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On the generation of the chordless four-cycle
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S

In the theory of Markov graphical representations of conditional independencies a special role
is played by the chordless four-cycle, representing for four random variables the conditional inde-
pendencies Xa V | (U, W ) and WaU | (X, V ). It is not immediately clear how such systems are to
be generated. Here we sketch some possible data-generating mechanisms.
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1. I

So-called full line concentration graphs represent a set of random variables by the vertices of an
undirected graph. That is, some, but in general not all, pairs of vertices are joined by edges and a
missing edge between, say, vertices i and j implies that the corresponding random variables are
conditionally independent given all remaining variables. If the joint distribution is multivariate
Gaussian a missing edge corresponds to a zero in the concentration matrix, i.e. in the inverse
covariance matrix, thus corresponding to the covariance selection models of Dempster (1972). The
relation between a covariance matrix S of a random vector Y and the interpretation of the concen-
tration matrix S−1 in terms of partial correlations is most directly seen (Cox & Wermuth, 1996,
p. 69) by showing that the random vector S−1Y has covariance matrix S−1 and that its cross-
covariance matrix with Y is the identity matrix, leading to an interpretation of the off-diagonal
elements of S−1 as proportional to partial regression coefficients.

A general theory of fitting concentration graphs for Gaussian models is given by Speed & Kiiveri
(1986) and for log-linear models for discrete variables by Darroch, Lauritzen & Speed (1980) and
described more generally by Lauritzen (1996). For the connection between log-linear models and
covariance selection, see Wermuth (1976).

In many cases it is possible to assign a direction to each edge leading to a directed acyclic graph
and, better still for interpretation, to a univariate recursive regression graph, the new graphs
representing the same set of conditional independencies as the given undirected graph (Wermuth,
1980; Cox & Wermuth, 1996, Ch. 2; Wermuth & Cox, 1998). A univariate recursive regression
representation sets out the variables sequentially with Y

j
considered conditionally on Y

j+1
, . . . , Y

p
,

each missing edge in the graph corresponding to just one conditional independency in such a
system. If such a representation of the undirected graph exists it is typically not unique. Such forms
are valuable partly because they indicate potential generating processes which may be confirmation
of or suggestive of valuable subject-matter interpretations.

The condition that such a representation is possible is that the concentration graph has no



207Miscellanea

chordless m-cycle (m�4). Thus the simplest concentration graph not consistent with a univariate
recursive regression is the chordless four-cycle. An example where such a graph is strongly indicated
empirically as the simplest representation of the data is given in Table 1, as noted by Cox &
Wermuth (1993) using data of Spielberger, Russel & Crane (1983). It gives the estimated corre-
lations and partial correlations, the latter being directly derived from the sample concentration
matrix.

Table 1. Correlations among four psycho-
logical variables for 684 students.
Marginal correlations in lower triangle.
Partial correlations given other two vari-

ables in upper triangle

X W U V

X, state anxiety 1 0·45 0·47 −0·04

W, state anger 0·61 1 0·03 0·32
U, trait anxiety 0·62 0·47 1 0·32

V, trait anger 0·39 0·50 0·49 1

Despite the simplicity of the structure, it is puzzling for interpretation in the absence of a potential
generating process. That is, there is no sequence of univariate linear regression relations in the four
variables that would represent directly the set of conditional independencies observed. Here we
outline several possible data generating processes. We make no claim that they necessarily corre-
spond to the illustrative data. They are intended as general explanations of this kind of data.

For some purposes it is reasonable to replace the chordless four-cycle of Fig. 1(a) by the Markov
equivalent version of Fig. 1(b) in which (U, V ) as trait variables are regarded as explanatory to
(W, X) as state variables and in which two of the edges are therefore regarded as directed. We deal
with Gaussian variables for simplicity and arrange that all random variables have zero mean.

(a)

X U

W V

(b)

X U

W V

Fig. 1. (a) Chordless four-cycle; independencies
Xa V |U, W, W aU |X, V. (b) Markov equivalent
chain graph in which U, V are explanatory to W, X.

2. E  

We supplement the observed random variables by two latent variables, j, g represented by the
nodes of the special graph of Fig. 2. In terms of linear relations we have that

U=b
Uj

j+e
U.j

, V=b
Vj

j+e
V.j

, W=b
WV

V+e
W.V

, X=b
XU

U+e
X.U

,

g=b
gW.X

W+b
gX.W

X+e
g.WX

,

where the e’s are independently normally distributed with zero mean and the b’s are all nonzero.
This is a simple univariate recursive system.

Suppose now that we marginalise over the distribution of j and condition on the value of g.
The first step induces a correlation between U and V and the second a conditional correlation
between W and X given U and V. No other edge is introduced and, with the exception of very
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Fig. 2. Model with two latent variables, one, j, mar-
ginalised and the other, g, conditioned on, thus produc-
ing chordless four-cycle in observed variables

U, V, W, X.

particular parameter values, no additional independency results, that is there is no parametric
cancellation; for a further discussion of parametric cancellation, see Wermuth & Cox (1998). Thus
a chordless four-cycle has been achieved. These results have been used previously by Wermuth
(1980) and Pearl (1988, p. 118) and follow, for instance, from the general procedure for marginalis-
ing and conditioning in directed acyclic graphs, see an unpublished report by N. Wermuth, D. R.
Cox and J. Pearl, or in this special case can be derived by direct calculation with the 4×4 covariance
matrix (X, W, U, V ) and its inverse.

In particular, with the standard notation for partial correlation coefficients,

r
WX.g
= (r

WX
−r

Wg
r
Xg

){(1−r2
Wg

)(1−r2
Wg

)}−D,

we have that r
WX
=0, r

Wg
N0, r

Xg
N0, implies that r

WX.g
N0. We apply this last result conditioning

all the correlations also on (U, V ). This shows that an edge is indeed induced between W and X
by conditioning on g. Similar arguments show that in general no new edge for (X, V ) or for (W, U)
is introduced.

The representation of the dependence between U and V via an unobserved common explanatory
variable is a common and plausible device. The notion of an unobserved conditioned upon response,
g, is less familiar. It can, however, be taken as corresponding to a selection from a larger target
population giving only those members of the larger population that show a particular value of the
response g. In an unpublished Aalborg report S. L. Lauritzen has given some more general results
on selection.

3. A  

3·1. General formulation

We now discuss several related but distinct interpretations based on a linear stochastic formu-
lation. We start with a p×1 vector Y of response variables and a q×1 vector of explanatory
variables, Z. Suppose that Z is constant in time but that the components of Y (t) change in accord-
ance with a linear system forced by a stochastic innovation process

dY
r
(t)= ∑

p

s=1
a
rs
Y
s
(t) dt+ ∑

q

j=1
b
rj
Z
j
dt+df

r
(t), (1)

where A, B are constant matrices with elements a
rs
, b

rj
and df is a p×1 vector of stochastic

innovations of zero mean and uncorrelated with the current value Y (t) and with Z.
We discuss two different possibilities in § 3·2 and a further one in § 3·4.

3·2. Two rather static versions

We first follow Fisher (1970) although he worked in discrete time; a few details are formally
simpler in continuous time. Suppose that A is a stability matrix (Bellman, 1997, p. 251), i.e. that
its eigenvalues are either negative or if complex have negative real parts. This is necessary for
statistical equilibrium, which we assume to be possible. If we cumulate over a long time period the
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left-hand side of (1) will be small compared with the right-hand side and there results the structural
equation model

0=AY+BZ+e, (2)

where now Y, Z, e are time-aggregates, or averages, and the innovation term cumulated over time,
e, say, has zero mean, covariance matrix S

ee
, say, and is independent of Z.

For a formal justification of (2) a more explicit formulation is needed. If we simply integrate (1)
over a long time period t0 , the system being in statistical equilibrium, the left-hand side is O

p
(1),

the first and third terms on the right-hand side are O
p
(√t0 ) and the second term is O

p
(t0 ). Thus

in the limit the second term on the right-hand side dominates and the time-aggregate Y becomes
degenerate. To find the properties of a system observed for a time long compared with the damping
time of the process and such that all three terms in (2) are comparable we thus embed the system
in a family in which the matrix B is O(1/√t0 ) as t0 increases.

Post-multiply (2) by Z and take expectations. Then

0=AS
YZ
+BS

ZZ
,

where S
YZ

, S
ZZ

are respectively the covariance matrix of Y and Z and of Z. Further

Y=−A−1 (BZ+e)

so that the covariance matrix of Y is

A−1BS
ZZ

BT(A−1)T+A−1S
ee
(A−1)T .

Missing edges in the concentration graph of (Y, Z) correspond to zeros in the concentration or
inverse covariance matrix of (Y, Z). The standard formula for the inverse of a partitioned matrix
shows that the cross-concentration of (Y, Z) is ATS−1

ee
B. In particular, the condition for a missing

edge between a Y and a Z component is the vanishing of the corresponding matrix element.
For a second interpretation suppose that the system (1) is subject to a step-function shock of

amount e constant for a long duration. The response will initially have a time-varying term. It will
then come to equilibrium at a value of Y satisfying

0=AY+BZ+e

and the previous discussion applies. Each realisation of the system, for example each new subject
in the psychological context, has an independent and constant innovation e; see the unpublished
Carnegie-Mellon doctoral thesis of T. Richardson for some other discussion of Fisher’s process.

3·3. A chordless four-cycle

We now consider the special case of the chordless four-cycle in which the component matrices
in all the above representations are 2×2. In the notation of § 2, we would have Y= (X, W ),
Z= (U, V ). We shall assume that

S
ee
=diag{var(e1 ), var (e2 )}.

Then it follows from the form of the cross-covariance matrix of (Y, Z) that the edge between Y1
and Z2 is missing if and only if

b12/b22+{a21 var (e1 )}/{a11 var (e2 )}=0.

It aids interpretation to strengthen the condition on the eigenvalues of A by imposing the require-
ment that a11<0. To simplify the notation by working with positive quantities we therefore write
a
ii
=−a∞

ii
. Furthermore we choose standardised units such that the unit of time ensures that

a∞
11
=a, a∞

22
=1/a, the units of Y1 , Y2 are such that var(e1 )=var (e2 )=1 and the units of Z such that

b11=b22=1. If a=1 in isolation the two components decay at the same rate. That is, if we consider
two simplified systems in which Z=0, a12=a21=0 and there is no noise, then the components Y1
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and Y2 decay at the same rate if and only if a=1. In these standardised units we write

a12=a12 , a21=a21 , b12=b12 , b21=b21 .

The system is thus specified by the covariance matrix of Z in the standardised units, by a and by
the four parameters just defined and the correlation between the components of e.

Our condition for Y1aZ2 | (Y2 , Z1 ), that is for Xa V | (W, U), is that ab12=a21 . There is a
complementary condition a−1b21=a12 for the other missing edge. In words the first condition can
be stated as that the rate of self-dissipation of state anger divided by the rate of transfer from state
anger to state anxiety is equal to the rate of transfer from trait anxiety to state anger divided by
the rate of transfer form trait anxiety to state anxiety.

3·4. A dynamic cross-section

For our third interpretation we suppose the innovation process to be a Brownian motion and
suppose that Y (t) corresponds to an observation of the process in its stationary state.

It helps to write the defining equation (1) in the form

Y (t+dt)= (I+A dt)Y (t)+BZ dt+df(t). (3)

On taking expectations of Y (t+dt)Y T( t+dt) we have in statistical equilibrium that

AS
YY
+S

YY
AT+BS

ZY
+S

YZ
BT+S

ff
=0,

where now S
ff

dt is the covariance matrix of the innovation.
Similarly on post-multiplying by ZT and taking expectations we have that

S
YZ
=−A−1BS

ZZ
,

so that

AS
YY
+S

YY
AT=BS

ZZ
BT(A−1)T+A−1BS

ZZ
BT−S

ff
.

For the present purpose we are interested especially in the concentration matrix partitioned with
sections denoted by superscripts. In particular, defining L

YY
by S

YY.Z
, we have that

SYY=L−1
YY

,

where

L
YY
=S

YY.Z
=S

YY
−A−1BS

ZZ
BT(A−1)T , (4)

SZY=BT(A−1)TSYY. (5)

Direct calculation shows that L
YY

satisfies the equation

AL
YY
+L

YY
AT=−S

ff
.

We note, but will not here exploit, the solution (Bellman, 1997, p. 239)

L
YY
= P2

0
eAtS

ff
aATt dt.

We use the alternative form involving a Kronecker sum, namely

(AE I+IEA) vecL
YY
=−vecS

ff
, (6)

essentially a set of simultaneous linear equations for the elements of L
YY

then leading to an
expression for SYZ.

3·5. Another chordless four-cycle

We return to the special case of the chordless four-cycle. The condition for conditional indepen-
dence is from (3) and (4) that

b21/b11+{var(e2 )a12−var (e1 )a21}/{var (e1 )(a11+a22)}=0.
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In standardised units we require respectively that

a12−a21= (a+1/a)b21 , a21−a12= (a+1/a)b12 .

In particular they are satisfied by

a12=a21 , b12=b21=0.

This formulation in its simplified form requires only that, in the terminology of the example,
trait anger feeds just into state anger and trait anxiety just into state anxiety, and that in standard-
ised units the flows from state anger to state anxiety and vice versa are at equal rates. This in some
ways is the simplest explanation directly in terms of the observed variables of all those con-
sidered here.

3·6. A symmetrical special case

We now explore in a little more detail the symmetrical case in which (X, U) and (W, V ) can be
interchanged without altering the joint distribution. Thus in standardised units a=1 and the
adjustable parameters are

a12=a21=a, b12=b21=b, var (U)=var (V )=s2, corr (U, V )=r.

Then, in the discussion in § 3·3, we have that a=b and there is thus for each given S
ZZ

a one-
parameter family of covariance and concentration matrices having the chordless four-cycle struc-
ture. Similarly in the process of § 3·5 the condition for a chordless four-cycle is b=0, leading to a
different one-parameter family, emphasising the distinction between the processes.

Finally, we make, as noted in § 1, no claim that any of the above processes is indeed the generating
process for the particular example. It would be interesting to know if there are other plausible
types of explanation of the chordless four-cycle and other structures which cannot be transformed
into an equivalent univariate recursive regression form in the observed variables.

As a check on these results a number of simulations were run of discrete time versions of these
models and the requisite independence properties verified by computing the estimated covariance
and concentration matrices. The calculations were programmed in .

4. S   

In the above discussion we have concentrated on systems that can generate a chordless four-
cycle in the concentration matrix, i.e. having two special conditional independencies and no other.
We now discuss briefly two further possibilities. For simplicity we restrict ourselves to the symmetric
case of § 3·6 in which (X, U) can be interchanged with (W, V ).

First there is the possibility that in addition to a chordless four-cycle in concentrations there is
a chordless four-cycle in covariances; i.e. that, for example, in addition to W aU | (X, V ) and
XaV | (X, U), there are the marginal independencies W aU and Xa V. In general simultaneous
simplification of both covariance and concentration matrix arises only exceptionally. For an
example and a formulation directly in terms of marginal correlations, see Cox & Wermuth (1993,
p. 213). This structure cannot be achieved via the conditioning process of § 2.

We work with the dynamic model of § 3·4 and use the standardised units, in which b=0, to
achieve the property in concentrations and then evaluate the cross-covariance matrix

S
YZ
=−A−1BS

ZZ
.

The required condition for example to achieve W aU | (X, V ) is that a+r=0. That is, the corre-
lation, r, between U and V has to have the opposite sign and in standardised units to have the
same magnitude as the parameter defining the rate of flow between W and X. The numerical
equality is an instance of so-called parametric cancellation.

A second possibility, in some ways of more interest from an interpretational point of view, is
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that UaV, that is in the general formulation that S
ZZ

is diagonal. This structure cannot be
achieved via the conditioning process of § 2. More generally it has been shown that this structure
cannot arise from marginalising or conditioning in any directed graphical model, cyclic or acyclic
(Richardson, 1998). In the symmetric case, again with b=0, it can be shown that

SYY=2(1−a2 )J(−a), SYZ=−2(1−a2 )I, SZZ=1/s2−2J(a),

where J(a) is the 2×2 matrix with diagonal elements one and off-diagonal elements a.
Thus in particular the partial correlation between W and V given X and U, obtained via the

standardised off-diagonal element of SYZ, is (1+1/s2 )−D, showing that positive partial correlations
up to 1/√2 can be achieved under this model.
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