrestricted models with one and with two response variables:

 ?jk + ijk {logPiljk - j logPiljk/ J-Xk logPiljk /lK + j k logPiljk/l(JK)} + A1*23)
 (2.1)

 jk23) = logPjIk - Ej log PjIk/J - 1k log Pilk/K + Ej k log Pjlk/(JK). (2 2)

 The left-hand side of (2X1) measures the partial association of pair (2, 3) in terms of log
 linear parameters for Pijk. The left-hand side of (2 2) measures the dependence of pair

 (2, 3) in terms of log linear parameters for P. jk The particular way in which the two are
 linked to each other by conditional probabilities in (2-1) provides us with the basic
 ingredients to develop models with reducible zero-patterns in the restrictions as a special
 class.
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 2-3. Restricted graphical and recursive models

 Restricted graphical models for three variables are defined by zero partial
 associations. Each given graphical model can be characterized by a list
 jA C {(1, 2), (1, 3), (2, 3)} such that for each (r,s) E IA we have ZPA (r, s) meaning

 r 11 sI{1,2,3}\{r,s}. For instance ZPA(1,2) denotes 1 11 213, the conditional inde-
 pendence of pair (1,2) given variable 3. This may equivalently be expressed as a

 restriction on (a) Pijk' (b) Pilik' on (c) the undirected graph, or on (d) the A parameters for
 log pijk as follows:

 (a) Pijk = Pi.kP.jk/P..k,
 (b) Piljk = Pilk,
 (c) a missing line for pair (1, 2),

 (d) AQ'2) = =Q23) - 0.

 Similarly, restricted recursive models result from imposing zero partial dependencies
 on a corresponding recursive system. Each given recursive model can be characterized
 by the number of response variables and a list ID. For a system in only one re-
 sponse variable ID C {(1,2), (1,3)} and for a system in two response variables
 ID C {(1, 2), (1, 3), (2, 3)}, such that the possible restrictions are 1 11 213, 1 11 312 or in
 addition 2 11 3. Zero partial associations and dependencies coincide for variable pairs
 involving variable 1, they are distinct for pair (2,3). Thus ZPD (2,3) means 2 11 3,
 independence of variables 2 and 3. This can equivalently be expressed as a restriction on

 (a) P jk, on (b) Plk' on (c) the directed graph of a recursive system in two responses, or (d)
 on the A-parameters for logp jk as follows:

 (a) P.jk = P.j.P..k,
 (b) Pjlk =P.j.,
 (c) a missing arrow for pair (2, 3),

 (d) A1*23) = 0.

 As a consequence, graphical models can differ from recursive ones in the case of three
 variables only, if the restrictions involve pair (2,3). Of the four such subsets of

 {(1, 2), (1, 3), (2, 3)} the sets

 I = {(1, 2), (2, 3)}, I = {(1, 3), (2, 3)}, I = {(1, 2), (1, 3), (2, 3)}

 are reducible, while only the set I = {(2, 3)} is nonreducible. Asequation (2-1) shows, the
 log linear model with IA = {(2, 3)} does not imply ID = {(2, 3)}, nor does ID = {(2, 3)}
 imply IA = {(2, 3)}. Birch (1963) discussed the model with ID = {(2, 3)} as being distinct
 from a log linear model for all three variables and derived the maximum likelihood

 estimates Pijk for Pijk as

 Pijk = (nijk n. j. n..k)/(n. jk n.

 This tells us first that no data reduction can be achieved with this model since all

 observations nijk are needed to compute the estimate Pijk, and secondly that the sufficient
 table nijk does not match the corresponding estimated table n PiAk unless by mere

 accident in a sample n. jk = n. j. n.. k/n...
 On the other hand, ZPA (2, 3) and ZPD (2, 3) are both satisfied for the three reducible

 zero patterns. To see this we take as example I = {(1, 2), (2, 3)} and show first that IA = I
 implies ZPD (2, 3). If we take IA = {(1, 2), (2, 3)} this means 1 JL 2 13 and 2 JL 3 11. We
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 obtain

 Pi.kP.jk/P..k = Pij.Pi.k/Pi.., P.jkPi.. = Pij.P..k, Pjk = P.j. P..k,

 and hence 2 11 3, and ZPD (2,3) follows. Secondly, we show that ID = I implies
 ZPA (2, 3). If we take ID = {(1, 2), (2, 3)} this means 1 11 213 and 2 11 3 and we get

 Pijk = Pi.kP.j., P.j. = Pij./Pi.., Pijk = Pi.kPij./Pi..

 and hence 2 11 31 1 and ZPA (2, 3) follows.

 Similar arguments can be used for the other two reducible zero-patterns. By the use of
 (241) and (2 2) our main result can be obtained more directly: for each reducible I, IA and

 ID denote equivalent models, and so if (r, s) E I then ZPA (r, s) and ZPD (r, s) are both
 satisfied. This result is to be derived for more than three variables in ? 6.

 3. THE t-DIMENSIONAL TABLE

 3 1. Notation

 Variables for a t-dimensional contingency table are again denoted by indices

 j E {1, ..., t}, their categories or levels by lj = 1, ... ,Lj; with l(A) denoting for any
 A c {1, ..., t} the subvector of (l1, ..., 4) containing all 1i with i E A, we write marginal

 probabilities as Pl(A). For A = {L, 2} for instance, P1(A) = P11,12 = 13,...,1tpj1,....,jt To
 simplify notation we write sometimes p(A) for PI(A) and Erp(A) for XlrPL(A). As for three
 variables we consider log linear parameters with the usual symmetry constraints: A-
 terms for p(l, ..., t) and P*.....- '*) terms for p(i, ..., t). Before we look at partial
 associations and partial dependencies in terms of log linear parameters, we identify them
 within graphs for the unrestricted case.

 3-2. Undirected and directed graphs

 We consider the following kind of graphs: graphs consisting of t points and at most one
 connecting line for each pair of points. Each point represents a variable and each
 connection between two points either an association or a dependence.

 A graph with t points is called complete, if it has exactly -lt(t - 1) connecting lines and
 incomplete, if it has fewer lines. If all connecting lines have no arrows or all are two-

 headed arrows, the graph is undirected, if at least one connecting line is a one-headed
 arrow, the graph is called directed. A complete undirected graph corresponds to an

 unrestricted log linear model for the t variables with a connecting line between points i
 and j representing the partial association of variables i and j given all the remaining t -2

 variables. A restricted graphical model is then represented by an incomplete undirected
 graph.

 A subgraph of r < t points is obtained by deleting all other t - r points as well as all
 connecting lines to these points. Thus, a subgraph of r points can have at most lr(r -1)
 connecting lines, in which case it is complete.

 A complete directed graph has a one-to-one correspondence to an unrestricted
 recursive model with k response variables, if the following two statements are satisfied:

 (I) there are k < t points at which one-headed arrows are directed and they can be
 ordered such that t - i arrows beginning at points i + 1 to t point at each i E { 1, ..., k} so
 that the directions of the arrows are induced by a recursive ordering of the dependent
 variables; and (II) the subgraph of the t - k remaining points is undirected so that this
 undirected part of the graph contains the background or exogeneOus variables. A single-
 headed arrow denotes partial dependence of variable i on variable j given variables
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 {i + 1, ... , t} \ {j}; a connecting line of pair (i,j) in the subgraph of the last t - k points
 represents the partial association of this pair in the marginal distribution of the last t - k

 variables: of variables i and j given the variables {k+ 1, ..., t}\{i,j}. A restricted
 recursive model is then represented by a graph obtained from the complete graph of a

 recursive system by removing some of the single-headed arrows.

 3 3. Partial association and partial dependence

 The relevant log linear parameters for the partial association of variable pair (r, s) are

 the two-factor term and all higher-order A-terms involving r and s. In order to relate

 them to the relevant parameters for the partial dependence of pair (r, s) we observe that

 p(l,...,t) = {HP(ili+l ...,t)}PAi+L ...t);

 by equating the corresponding parameters we get analogous to (241), (2 2) that, for r < s,

 A(rl) + ?rs(= z {logp(iji 1,..., t)-rlogp(ili?L,...,t)/Lr 11:11~ ~~~~ rs t1-E 9P(
 -Elogp(il|i+1, ..., t)lLs+lr,slogp('i |+ 1,** ) t)I(tr Ls)}

 + A2(1*l ..,j*, r, s) +'~ s (A(1* .. ,j*)) (3.1)
 A,lr,.,r Is rs+*0lfi-r 1*) =og p(r I r + 1, ..,t)-Er Iog p(r I r + 1, ,t)lLr

 -isIogp(rl r+L 1., t)/Ls

 + Er,s Ilog p(r I r + 1, ....... t) /(Lr Ls), . ...(3 2)
 where, for example, Xrs(A(l*.J3)) denotes higher order A('*.*) terms involving r and s.
 For a proof only summation and subtraction are involved, but the proof is omitted

 because the notation becomes cumbersome. First, the equations say that partial
 associations are linked to partial dependencies, measured by marginal partial as-

 sociations, through conditional probabilities. Secondly, the equations help to show that

 ZPA (r, s) coincides with ZPD (r, s) for all reducible zero-patterns of restrictions on partial

 associations or on partial dependencies, and thirdly to show that any given well-fitting

 recursive model having a reducible zero-pattern in the dependencies has to show up as a

 reducible zero-pattern in the log linear A-parameters of the saturated model.

 4. THE CLASS OF GRAPHICAL MODELS

 A member of the class of graphical models as defined by Darroch et al. (1980)
 can be thought of as characterized by a set IA C {(i,j)} I 1 < i <j < t} such that
 r 1L s 3{ 1, ..., t} \ {r, s} for each (r, s) E IA. A variable number is only a label of a variable,
 the numbers do not induce an order for the variables. First, we list equivalent

 formulations of the simplest type of restricted graphical models, the one with
 IA = { (r, s)} .

 PROPOSITION 1. For the model with IA = {(r, s)} the following statements are equivalent:

 (i) ZPA (r, s);
 (ii) r 11 8jj1,...,t}\{r,s};
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 (iv) p(rl , ...,r-I,r+I,...,t) = p(r 1,...,r-l,r+l,...,s-1,s+1, ...t);

 (v) the undirected graph has 1t(t - 1) minus one connecting lines, the one for (r, s) being
 missing;

 (vi) two observed marginal tables form the set of minimal sufficient statistics, one contains
 variables { 1, ..., t} \ {r}, the other contains variables {1, ..., t} \ {s};

 (vii) A(',') and all higher-order i-terms involving r and s are zero.

 All these are either familiar results from the theory of log linear models or immediate

 consequences of definitions given in ? 3.

 In general, the list IA of zero partial associations can equivalently be viewed in three

 ways: the list of all missing two-factor and higher-order i-terms; the list of all missing

 lines in the undirected graph; and as complementary to the list of all connecting lines in

 this graph. As has been noted by Darroch et al. (1980) an equivalent formulation for the

 list of all connecting lines is the set {N}T = {N1, ..., NT} of maximal complete subsets in
 the graph. A subset of points in the graph is called maximal complete, if the subgraph of

 these points is a complete graph and, if by including one more point an incomplete

 subgraph results. The equivalence to IA is then defined by (r, s) 8 IA if and only if there

 exists an Ni E {N}T such that {r, s} c Ni. The set {N}T is known as the generating class of
 the corresponding log linear model; a list of its elements separated by dashes has been

 used as a short-cut model notation by Wermuth (1976a). It can be viewed as the list of

 minimal sufficient statistics of the model, if the elements of each Ni E {N}T are
 interpreted as the variables in the observed marginal table that is obtained from the t-

 dimensional one by summing over all variables not listed in Ni.
 For the interpretation of a graphical model in terms of conditional independencies the

 following result by Darroch et al. (1980) is helpful.

 PROPOSITION 2. If in an undirected graph two disjoint subsets of points A and B are
 separated by a subset D, in the sense that all paths from A to B go through D, then the
 variables in A are conditionally independent from those in B given the variables in D.

 In the example in Fig. 2 there are four maximal complete subsets in the graph, which

 jointly form the generating class of the model. The set of pairs with missing lines is IA,
 the list of zero partial associations. Additional independencies can be read off the graph

 with the help of Proposition 2; for instance, 1 11 21(4,5,6), 1 11 21(4,5), 1 11 214,

 3 11 614, (5,6) 11 (1,2,3)14. Probably the simplest interpretation of this model can be
 stated as 1 1L 2 1L 3 11 (5,6)14, which says that given variable 4, the variables 1, 2, 3 and
 the joint variable (5,6) are mutually independent.

 5. THE CLASS OF RECURSIVE MODELS

 The class of recursive models has been defined for quantitative variables by Wold

 (1954). In our terminology a recursive model for a contingency table is fully character-

 ized by: (a) a recursive system in k < t response variables, that is an ordering of the

 responses, such that variable i < k may depend only on variables j e {i + 1, ..., t}; and (b)

 a set ID' {(i,ij)I <i< jt and i?k} such that r A sI{r+1,...,t}\{s} for each
 (r, s) E ID. Here the numbers 1, ..., k induce a recursive ordering.

 As for graphical models we first look at the case of only one restriction.
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 Fig. 2 Fig. 3

 1 ' n 1

 2 o-2c,

 3 636

 Fig. 2. The graphical model with generating class {{1, 4}, {2, 4}, {3, 4}, {4, 5, 6}}

 Fig. 3. The recursive model with p(l, ..., 6) = p(l 1 4) p(2 4)p(314)p(4, 5, 6).

 PROPOSITION 3. For the model with ID = {(r, s)} the following statements are equivalent:

 (i) ZPD (r, s);
 (ii) r11 l{r+l, ..., t} \ {};
 (iii) p(r, ..., t) = Yrp(r, ..., t) Es p(r, ..., t)/Er, s p(r, ...,t);
 (iv) p(rlr+1,...,t)=p(rlr+1,...,s-1,s+1,...,t);

 (V) (1*.r - 1 *, r,s) and all higher-order A(*. r-l*)-terms involving r and s are zero;
 (vi) the directed graph has 4t(t - 1) - 1 connecting lines, the arrow pointing from s to r

 being missing,

 and the next statement is implied:

 (vii) . n*)-terms equal A(1*.r*)-terms, whenever they involve s.

 The equivalencies of (ii), (iii), (iv) and (vi) to (i) result directly from the definitions, the

 one in (v) following from (3 2). The result (vii) can be derived similarly to (341) and it
 states that given ZPD (r, s) all ,(1*.r- 1*) terms involving variable s are collapsible over

 variable r; which is to say that they are identical for two marginal contingency tables,

 one with variables r to t, the other with only variables r+ 1 to t.

 In general, the list ID of zero partial dependencies can equivalently be seen as imply-

 ing for each (r, s) E ID: (I) a zero partial association of this variable pair in the mar-

 ginal distribution of variables r to t, (II) a missing single-headed arrow in reference

 to the graph of a recursive system, and (III) as defining for each response variable

 i E { 1, ..., k} the subset of the variables i + 1 to t on which it actually de-

 pends, Ai = {j I j > i and (i,j) ? ID}, and a complementary subset of variables
 Bi = {j i j > i and (i,j) E ID}. For the interpretation of any given recursive model the
 following result is useful.

 PROPOSITION 4. In the recursive model specified by ID a response variable i E { 1, ..., k} is

 conditionally independent of the variables in Bi given the variables in Ai.

 Proposition 4 follows from repeated applications of the simple result that ZPD (i,j) and

 ZPD (i, r) taken together, imply

 p(i Ii+ 1, ...,It) = p(i Ii+, 1...,j-l,j+l .,r-1, r+l1, ...,)

 The effect of this result on the joint probability is a nontrivial factorization: for each
 given set {A1, ..., Ak} of a recursive system we get

 p(l, ... t) = {Hp(iAd }P(k+1 ..., t). (5)

 Thus, each recursive model can be viewed as a sequence of k hypotheses, each of which is
 expressible as p(i a Ai u Bi) = p(i i Ai) or equivalently as: {N}2 = {{i} u Ai, Ai u Bi} is the
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 generating class for the table with variables i, ..., t. There are situations, in which these
 hypotheses concerning k contingency tables coincide with a hypothesis for the t-
 dimensional table only with the generating class of graphical model.

 For the example displayed in Fig. 3 Proposition 4 tells that 1 11 (2,3,5,6)14,
 2 11 (3,5,6)14 and 3 11 (5,6)14. The corresponding factorization of the joint probability

 (5 1) can be written as

 p(l, ..., 6) = p(l, 4)p(2,4)p(3,4)p(4,5,6)/p(4)3,

 so that for this model the probabilities in the numerator of the factorization concern

 exactly those marginal tables listed as a generating class for the graphical model

 in Fig. 2. A necessary and sufficient condition for the equivalence of the two types of

 models follows in ? 6.

 6. THE INTERSECTING CLASS OF MODELS

 We wish to characterize the class of models in which each zero partial association

 coincides with a zero partial dependence. The models in this class combine advantages of

 graphical and recursive models in the following sense: each model represents, like all

 graphical models, a condensed description for the contingency table, a good data

 reduction. Further each model gives, like all recursive models, a simple factorization of

 the joint distribution and of the maximum likelihood estimates.

 PROPOSITION 5. A recursive modelfor a t-dimensional contingency table given by ID = I is
 equivalent to the graphical model with IA = I, if and only if I is reducible.

 The definition of a reducible set has been given at the end of ? 1. Proposition 5 is

 analogous to a result proven by Wermuth (1980) for normally distributed variables. An
 equivalent graph theoretic formulation is contained in an unpublished paper by H. T.
 Kiiveri, T. P. Speed and J. B. Carlin. Our proof in the Appendix uses the para-
 meterization of graphical models and of recursive systems presented in the previous
 sections.

 In order to explore in more detail the meaning of a reducible zero-pattern we give
 several equivalent interpretations of the lack of a reducible zero-pattern in a graphical
 model and a recursive system in Propositions 6 and 7, respectively.

 PROPOSITION 6. For graphical models in contingency tables the following statements are
 equivalent:

 (i) the variables cannot be ordered so th'at IA, the list of zero partial associations, is
 reducible;

 (ii) the graphical model for the unordered variables is not a decomposable or multipli-
 cative model;

 (iii) the undirected graph contains a subset of r > 4 points having a subgraph with r
 connecting lines such that each starting point is reached again with r lines, such as in
 Fig. 4;

 (iv) the marginal tables corresponding to the generating class {N}T cannot be combined
 multiplicatively to form a factorization of the joint distribution;

 (v) the maximum likelihood estimates of the cell counts have to be obtained iteratively from
 the observed marginal tables corresponding to {N} T.
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 Fig. 4. Characteristic subgraphs of nondecomposable models.

 These statements just form a summary of results scattered in the statistical literature.

 Proofs of the equivalence of (ii) and (iv) and of (ii) and (v) are due to Goodman (1970) and

 Haberman (1974, p. 170), of (ii) and (iii) to Lauritzen, Speed & Vijayan (1983), and of (i)
 and (ii) to Wermuth (1980).

 For models having subgraphs as in Fig. 4 no labelling of the variables exists which

 gives a reducible zero-pattern of restrictions. In contrast, the nonreducible zero-pattern

 in Fig. 5,

 IA = {(1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (4, 5), (4, 6)},

 can be removed by renumbering the variables, for instance by exchanging the roles of 3

 and 4. This gives the model in Fig. 2 with a reducible list IA.

 Fig. 5 Fig. 6

 33
 2 0 2j

 4 646

 Fig. 5. The graphical model with generating class {{I, 3}, {2, 3}, {3, 4}, {3, 5, 6}}.

 Fig. 6. The recursive model with p(l, ..., 6) = p(l 13) p(2 3) p(3 14, 5, 6) p(4) p(5, 6).

 PROPOSITION 7. For recursive systems in a contingency table with k < t responses i the
 following statements are equivalent:

 (i) the list ID of zero partial dependencies is not reducible;

 (ii) there is a response variable i having two variables r and s in its set of influencing
 variables Ai such that (r, s) E ID;

 (iii) the directed graph contains three points i, r, s such that two arrows point at i, one from

 r, the other from s, but r and s are not connected;

 (iv) there is a response i for which the marginal table of the variables Ai derived from the
 maximum likelihood estimate for the joint table deviates, in general, from the

 corresponding observed contingency table;
 (v) the set obtained from {{1} u A1, ..., {k} u Ak, {k+ 1, ..., t}} after deleting all subsets is

 not the set {N}T of maximal complete subsets in the graph.
 While (ii) and (iii) are simple reformulations of (i), the last statements (iv), (v) are a

 consequence of recursive models being nonhierarchical models if the pattern of re-
 strictions is not reducible.

 As an example for a recursive model having a nonreducible zero-pattern of restrictions

 we take the model displayed in Fig. 6. The list of missing arrows ID in Fig. 6 as compared
 to a complete recursive system in four responses is identical to the list of missing lines in
 Fig. 5, but since it is a nonreducible set, the two models are not equivalent. This may be
 seen more directly by looking at the first variable, for which the reducibility criterion
 breaks down, at variable 4. Proposition 2 shows for Fig. 5 that 4 11 (5, 6)13 while the

 complete independence 4 11 (5, 6) is implied by Fig. 6.
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 7. AN EXAMPLE

 The following four-dimensional contingency table is taken from a prospective study on

 determinants of early retirement; see Michaelis et al. (1980). In this study two or three

 extensive questionnaires were answered within a time span of two to five years. For the
 purpose of demonstrating differences between graphical and recursive models we

 selected four variables and restricted the analysis to men aged 62 to 64 at the time the

 first questionnaire was answered. The four variables are given in Table 1. We assume

 Table 1. Example for demonstrating differences

 between graphical and recursive models
 Variable Categories

 1 i = 1: retired at age 65 or later
 i = 2: retired before age 65 years

 2 j = 1: no bilious or liver complaints
 j = 2: bilious or liver complaints

 3 k = 1: white collar worker
 k = 2: blue collar worker

 4 1 1: satisfied with conditions at work
 1= 2: dissatisfied with conditions at work

 that these variables form a recursive system in two response variables: variable 1 may

 possibly depend on variables 2, 3, 4, and variable 2 can be thought of as a response to

 variables 3 and 4, but because of a time lag not to variable 1.

 Within this framework we formulate and test two hypotheses: H1, there is no direct
 dependence of the occurrence of bilious or liver complaints on the professional status, and
 H2, there is no direct dependence of early retirement on the professional status.

 Hypothesis H1 can equivalently be stated as Pijkl = PiljklPjllPkl or as ID = {(2, 3)}, or a
 missing single-headed arrow pointing from 3 to 2 in the directed graph of the recursive

 system, Fig. 7(a), or as {N}2 = {{2, 4}, {3, 4}} is the generating class for the marginal
 table of variables 2, 3 and 4.

 (a) 2 (b) 2 (c) 2 2

 1 < 4 1 14 49441 4

 3 ~~~~~~3 3 3
 Fig. 7. The model (a) with ID = {(2, 3)}, (b) with ID = {(1, 3)}, and (c) with ID = {(1, 3), (2, 3)}.

 The second hypothesis H2 can be expressed as Pijkl = PiljlPjlklPkl' Fig. 7b. Since ID is
 reducible this hypothesis can equivalently be written as IA = {(1, 3)} or with the help of
 the generating class as {N}2 = {{1, 2, 4}, {2, 3, 4}}, with the model notation as 124/234 or

 with an undirected graph having connecting lines for pairs (1, 2), (1, 4), (2, 3), (2, 4), (3, 4).
 If the two hypotheses are combined the recursive system is again equivalent to a

 graphical model as shown in Fig. 7c. The combined hypothesis is expressible as

 Pijkl = PijlPjIllPkl as ID = IA = {(1, 3), (2, 3)} or as model 124/34. If this model fits well,
 variable 3 can be deleted from the recursive system since variables 1 and 2 jointly can

 then be regarded as conditionally independent of variable 3 given variable 4.

 The usual likelihood ratio test statistics have value 0 99 on 2 degrees of freedom for

 the first hypothesis and 13-53 on 4 degrees of freedom for the second. Since the latter

 corresponds to a fractile value of p = 0 009 this hypothesis, as well as model 124/34, is
 judged to be incompatible with the observations.

 At this stage it is appropriate to switch to an exploratory type of analysis. We know
 from (3 2) that a zero partial dependence will show up in log linear parameters of a
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 corresponding marginal contingency table. Therefore, we compute the estimated A(1*)
 parameters with a simple paper and pencil method. We use Yates's (1937) algorithm

 (Good, 1958; Winer, 1971, p. 629) on the log cell counts. Table 2 shows a numbering for

 each cell, the cell counts n.jkl, the logarithms of the cell counts, and the estimated
 parameters for the unrestricted model 234. The small three-factor interaction A(1*234)
 together with the two small two-factor interactions A(1:23) and A(1;24) suggest that there
 is no direct dependence of variable 2 on variables 3 and 4.

 Table 2. Yates's algorithm applied to log n jkl

 Cells Stages of Yates's algorithm Estimates for model 234

 jkl n.ikl log n.jkl 1 2 3 Parameters Values

 111 984 6-8916 10 1497 199185 33-4182 A(J*) 4 18
 211 26 3-2581 9 7688 13 4997 25-0218 A(1*2) 1-88
 121 920 6 8244 5 3565 7-5135 -2-4085 A(1*3) -0 30
 221 12 2 9444 8 1432 7 5083 0-1858 A(1*23) 0 02
 112 106 4-6634 3-6335 0 3809 6-4188 p(1*4) 0-80
 212 2 0 6931 3-8000 -2-7867 0-0052 A(1*24) 0 00
 122 344 5-8406 3 9703 -0 2465 3-1676 A(1*34) 0 40
 222 10 2 3026 3-5380 0 4323 -0 6788 A(1*234) -0-08

 Similarly, variable 1 shows up as being weakly related to variable 2 in the estimated A
 parameters of the saturated model for all four variables. These impressions are supported

 by the results of a model search procedure (Wermuth, 1976b, 1980; Wermuth, Wehner &

 G6nner, 1976) which showed a good fit for model 134/2 or IA = {(1, 2), (2,3), (2, 4)} but
 for no other model with more restrictions. Model 134/2 demonstrates that variable 2 is

 completely independent of variables 1, 3, 4. It corresponds to the following hypothesis on

 the recursive system: Pijkl = Pilk1PjPk1. This says that there is no direct dependence of
 early retirement on bilious or liver complaints and that there is no direct dependence of
 bilious or liver complaints on the professional status and on the satisfaction with
 conditions at work. In Table 3 we display the observed and estimated cell counts for this

 model.

 Table 3. Observed and estimated cell counts for model 134/2

 Cells Counts Estimates Cells Counts Estimates

 iklj nijkl mijkl iklj nijkl mijkl

 1111 833 834-8 1112 22 20-2
 2111 151 151-3 2112 4 3-7
 1211 731 725-5 1212 12 17-5
 2211 189 191-4 2212 7 4-6
 1121 81 81-0 1122 2 2-0
 2121 25 24-4 2122 0 0-6
 1221 244 246-1 1222 8 5-9
 2221 100 99-6 2222 2 2-4

 To summarize, recursive models form a framework to study dependency structures
 with one response variable or with several recursively ordered responses while with
 graphical models the interdependency structure of several unordered variables may be
 investigated. We characterized the equivalence of the two types of models by a reducible
 zero-pattern of restrictions on the dependencies or on the associations. Reducibility
 means that stepwise collapsing of a contingency table in a given order over the responses
 retains the pattern of restrictions for the remaining variable pairs. Gains are obtained for
 both approaches to analysing a contingency table by this characterization of the
 intersecting class of decomposable models. These concern first the interpretation of the
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 models, secondly properties of the set of minimal sufficient statistics and of the
 corresponding maximum likelihood estimates, and thirdly the interpretation of the log
 linear parameters for the saturated model. Extensions and modifications of the results
 for models containing both qualitative and quantitative variables shall be treated in a
 forthcoming paper.

 This research was supported in part by the Danish Natural Science Research Council.
 We thank John Darroch and Hanns-Georg Leimer for stimulating discussions, a referee
 and Inge Leimer for their thoughtful comments.

 APPENDIX

 Proof of Proposition 5

 First let us give a slightly more mathematical formulation of the statement in

 Proposition 5. A reducible I is a necessary and sufficient condition for the following:

 for all (i,j) e I, iLjl '{i+1, ...,t}\{j} if and only if,

 for all (i,j) E I, i 11 j I {1, ..., t}\{i,j}. (A.1)

 We first consider the situation in which I is not reducible and show that in this case the
 two statements in (Ad1) are not equivalent. For this purpose it is sufficient to find a joint
 distribution of all t variables satisfying the first of the two statements in (A 1) but not the
 second. For t = 3 we did so in ? 2. Using this example we can find a distribution for t > 3
 as follows.

 If I is assumed to be not reducible there exist h, u, v with (u, v) E I, (h, u) ? I, (h, v) ? I.

 For these we choose the marginal probabilities Plh, I., t, > 0 such that u 11 v but not
 u 1L v h, as in the example of ? 2. A simple joint distribution of all t variables is
 then obtained by requiring equiprobability for the remaining t -3 variables:

 Pll,...,lt = Kplh,IU,IvI with XPIh,IU,1v = 1, K = (Hk*h,u,vLk) ' and Lk as the number of
 categories of variable k. In this distribution we have i 11 jI {i+ , ... , t}\{j} for all
 (i,j) E I so that the first statement of (A 1) is satisfied. But, at the same time
 ui 11 VI,...,t}\{u,v} does not hold.

 *We now consider the case where I is. reducible. We have to show

 I reducible implies (A 1). (A.2)

 This is trivial for i = 1, since the two statements of (A- 1) coincide for this case. For i > 2
 this is done by induction on the number of variables t. For t = 3 the statement was
 demonstrated in ? 2. Suppose that the above statement is known to be true for t = n and
 assume t = n + 1. If,

 for all (i,j) E I, i 11 j I {i+ 1, ..., t}\{j} (A.3)

 then the induction assumption gives,

 for all (i,j) e I, i11 j {2, ..., t}\ {i,j} (A.4)

 since I reducible implies 7reducible, where 7= {(i,j) E I; i > 2}.

 If we factorize the joint probability of all t variables as

 P11,---, t = P11112,---,tPi2,---,1tI (A.5)
 statement (A 4) says that the second term for all (i,j) E I is a product of a function not
 depending on i, and one not depending on i:. If (i,j) E I and I is reducible, the first term
 does either not depend on i or not on j, since either (1,iz) E I or (1,j) E I, which means
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 that the joint probability is a product of a function not depending on i and one not

 depending on j. This then implies,

 for all (i,j) e I, i j{1,j.I,t}\{ij}, (A.6)
 which shows half of the biimplication in (Ad1).

 Now assume (A 6). Then, using (A 5) we get

 P12, ,it = P1l,---,1t/PhJ12,.....t. (A.7)
 If (i, j) E I, equation (A-6) gives that the denominator is a product of a function not

 depending on i and one not depending on j. The reducibility implies that the
 denominator either does not depend on i or not on j. Thus the marginal probability
 factorizes and we have,

 for all (i,j) I, I ,i j {2,. .., t}\{i,j}

 by the induction assumption; this in turn gives,

 for all (i,j) E , Ti 1 j I {i + 1, ... , t} \ {j};

 but for i = 1 the first and the second part of (A 1) coincide such that we have,

 for all (i,j) E I, i j I {i + 1,.. ., t} \ {j}

 and (A1) is demonstrated. Thus (A2) follows from induction and the proof of the
 proposition is complete.
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