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 DESCRIPTION AND PURPOSE

 We propose a cyclic fitting algorithm to fit any given covariance selection model to a
 symmetric, positive definite matrix, generally to an observed covariance matrix. The theory of
 covariance selection had been proposed (Dempster, 1972) as a means of parameter reduction
 when the covariance structure of a multivariate normal distribution is to be estimated. It has
 been shown (Wermuth, 1976b) how a subclass of covariance selection models and multiplica-
 tive models for contingency tables (Goodman, 1970; Bishop, 1971) may both be used in a
 similar manner to study simple patterns of assocation (see also Wermuth et al., 1976).

 A covariance selection model may be characterized by the sequence of variable pairs that
 have zero concentrations (Dempster, 1972) or, equivalently, by the sequence of variable pairs
 with zero partial correlations (Wermuth, 1976a). If exactly one concentration is to be re-

 stricted to zero, then the matrix S = (srt) and its inverse S-1 = (sn) are changed to M and to
 M-1, respectively, in the following way. Let (i, j) be the indices of the variable pair that is to
 have zero concentration, then M coincides with S except for the elements mij and mji:

 mi = si+sl1/D with D = siiSjj_(sii)2. (1)

 Furthermore, M-1 is defined by

 Mij = 0

 mii = Disjl,l

 miJ = Dlsii,l
 mik = Sik-Sijsjk/Sjj (2)

 Mik = Sjk-si1SikISii,

 mkl = SlU- (siliD) {Sik(sji-siis 1/sii) + sik(sil _ sijsji/sj1)}

 for all k and I not equal to i or j.

 If S is the covariance matrix of a multivariate normal distribution, then (2) gives the closed
 form of the maximum-likelihood estimate for the inverse covariance structure with one zero
 concentration. We call (2) the INVEST-operator.

 For a typical covariance selection model several concentrations have to be forced to zero.
 Then, the INVEST-operator may be applied repeatedly to the prespecified or selected variable
 pairs. The cycling ends when all these concentrations are close enough to zero.

 The subroutine INVEST modifies and operates on only the upper triangular part of its
 input matrix. Since the input matrix for INVEST is the inverse of some initial matrix, we
 assume that its positive-definiteness has been checked before entering into INVEST. Therefore,
 there is only one failure indication.
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 STRUCTURE

 SUBROUTINE INVEST (MAT, NDIM, I, J, NVAR, IFA ULT)

 Formal parameters

 MAT Real array (NDIM, NVAR) input: any symmetric, positive definite matrix,
 S-1, generally the inverse of a covariance
 matrix

 output: the upper triangular part of MAT is
 modified for variable pair (I,J) as specified
 in equation (2)

 NDIM Integer input: the maximum number of rows in the
 matrix MAT, as specified in the main
 program

 I Integer input: the smaller index of a selected variable pair
 J Integer input: the larger index of a selected variable pair
 NVAR Integer input: the actual number of rows in the matrix

 MAT
 IFA ULT Integer output: indicates failure to specify I,J correctly

 O if 1 <I<J<NVAR
 IFA ULT =

 I otherwise

 TiME AND ACcuRACY

 We tested the algorithm with a calling program on a number of simple matrices. In this
 calling program the NPAIR concentrations were not fitted in a prespecified order, instead-at
 each call of INVEST-the largest of the NPAIR concentrations was set to zero. The iterations

 TABLE 1

 Number of calls to INVEST and computing time (sec) on a CDC 3300

 Correlation matrices

 r = 0-2 r = 05 r = 0-8

 DELTA DELTA DELTA
 NVAR NPAIRt 104 106 10 4 10-6 104 104

 4 3 10 15 23 35 40 60
 (0*1) (0 1) (0-1) (0*2) (02) (0 3)

 9 3 7 10 10 15 10 15
 (02) (0 2) (0*2) (0*2) (0 2) (0 2)

 9 9 37 55 54 79 66 94
 (0-7) (1 1) (0-9) (1-4) (1-2) (1-8)

 18 3 6 8 6 9 7 10
 (0 4) (0 5) (0 5) (0*6) (0*6) (0 6)

 18 9 26 39 30 43 34 48
 (1-8) (2*7) (2*3) (2*9) (2*3) (3 5)

 18 18 66 98 77 111 89 122

 (4-3) (6 4) (5-3) (8 4) (5 2) (7*7)

 t NPAIR= 3: (1, 2) (1, 3) (2, 4)
 9: the previous 3 plus (5, 6) (6, 8) (7, 8) (2, 5) (3, 5) (4, 6)

 18: the previous 9 plus (9, 11) (10, 11) (10, 17) (2, 9)
 (3, 11) (3, 17) (4, 10) (5, 17) (6, 11).
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 ceased when the sum of the absolute values of the NPAIR concentrations was less than some
 prespecified value, DELTA. We chose correlation matrices with differing degrees of multi-

 collinearity by taking rij = 0-2, 0 5 and 0-8 for all i#Aj. Furthermore, we varied the size of the
 matrices (NVAR = 4, 9 and 18), the number of selected variable pairs with zero concentra-
 tions (NPAIR = 3, 9 and 18), and the desired precision in the zero concentrations
 (DELTA = 104 and 10-6). Table 1 shows the number of iterations and the computing time
 in seconds needed on a CDC 3300 with word length 24 bits. For instance, it took 1P1 sec or
 55 calls for INVEST to fit nine zero concentrations to the 9 x 9 correlation matrix with
 rfi = 0i2. Generally, the number of iterations increased-other things being equal-with an
 increase in NPAIR, and in the degree of multicollinearity, but it decreased with an increase in
 DELTA and in NVAR, the size of the matrix.

 Another calling program for INVEST that fits the NPAIR variable pairs always in un-
 changed order and in full cycles of size NPAIR yielded comparable results in iterations and
 time for the 36 test cases. In situations with a very high degree of multicollinearity though,
 convergence was reached much later. Then, we recommend use of a double precision version
 of INVEST to allow the proper inversion of the fitted matrix. On the CDC 3300 computing
 time was increased by a factor of 10-15 for double precision.

 Together with an inversion algorithm, that operates only on a triangular part of a matrix,
 INVEST allows the fitting of a covariance selection model to a correlation matrix by using only
 one storage array of dimension NDIM, NVAR.
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 SUBR(JIJTINE INVEST(MAT, NDIM, I, J, NVAR, IFAULT)

 C ATICORITHM AS 105 APPL. STATIST. (1q77), VOL.26, NO.1
 C

 C INVEST IS A SUBROUTINE FOR FITTING A COVARIANCE SELECTION
 C MODEL TO A MATRIX. IT MODIFIES THE UPPER TRIANGULAR PART
 C OF AN INVERSE MATRIX SO THIAT ONE PRESPECIFIED OFF-DIAGONAL
 C EJlMENT EQUALS ZERO' AND ONLY THE CORRESPONDING ELEMENT
 C IN THE ORIGINAL MATRIX IS ALTERED
 C

 C

 REAL MAT(NDIM, NVARM, DO, SAVEl, SAVE2, MII, MIJ, MJJ
 C

 C CHECK PARAMETERS

 C

 IFAULT = 0

 IF(I .LT. 1 .OR. J .LE. I .OR. J .GT. NVAR) GOTO 13
 C

 C SET COUNTERS

 C

 I1 = I - 1

 12 - I + I
 Ji = J - 1

 J2 = J + 1
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 STATISTICAL ALGORITHMS 91

 C STORE VAUES
 C

 Mll = MAT(I, I)
 MJJ = MAT(J, J)
 MIJ = MAT(I, J)
 D = MUI * MJJ - MIJ ** 2

 C

 C POSITIONS (I, I), (J, J), (I, J)
 C

 MAT(I, I) =.D , MJJ
 MAT(J, J) -D / MI

 MAT(I, J) - 0.0
 C

 C RESET VAUJES

 C

 MIl = MIJ / MlI
 MJJ = MIJ / MJJ

 MIJ = -MIJ / D
 c

 C POSITIONS WITH K AND L LESS THAN I
 C

 IF(I .EQ. i GoTo 6
 DO 1 K = 1, II

 SAVEI = MAT(C, I)
 SAVE2 = MAT(K, J)

 MA T(K, I) = SAVEI - MJJ * SAVE,2
 MAT(K, J' = SAVE2 - MII * SAVE1
 MAT(K, KN = MAT(K, K) +

 * MIJ * (MAT(K, I) * SAVE2 + MAT(K, J)* SAVE1)
 IF (K *EQ. II) GOTO 2
 KI = K + 1
 DO 1 , = KI, II
 MAT(K, L) = MAT(K, L) +

 * MIJ * (MAT(K, I) * MAT(L, J) + MAT(K, J) * MAT(L, I))
 1 CONTINUE

 C

 C POSITIONS WITH K LESS THAN I AND L BETWEEN I AND J
 C

 2 IF (I2 *EQ. J) GOTO 4
 DO 3 K = 1, I1

 DO 3 L = I2, J1
 MAT(K, L) = MAT(K, L) +

 * MIJ * (MAT(K, I) * MAT(L, J) + MAT(K, J) * MAT(I, L))
 3 CONTINUE

 C

 C POSITIONS WITH K LESS THAN I AND L GREATER THAN J
 C

 4 IF (J .ECQ. NVAR) GOtIo 6
 DO 5 K = 1, II
 DO 5 L = J2, NVAR
 MAT(K, L) = MAT(K, L) +

 * MIJ * (MAT(K, I) * MAT(J, LN + MAT(K, J) * MAT(I, L))
 5 CONTINUE

 C

 C POSITIONS WITH K AND L BETWEEN I AND J
 C

 6 IF (I2 EQ. J G.OJ 10
 DO K = I2, J1
 SAVE1 = MAT(I, K)
 SAVE2 = MAT(K, J)
 MAT(I, K) = SAVEI - MJJ * SAVE2
 MAT(K, J) = SAVE2 - MII * SAVER
 MAT(K, K) = MAT(K, K) +

 * MIJ * (MAT(I, K) * SAVE2 + MAT(K, 3) * SAVEI)
 IF (K .EQ. J1) GoTo 8
 KI = K + 1

 DO 7 L = K1, J1
 MAT(K, L) = MAT(K, L) +

 * MIJ * (MAT(I, K) * MAT(L, J) + MAT(K, J) * MAT(I, L))
 7 CONTINuE

 c

 C POSITIONS WITH K BETWEEN I AND J AND L GREATER THAN J
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 8 IF (J *EQ. NVAR) GOTO 10

 DO 9 K = 12, JI

 DO 9 L = J2, NVAR

 MAT(K, LJ = MAT(K, L) +
 * MIJ * (MAT(I, Kx * MAT(J, L) + MAT(K, J) * MAT(I, L))

 o C(TINUE
 C

 C POSITIONS WITH K AND L GREATER THAN J
 C

 10 IF (J .EQ. NVAR) G(OT 12
 D)O 11 K = J2, NVAR

 SAVEI = MAT(I, K)
 SAVE2 = MAT(J, K)

 MAT(I, K) = SAVEI - MJJ * SAVE2
 MAT(J, KN = SAVF2 - MII * SAVE1
 MAT(K, KN = MAT(K, KN +

 * MIJ * (MAT(I, K * SAVE2 + MAT(J, K) * SAVEIA
 IF (K .EQ. NVARN GITO 12
 Ki = K + 1

 DO 11 L = E1l, NVAR
 MAT(K, L= MAT(K, IA +

 * MIJ * (MAT(I, KN * MAT(J, L) + MAT(J, K) * MAT(I, L))
 11 CONT I NIUE

 12 RETURN

 C

 13 IFAULT = 1

 RETURN

 END
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 DESCRIPTION AND PURPOSE

 Given that the n-dimensional vector z has a multivariate normal distribution with expected
 value vector ,u and non-singular covariance matrix V, this algorithm computes the distribution
 function of the quadratic form (z + a)T C(z+ a) for a fixed vector a and symmetric positive
 definite, or positive semi-definite, matrix C. The value of the density is also presented in the
 output. The quadratic form is expressed as an infinite series in central x2 distribution
 functions: both the distribution functions and the series coefficients are evaluated recursively.

 THEORY AND NuMERIcAL METHOD

 n = dimensionality of z.

 By making the linear transformations

 z-,u=LTRx, a+,L=LTRb,

 f Now at University of Newcastle-upon-Tyne.
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