Algorithm AS 105

Fitting a Covariance Selection Model to a Matrix

By Nanny Wermuth and Eberhard Scheidt
Institut für Medizinische Statistik und Dokumentation, Johannes-Gutenberg-Universität, Mainz, Federal Republic of Germany

Keywords: COVARIANCE SELECTION; PATTERN OF ASSOCIATION; PARTIAL CORRELATION

Language

ISO Fortran

Description and Purpose

We propose a cyclic fitting algorithm to fit any given covariance selection model to a symmetric, positive definite matrix, generally to an observed covariance matrix. The theory of covariance selection had been proposed (Dempster, 1972) as a means of parameter reduction when the covariance structure of a multivariate normal distribution is to be estimated. It has been shown (Wermuth, 1976b) how a subclass of covariance selection models and multiplicative models for contingency tables (Goodman, 1970; Bishop, 1971) may both be used in a similar manner to study simple patterns of assocation (see also Wermuth et al., 1976).

A covariance selection model may be characterized by the sequence of variable pairs that have zero concentrations (Dempster, 1972) or, equivalently, by the sequence of variable pairs with zero partial correlations (Wermuth, 1976a). If exactly one concentration is to be restricted to zero, then the matrix $\mathbf{S}=\left(s_{r i}\right)$ and its inverse $\mathbf{S}^{-1}=\left(s^{r t}\right)$ are changed to \mathbf{M} and to \mathbf{M}^{-1}, respectively, in the following way. Let (i, j) be the indices of the variable pair that is to have zero concentration, then \mathbf{M} coincides with \mathbf{S} except for the elements $m_{i j}$ and $m_{j i}$:

$$
\begin{equation*}
m_{i j}=s_{i j}+s^{i j} / D \quad \text { with } \quad D=s^{i i} s^{i j}-\left(s^{i j}\right)^{2} \tag{1}
\end{equation*}
$$

Furthermore, $\mathbf{M}^{\mathbf{- 1}}$ is defined by

$$
\left.\begin{array}{l}
m^{i j}=0 \tag{2}\\
m^{i i}=D / s^{j j} \\
m^{j j}=D / s^{i i}, \\
m^{i k}=s^{i k}-s^{i j} s^{j k} / s^{j j} \\
m^{j k}=s^{j k}-s^{i j} s^{i k} / s^{i i} \\
m^{k l}=s^{k l}-\left(s^{i j} / D\right)\left\{s^{i k}\left(s^{j l}-s^{i j} s^{i l} / s^{i i}\right)+s^{j k}\left(s^{i l}-s^{i j} s^{i l} / s^{j j}\right)\right\}, \\
\text { for all } k \text { and } l \text { not equal to } i \text { or } j .
\end{array}\right\}
$$

If \mathbf{S} is the covariance matrix of a multivariate normal distribution, then (2) gives the closed form of the maximum-likelihood estimate for the inverse covariance structure with one zero concentration. We call (2) the INVEST-operator.

For a typical covariance selection model several concentrations have to be forced to zero. Then, the INVEST-operator may be applied repeatedly to the prespecified or selected variable pairs. The cycling ends when all these concentrations are close enough to zero.

The subroutine INVEST modifies and operates on only the upper triangular part of its input matrix. Since the input matrix for INVEST is the inverse of some initial matrix, we assume that its positive-definiteness has been checked before entering into INVEST. Therefore, there is only one failure indication.

Structure
SUBROUTINE INVEST (MAT, NDIM, I, J, NVAR, IFAULT)
Formal parameters
$M A T \quad$ Real array (NDIM, NVAR)

NDIM Integer
$I \quad$ Integer
$J \quad$ Integer
NVAR Integer
IFAULT Integer
input: any symmetric, positive definite matrix, \mathbf{S}^{-1}, generally the inverse of a covariance matrix
output: the upper triangular part of $M A T$ is modified for variable pair (I, J) as specified in equation (2)
input: the maximum number of rows in the matrix $M A T$, as specified in the main program
input: the smaller index of a selected variable pair
input: the larger index of a selected variable pair
input: the actual number of rows in the matrix MAT
output: indicates failure to specify I, J correctly

$$
I F A U L T= \begin{cases}0 & \text { if } 1 \leqslant I<J \leqslant N V A R \\ 1 & \text { otherwise }\end{cases}
$$

Time and Accuracy

We tested the algorithm with a calling program on a number of simple matrices. In this calling program the NPAIR concentrations were not fitted in a prespecified order, instead-at each call of INVEST-the largest of the NPAIR concentrations was set to zero. The iterations

Table 1

Number of calls to INVEST and computing time (sec) on a CDC 3300

NVAR	$N P A I R \dagger$	Correlation matrices					
		$r=0.2$		$r=0.5$		$r=0.8$	
		DELTA		DELTA		DELTA	
		10^{-4}	10^{-6}	10^{-4}	10^{-6}	10^{-4}	10^{-6}
4	3	$\begin{gathered} 10 \\ (0 \cdot 1) \end{gathered}$	$\begin{gathered} 15 \\ (0 \cdot 1) \end{gathered}$	$\begin{gathered} 23 \\ (0 \cdot 1) \end{gathered}$	$\begin{gathered} 35 \\ (0 \cdot 2) \end{gathered}$	$\begin{gathered} 40 \\ (0 \cdot 2) \end{gathered}$	$\begin{gathered} 60 \\ (0 \cdot 3) \end{gathered}$
9	3	$\begin{gathered} 7 \\ (0 \cdot 2) \end{gathered}$	$\begin{gathered} 10 \\ (0 \cdot 2) \end{gathered}$	$\begin{gathered} 10 \\ (0 \cdot 2) \end{gathered}$	$\begin{gathered} 15 \\ (0 \cdot 2) \end{gathered}$	$\begin{gathered} 10 \\ (0 \cdot 2) \end{gathered}$	$\begin{gathered} 15 \\ (0 \cdot 2) \end{gathered}$
9	9	$\begin{gathered} 37 \\ (0 \cdot 7) \end{gathered}$	$\begin{gathered} 55 \\ (1 \cdot 1) \end{gathered}$	$\begin{gathered} 54 \\ (0 \cdot 9) \end{gathered}$	$\begin{gathered} 79 \\ (1 \cdot 4) \end{gathered}$	$\begin{gathered} 66 \\ (1 \cdot 2) \end{gathered}$	$\begin{gathered} 94 \\ (1 \cdot 8) \end{gathered}$
18	3	$\begin{gathered} 6 \\ (0 \cdot 4) \end{gathered}$	$\begin{gathered} 8 \\ (0 \cdot 5) \end{gathered}$	$\begin{gathered} 6 \\ (0 \cdot 5) \end{gathered}$	$\begin{gathered} 9 \\ (0 \cdot 6) \end{gathered}$	$\begin{gathered} 7 \\ (0 \cdot 6) \end{gathered}$	$\begin{gathered} 10 \\ (0 \cdot 6) \end{gathered}$
18	9	$\begin{gathered} 26 \\ (1.8) \end{gathered}$	$\begin{gathered} 39 \\ (2 \cdot 7) \end{gathered}$	$\begin{gathered} 30 \\ (2 \cdot 3) \end{gathered}$	$\begin{gathered} 43 \\ (2 \cdot 9) \end{gathered}$	$\begin{gathered} 34 \\ (2 \cdot 3) \end{gathered}$	$\begin{gathered} 48 \\ (3 \cdot 5) \end{gathered}$
18	18	$\begin{gathered} 66 \\ (4 \cdot 3) \end{gathered}$	$\begin{gathered} 98 \\ (6 \cdot 4) \end{gathered}$	$\begin{gathered} 77 \\ (5 \cdot 3) \end{gathered}$	$\begin{gathered} 111 \\ (8 \cdot 4) \end{gathered}$	$\begin{gathered} 89 \\ (5 \cdot 2) \end{gathered}$	$\begin{gathered} 122 \\ (7 \cdot 7) \end{gathered}$

\dagger NPAIR $=3:(1,2)(1,3)(2,4)$
9: the previous 3 plus $(5,6)(6,8)(7,8)(2,5)(3,5)(4,6)$
18: the previous 9 plus $(9,11)(10,11)(10,17)(2,9)$

$$
(3,11)(3,17)(4,10)(5,17)(6,11)
$$

ceased when the sum of the absolute values of the NPAIR concentrations was less than some prespecified value, DELTA. We chose correlation matrices with differing degrees of multicollinearity by taking $r_{i j}=0 \cdot 2,0 \cdot 5$ and 0.8 for all $i \neq j$. Furthermore, we varied the size of the matrices ($N V A R=4,9$ and 18), the number of selected variable pairs with zero concentrations ($N P A I R=3,9$ and 18), and the desired precision in the zero concentrations ($D E L T A=10^{-4}$ and 10^{-6}). Table 1 shows the number of iterations and the computing time in seconds needed on a CDC 3300 with word length 24 bits. For instance, it took $1 \cdot 1 \mathrm{sec}$ or 55 calls for INVEST to fit nine zero concentrations to the 9×9 correlation matrix with $r_{i j}=0 \cdot 2$. Generally, the number of iterations increased-other things being equal-with an increase in NPAIR, and in the degree of multicollinearity, but it decreased with an increase in $D E L T A$ and in NVAR, the size of the matrix.

Another calling program for INVEST that fits the NPAIR variable pairs always in unchanged order and in full cycles of size NPAIR yielded comparable results in iterations and time for the 36 test cases. In situations with a very high degree of multicollinearity though, convergence was reached much later. Then, we recommend use of a double precision version of INVEST to allow the proper inversion of the fitted matrix. On the CDC 3300 computing time was increased by a factor of $10-15$ for double precision.

Together with an inversion algorithm, that operates only on a triangular part of a matrix, INVEST allows the fitting of a covariance selection model to a correlation matrix by using only one storage array of dimension $N D I M, N V A R$.

Acknowledgement

We thank a referee for suggestions for improving the Fortran subroutine.

References

Bishop, Y. M. M. (1971). Effects of collapsing multi-dimensional contingency tables. Biometrics, 27, 545-562.
Dempster, A. P. (1972). Covariance selection. Biometrics, 28, 157-175.
Goodman, L. A. (1970). The multivariate analysis of qualitative data: interactions among multiple classifications. J. Amer. Statist. Ass., 65, 225-256.
Wermuth, N. (1976a). Analogies between multiplicative models in contingency tables and covariance selection. Biometrics, 32, 95-108.

- (1976b). Model search among multiplicative models. Biometrics, 32, 253-263.

Wermuth, N., Wehner, T. and Gönner, H. (1976). Finding condensed descriptions for multi-dimensional data. Computer Programs in Biomedicine, 6, 23-38.

```
SUBROUIIINE INVEST(MAT, NDIM, I, J, NVAR, IFAULT)
    AJGORITHM AS 10.5 APPL. STATIST. (1977), VOL.26, NO.1
    INVEST IS A SURROUTINE FOR FITTING A COVARIANCE SELECTION
    MODEL TO A MATRIX. IT MODIFIES THE UPPER TRIANGULAR PART
        OF AN INVERSE MATRIX SO THAT ONE PRESPECIFIED OFF-DIAGONAL
        EJ&MMENT EQUAISS ZERD' AND ONLY THE CORRESPONDING ELEMENT
        IN THE ORIGINAI, MATRIX IS AJITERED
    REAL MAT(NDIM, NVAR), D, SAVE1, SAVE2, MII, MIJ, MJJ
    CHECK PARAMETERS
    IFAULT = 0
    IF(I .IT. 1 .OR. J .IE. I .OR. J .GT. NVAR) GOTO 13
    SET COUNTERS
II = I - 1
I2 =I + 1
J1 = J - 1
J2=J +1
```

C
C
C

STORE VALUES

```
        MII = MAT(I, I)
        MJJ = MAT(J,J)
        MIJ = MAT(I, J)
        D = MII * MJJ - MIJ ** 2
```

 POSITIONS (I, I), (J, J), (I, J)
 \(\operatorname{MAT}(I, I)=D / \operatorname{MrJ}\)
 \(\operatorname{MAT}(J, J)=-\mathrm{D} / \mathrm{MII}\)
 \(\operatorname{MAT}(I, J)=0.0\)
 RESET VAJUJES
 MII \(=\) MIJ / MII
 MJJ \(=\) MIJ / MJJ
 MIJ \(=-\) MIJ \(/ \mathrm{D}\)
 POSITIONS WITH K AND L Less than I
 C
IF(I .ER. 1) GOTO 6
DO $1 \mathrm{~K}=1$, I 1
SAVE1 $=$ MAT(K, I$)$
SAVE2 $=\operatorname{MAT}(K, ~ J)$
$\operatorname{MAT}(\mathrm{K}, \mathrm{I})=$ SAVE1 $-\mathrm{MJJ} *$ SAVE2
$\operatorname{MAT}(K, J)=$ SAVE2 - MII * SAVE1
$\operatorname{MAT}(K, K)=\operatorname{MAT}(K, K)+$
* MIJ * (MAT(K, I) * SAVE2 + MAT(K, J) * SAVE1)
IF (K . FQ. II) GOTO 2
$\mathrm{K} 1=\mathrm{K}+1$
DO $1 \mathrm{~L}=\mathrm{K} 1$, I1
$\operatorname{MAT}(K, L)=\operatorname{MAT}(K, L)+$
* MIJ * (MAT(K, I) * MAT(L, J) $+\operatorname{MaT}(\mathrm{K}, \mathrm{J}) * \operatorname{MAT}(\mathrm{~L}, \mathrm{I}))$
1 CONTINUE
positions with K less than I and L between I and J
2 IF (I2 . FQ. J) GOTO 4
DO $3 \mathrm{~K}=1$, II
DO $3 \mathrm{~L}=12$, J1
$\operatorname{MAT}(\mathrm{K}, \mathrm{L})=\operatorname{MAT}(\mathrm{K}, \mathrm{L})+$
* MIJ * (MAT(K, I) * MAT(L, J) $+\operatorname{MAT}(\mathrm{K}, \mathrm{J}) * \operatorname{MAT}(\mathrm{I}, \mathrm{L}))$
3 continue
POSITIONS WITH K LeSS than I and l greater than J
4 IF (J. .EQ. NVAR) GOTO 6
DO $5 \mathrm{~K}=1$, II
DO $5 \mathrm{~L}=\mathrm{J} 2$, NVAR
$\operatorname{MAT}(\mathrm{K}, \mathrm{L})=\operatorname{MAT}(\mathrm{K}, \mathrm{L})+$
* MIJ * (MAT(K, I) * MAT(J, L) $+\operatorname{MAT}(\mathrm{K}, \mathrm{J}) * \operatorname{MAT}(\mathrm{I}, \mathrm{L})$)
5 continue
POSITIONS WITH K AND L BETWEEN I AND J
6 IF (I2 . EQ. J GOTO 10
DO $7 \mathrm{~K}=\mathrm{I} 2, \mathrm{~J} 1$
SAVE1 $=$ MAT (I, K)
SAVE2 $=$ MAT (K, J)
$\operatorname{MAT}(\mathrm{I}, \mathrm{K})=$ SAVE1 $-\operatorname{MJJ} * \operatorname{SAVE} 2$
$\operatorname{MAT}(\mathrm{K}, \mathrm{J})=\mathrm{SAVE} 2-\mathrm{MII} * \operatorname{SAVE1}$
$\operatorname{MAT}(K, K)=\operatorname{MAT}(K, K)+$
* MIJ * (MAT (I, K) * SAVE2 + MAT (K, J) * SAVE1)
IF (K .EQ. J1) GOTO 8
$\mathrm{K} 1=\mathrm{K}+1$
DO $7 \mathrm{~L}=\mathrm{K} 1$, J1
$\operatorname{MAT}(K, L)=\operatorname{MAT}(K, L)+$
* MIJ * (MAT (I, K) * MAT(L, J) $+\operatorname{MAT}(\mathrm{K}, \mathrm{J}) ~ * \operatorname{MAT}(\mathrm{I}, \mathrm{L}))$
7 continue
positions with k between I and J and L greater than J

```
        8 IF (J .EQ. NVAR) GOTO 10
        DO 9 K = I2, J1
        DO }9\textrm{L}=\textrm{J}2, NVA
        MAT(K, L) = MAT(K, L) +
        * MIJ * (MAT(I, K) * MAT(J, L) + MAT(K, J) * MAT(I, L))
    ` CONTINUE
C
C POSITIONS WITH K AND L GREATER THAN J
C
    10 IF (J .EQ. NVAR) GOTO 12
        JO) }11\textrm{K}=\textrm{J}2,\mathrm{ NVAR
        SAVE1 = MAT (I, K)
        SAVE2 = MAT (J, K)
        MAT (I, K) = SAVE1 - MJJ * SAVE2
        MAT(J, K) = SAVE2 - MII * SAVE1
        MAT(K,K) = MAT(K,K) +
        * MIJ * (MAT(I, K) * SAVE2 + MAT(J, K) * SAVE1)
        IF (K .EQ. NVAR) GOTO 12
        K1 = K + 1
        DO 11 J = K1, NVAR
        MAT (K, L) = MAT (K, L) +
        * MIJ * (MAT(I, K) * MAT(J, L) + MAT(J, K) * MAT(I, L))
    11 CONTINUE
    12 RETURN
C
    13 IFAULT = 1
        RETURN
    END
```


Algorithm AS 106

The Distribution of Non-negative Quadratic Forms in Normal Variables

By J. Sheil \dagger and I. O'Muircheartaigh
University College, Galway, Ireland

Keywords: QUADRATIC FORM; DISTRIBUTION; NON-NEGATIVE DEFINITE

LANGUAGE

ISO Fortran
Description and Purpose
Given that the n-dimensional vector \mathbf{z} has a multivariate normal distribution with expected value vector μ and non-singular covariance matrix \mathbf{V}, this algorithm computes the distribution function of the quadratic form $(\mathbf{z}+\mathbf{a})^{\mathbf{T}} \mathbf{C}(\mathbf{z}+\mathbf{a})$ for a fixed vector a and symmetric positive definite, or positive semi-definite, matrix C. The value of the density is also presented in the output. The quadratic form is expressed as an infinite series in central χ^{2} distribution functions: both the distribution functions and the series coefficients are evaluated recursively.

> Theory and Numerical Method
> $n=$ dimensionality of \mathbf{z}.

By making the linear transformations

$$
\mathbf{z}-\mu=\mathbf{L}^{\mathrm{T}} \mathbf{R} \mathbf{x}, \quad \mathbf{a}+\mu=\mathbf{L}^{\mathrm{T}} \mathbf{R} \mathbf{b}
$$

\dagger Now at University of Newcastle-upon-Tyne.

