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Causal Inference and Statistical Fallacies

1. Generalities

The pairing of causality and fallacies may seem
idiosyncratic. In fact it nicely captures the point that
many statistical fallacies, i.e., plausible-seeming argu-
ments that give the wrong conclusion, hinge on the
overinterpretation or misinterpretation of statistical
associations as implying more than they properly do.
The article begins by discussing three main views of
causality, briefly indicating the scope for fallacious
arguments and then at the end returns to discuss some
fallacies in slightly more detail. See Graphical Models:
O�er�iew.

The very long history in the philosophical literature
of discussions of causality is largely irrelevant for these
purposes. It typically regards a cause as necessary and
sufficient for an effect: all smokers get lung cancer, all
lung cancer patients smoke. Here the concern is with
situations with multiple causes, even if one is pre-
dominant, and where explicit or implicit statistical or
probabilistic considerations are needed.

2. Notions of Causality

2.1 Causality as Stable Association

Suppose that a study, or preferably several different
but related studies, shows that two features, C and R,
of the individuals (people, firms, communities, house-
holds, etc.) under investigation are associated. That is,
if we take, to be explicit, positive monotone associ-
ation, individuals with high values of C tend to have
high values of R and vice versa. For example C and R
might be test scores at a given age in arithmetic and
language, or level of crime and unemployment rate in
a community.

Under what circumstances might one reasonably
conclude that C is a cause of a response R, or at least

make some step in the direction of that conclusion?
And what would such a statement of causality mean?

2.1.1 Symmetric and directed relations. Associ-
ation is a symmetric relation between two, or poss-
ibly more, features. Causality is not symmetric. That
is, if C is associated with R then R is associated with
C, but if C is a cause of R then R is not a cause of
C. Thus the first task, given any two features C and
R, is to distinguish the cases where:

(a) C and R are to be regarded as in some sense on
an equal footing and treated in a conceptually sym-
metric way in any interpretation.

(b) One of the variables, say C, is to be regarded as
explanatory to the other variable, R, regarded as a
response. That is, if there is a relation, it is regarded
asymmetrically.

Often significance tests for the existence of as-
sociation and of dependency are identical. The dis-
tinction being studied here is a substantive one of
interpretation. Failure to observe this distinction leads
to the fallacy of the overinterpreted association.

2.1.2 Graphical representation. A useful graphical
representation shows two variables X

�
and X

�
, re-

garded on an equal footing, if associated, as connec-
ted by an undirected edge, whereas two variables
such that C is explanatory to R, if connected, are
done so by a directed edge. See Fig. 1a and Fig. 1b.

There are two possible bases for the distinction
between explanatory and response variables. One is
that features referring to an earlier time point are
explanatory to features referring to a later time point.
The second is a subject-matter working hypothesis
based for example on theory or on empirical data from
other kinds of investigation. Thus the weight of a child
at one year is a response to maternal smoking behavior
during pregnancy. In such situations the relevant time
is not the time when the observation is made but the
time to which the features refer, although of course
observations recorded retrospectively are especially
subject to recall biases.

As an example of the second type of explanatory-
response relation, suppose that data are collected on
diabetic patients assessing their knowledge of the
disease and of their success in managing their disease,
as measured by glucose control. These data may well
refer to the same time point and it is not inconceivable
that, for example, patients with poor glucose control
are thereby encouraged to learn more about their
disease. Nevertheless, as a working hypothesis, one
might interpret the data assuming that knowledge, C,
is explanatory to glucose control, R, considered as a
response. This is represented in simple graphical form
in Fig. 1b by the directed edge from C to R.
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Figure 1
(a) Undirected edge between two variables X

�
, X

�
on an equal footing. (b) Directed edge between explanatory

variable C and response variable R. (c) General dependence of response R on B, C. (d) Special situation with
R�C �B. (e) Special situation with B�C corresponding in particular to randomization of C

In summary the first step towards causality is to
require good reasons for regarding C as explanatory to
R as a response and that any notion of causal
connection between C and R, and there may be none,
is that C is a cause of R, not the other way round.

We may talk about the ‘fallacy of the incorrect
direction’ when the explanatory-response relation is
identified in the wrong direction.

2.1.3 Common explanatory �ariables. Next, con-
sider the possibility of one or more common explan-
atory variables. For this, suppose that B is
potentially explanatory to C and hence also to R.
There are a number of possibilities of which the most
general is shown in Fig. 1c with directed edges from
B to C, from C to R, and also directly from B to R.
On the other hand, if the relation were that repre-
sented schematically in Fig. 1d, the only dependence
between C and R is that induced by their both depend-
ing on B. Then C and R are said to be conditionally
independent given B, sometimes conveniently written
R�C �B. There is no direct path from C to R that
does not pass via B. Such relations are typically asses-
sed empirically by some form of regression analysis.
In such a situation, one would not regard C as a
cause of R, even though in an analysis without the
background variable B there is a statistical depen-
dence between the two.

This discussion leads to one definition used in the
literature of C being a cause of R, namely that there is
a dependence between C and R and that the sign of
that dependence is unaltered whatever variables B

�
, B

�
etc., themselves explanatory to C, are considered
simultaneously with C as possible sources of depen-
dence. This definition has a long history but is best
articulated by I. J. Good and P. Suppes. A corre-
sponding notion for time series is due to N. Wiener
and C. W. J. Granger. This definition underlies much

empirical statistical analysis in so far as it aims towards
causal explanation.

The definition entertains all possible alternative
explanatory variables. In implementation via an
observational study one can at best check that the
measured background variables B do not account for
the dependence between C and R. The possibility that
the dependence could be explained by variables ex-
planatory to C that have not been measured, i.e., by
so-called unobserved confounders, is less likely the
larger the apparent effect, and can be discounted only
by general plausibility arguments about the field in
question. Sensitivity analysis may be helpful in this:
that is, it may be worth calculating what the properties
of an unobserved confounder would have to be to
explain away the dependence in question. For further
details see Rosenbaum (1995) and the entry Obser-
�ational Studies: O�er�iew.

Mistaken conclusions reached via neglect of con-
founders, observed or unobserved, may be called
‘fallacies of the neglected confounder.’

2.1.4 Role of randomization. The situation is sub-
stantially clarified if the potential explanatory vari-
able C is a randomized treatment allocated by the
investigator. Then in the scheme sketched in Fig. 1e
there can be no edge between the B’s and C since
such dependence would be contrary to randomiz-
ation, i.e., to each individual under study being
equally likely to receive each treatment possibility. In
this situation an apparent dependence between C and
R cannot be explained by a background variable as
in Fig. 1d. It is in this sense that it is sometimes
stated, especially in the statistical literature, that
causality can be inferred from randomized experi-
ments and not from observational studies. It is
argued here that while other things being equal, ran-
domized experiments are greatly to be preferred to
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Figure 2
(a) Intermediate variable I accounting for overall effect of C after ignoring I; R�C � I. (b) Correlated variables
C, C* on an equal footing and both explanatory to response R

observational studies, difficulties of interpretation,
sometimes serious, remain.

2.1.5 Intermediate �ariables. In Sect. 2.1.4 the vari-
ables B have been supposed explanatory to C and
hence to R. For judging a possible causal effect of C
it would be wrong to consider in the same way vari-
ables intermediate between C and R, i.e., variables I
that are responses to C and explanatory to R. They
are valuable in clarifying the nature of any indirect
path between C and R, but the use of I in a regression
analysis of R and C would not be correct in assessing
whether such a path exists. If R is independent of C
given an intermediate variable I, but dependent on I,
then C may still have caused I and I may be a cause
of R.

For instance suppose that C represents assignment
to a new medical regimen as compared with a control
regimen and that the former, but not the latter,
eventually induces lower blood pressure, I, which in
turn induces a reduced cardiac event rate, R; see Fig.
2a. Does the new regime cause a reduced cardiac event
rate? If R is conditionally independent of C given I, it
would be reasonable to say that the regimen does
cause a reduction in R and that this reduction appears
to be explained via improved blood-pressure control.

2.1.6 Explanatory �ariables on an equal footing. In
some ways an even more delicate situation arises if
we consider the role of variables C* on an equal foot-
ing with the variable C whose causal status is under
consideration; see Fig. 2b. If the role of C is essen-
tially the same whether or not C* is conditioned, i.e.,
whether or not C* is included in the regression
equation, there is no problem, at least at a qualitative
level. On the other hand, consider the relatively com-
mon situation where there is clear dependence on
(C, C*) as a pair but that either variable on its own is
sufficient to explain the dependence. There are then
broadly three routes to interpretation:

(a) To regard (C, C*) collectively as the possibly
causal variables.

(b) To present at least two possibilities for in-
terpretation, one based on C and one on C*.

(c) To obtain further information clarifying the
relation between C and C*, establishing for instance

that C* is explanatory to C and that the appropriate
interpretation is to fix C* when analysing variations
of C.

For example, suppose that C and C* are respectively
measures of educational performance in arithmetic
and language of a child, both measured at the same
age, and that the response is some adult feature. Then
the third possibility is inapplicable; the first possibility
is to regard the variables as a two-dimensionalmeasure
of educational performance and to abandon, at least
temporarily, any notion of separating the role of
arithmetic and language.

In summary, this first broad notion of causality is
that of a statistical dependency that cannot be ex-
plained away via an eligible alternative explanation.

2.2 Causality as the Effect of Inter�ention

2.2.1 Counterfactuals. While the notion of causality
discussed in Sect. 2.1.6 is certainly important and is
strongly connected with the approach adopted in
many empirical statistical studies, it does not, however,
directly capture a stronger interpretation of the
word causal. This is connected with the idea of hy-
pothetical intervention or modification. Suppose for
simplicity of exposition that C takes just two possible
forms, to be called presence and absence. Thus pres-
ence might be the implementation of some program
of intervention, and absence a suitable control state.
For monotone relations, one may say that the pres-
ence of C causes an increase in the response R if an
individual with C present tends to have a higher R
than that same individual would have had if C had
been absent, other things being equal.

Slightly more explicitly, let B denote all variables
possibly explanatory to C and suppose that there are
no variables C* to be considered on an equal footing
to C. Consider for each individual two possible values
of R, R

pres
, R

abs
that would arise as C takes on its two

possible values, present and absent, and B is fixed.
Then presence of C causes, say, an increase in R if R

pres

is in some sense systematically greater than R
abs

.
We now discuss this notion, which has its origins at

least in part in J. Neyman’s and R. A. Fisher’s work
on design of experiments and in the studies of H. A.
Simon and has been systematically studied and fruit-
fully applied by D. B. Rubin.
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For a given individual, only one of R
pres

and R
abs

can
be observed, corresponding to the value of C actually
holding for that individual. The other value of R is a
so-called counterfactual whose introduction seems,
however, essential to capture the notion hinted at
above of a deeper meaning of causality.

2.2.2 Differences in counterfactuals. The simplest
and least demanding relation between the two values
of R is that over some populations of individuals
under study the average of R

pres
exceeds that of R

abs
.

This is a notion of an average effect and is testable
empirically in favorable circumstances. A much
stronger requirement is that the required inequality
holds for every individual in the population of con-
cern. Stronger still is the requirement that the differ-
ence between the two values of R is the same for all
individuals, i.e., that for all individuals

R
pres

�R
abs

�∆

This is called, in the language of the theory of the
design of experiments, the assumption of unit-treat-
ment additivity.

Now these last two assumptions are clearly not
directly testable and can be objected to on that
account. The assumptions are indirectly testable, to a
limited extent at least. If the individuals are divided
into groups, for example on the basis of one or more of
the background variables B, the assumptions imply
for each individual observed that the difference be-
tween the two levels of R has the same sign in the first
case and that it is the same, except for sampling errors,
in the second. In Sect. 2.2.3 the consequences of the
possibly causal variable C having a very different effect
on different individuals are discussed.

2.2.3 Ignorable treatment allocation. In Sect. 2.2.2
it has been tacitly assumed throughout that the two
possible values of R for each individual depend on
the value of C for that individual and would be un-
affected by reallocation of C to other individuals.
That is, the effects of C act independently as between
different individuals. These considerations have a
strong bearing on the appropriate definition of a unit
of study. For example, in a comparison of different
methods of class teaching of children, the unit would
primarily be a whole class of students, i.e., the whole
group who are taught and work together.

2.2.4 Intrinsic �ariables. There is an important re-
striction implicit in this discussion. It has to be mean-
ingful in the context in question to suppose that C

for an individual might have been different from how
it in fact is. This is relevant only to variables that
appear solely as explanatory variables. For example
they may be variables measured at base-line, i.e., at
entry into a study. Any intermediate variable by its
nature of being at some point a response is poten-
tially manipulable. Purely explanatory variables can
be divided into intrinsic variables, essentially defining
characteristics of the individual, and potential explan-
atory variables, which might therefore play the role
of C in the present discussion. Intrinsic variables
should not be regarded as even potentially causal in
the present sense. For example the gender of an in-
dividual would in most contexts be regarded as an
intrinsic characteristic. The question ‘what would R
have been for this woman had she been a man, other
things being held fixed?’ is in many, although not
quite all, contexts meaningless.

2.2.5 Variables to be held fixed. Finally, care is es-
sential in defining what is to be held fixed under hy-
pothetical changes of C. Certainly responses I to C
are not fixed. Variables, B, explanatory to C are held
fixed. There is an essential ambiguity for variables C*
on an equal footing with C. This is strongly connec-
ted with the issue of which explanatory variables to
include in empirical regression analyses.

2.3 Causality as Explanation of a Process

There is a third notion of causality that is in some ways
more in line with normal scientific usage. This is that
there is some understanding, albeit provisional, of the
process that leads from C to R. This understanding
typically comes from theory, or often from knowledge
at a hierarchical level lower than the data under
immediate analysis. Sometimes, it may be possible to
represent such a process by a graph without directed
cycles and to visualize the causal effect by the tracing
of paths from C to R via variables I intermediate
between C and R. Thus the effect of diet in an
epidemiological study may be related to the physio-
logical processes underlying the disease under study,
the effect of pharmaceutical products related to the
pharmaco-dynamics of their action, the effect of
interventions at a community level related to ideas of
individual psychology, and so on.

This last notion of causality as concerned with
generating processes is to be contrasted with the
second view of causality as concerned with the effects
of intervention and with the first view of causality as
stable statistical dependence. These views are com-
plementary, not conflicting. Goldthorpe (1998) has
argued for this third view of causality as the ap-
propriate one for sociology, with explanation via
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Rational Choice Theory as an important route for
interpretation.

To be satisfactory there needs to be evidence,
typically arising from studies of different kinds, that
such generating processes are not merely hypothe-
sized.

3. Special Issues

3.1 Interaction In�ol�ing a Potentially Causal
Variable

We now turn to the issue of interactions with a
potentially causal variable. The graphical repre-
sentations used in Sect. 2.3 to show the structure of
various kinds of dependency and independency hold-
ing between a set of variables have the limitation, at
least in the form used here, that they do not represent
interaction, in particular that an effect of C may be
systematically different for different groups of indi-
viduals.

This affects the role in analysis and interpretation
especially of variables B that are themselves possibly
explanatory to the variable C whose causal status is
under consideration. So far we have been largely
concerned with whether such variables could explain
the effect on response of C. In more detailed discussion
we should consider the possibility that the effect of C
is substantially different at different levels of B. For
example if B is an intrinsic feature such as gender, we
consider whether the effect of C is different for men
and for women. In particular, if the effects of C are in
opposite directions for different levels of B we say
there is a qualitative interaction, a possibility of special
importance for interpretation.

Note especially, that even when C represents a
randomized treatment which is automatically de-
coupled from preceding variables B, the possibility of
serious interactions with B cannot in general be
ignored; see Sect. 5.1.

Viewed slightly differently, absence of interaction is
important not only in simplifying interpretation but
also in enhancing generalizability and specificity. That
is, an effect that has been shown to have no serious
interaction with a range of potential variables is more
likely to be reproduced in some new situation and
more likely to have a stable subject-matter interpret-
ation.

3.2 Unwanted Unobser�ed Intermediate Variable

Consider further the role of variables I referring to
time points after the implementation of C. A subject-
matter distinction can be drawn between on the one
hand intermediate variables that are responses to C

and that are explanatory to R and are part of some
natural process, and on the other hand interventions
into the system that may depend on C and which may
be explanatory to R, but which in some sense are
unwanted or inappropriate for interpretation. In the
context of clinical trials, an example is the failure of
patients to comply with a treatment assigned to them.
Ignoring such noncompliance can lead to inappro-
priate intention-to-treat analysis.

Another example is in evaluations of study pro-
grams, whenever students in only one of the programs
receive intensive encouragement during the evaluation
period.

3.3 Aggregation

So far, little has been said about the choice of
observational units for study. At a fundamental
research level it may be wise to choose individuals
showing the effects of interest in their simplest and
most striking form. More generally, however, the
choice has to be considered at two levels. There is the
level at which ultimate interpretation and action is
required and the level at which careful observation of
largely decoupled individuals is available. For
example, a criminologist comparing different senten-
cing or policing policies is interested in individual
offenders but may be able to observe only different
communities or policing areas. A nutritional epi-
demiologist comparing different diets is interested in
individual people but may have to rely, in part at least,
on consumption and mortality data from whole
countries. The assumption that a dependence estab-
lished on an aggregate scale, for example at a country
level, has a similar interpretation at a small-scale level,
for example for individual persons, involves the
assumption that there are no confounders B at a
person level that would account for the apparent
dependency. This will typically be very hard or even
impossible to check at all carefully from country-level
data.

Errors rising as a result of over-aggregated units of
analysis are called ‘ecological fallacies’ or in econo-
metrics ‘aggregation biases.’ See Ecological Inference.

4. Bradford Hill’s Conditions

The above discussion implicitly emphasizes that, while
causal understanding is the aim of perhaps nearly all
research work, a cautious approach is essential,
especially, but by no means only, in observational
studies. The most widely quoted conditions tending to
make a causal interpretation more likely are those of
Bradford Hill (1965), put forward in connection with
the interpretation of epidemiological studies. Bradford
Hill emphasized their tentative character.
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For a critical discussion of these conditions, see
Rothman and Greenland (1999) and for a slightly
revised version of them Cox and Wermuth (1996,
Sect. 8.7).

Koch gave conditions for inferring causality when
the potential cause can be applied, withdrawn, and
reapplied in a relatively controlled way and the pattern
of response observed.

5. Some Fallacies in More Detail

The previous discussion has mentioned various points
at which fallacious arguments are not only possible,
but relatively common. This in no way covers the
wealth of fallacious arguments possible in a statistical
context, perhaps the most pervasive being the com-
parison of rates using inappropriate or ill-defined
denominators. There is not space to discuss all these
possibilities. This article is therefore concluded with
three specific examples related to themaindiscussionof
causality.

5.1 Inappropriate Reference Set for Probabilities

The first fallacy to be discussed, unlike the others, does
not center around misuse of notions connected with
causality, but rather with mathematically correct but
inappropriate calculations of probability. Cornfield
(1969) discussed a criminal case in California, People
versus Collins, in which a couple had been found
guilty partly on the basis of the following argument.
Eye-witnesses described the crime as committed by a
man with a moustache, by an Afro-American man
with a beard, by an inter-racial couple in a car, by a
couple in a partly yellow car, by a girl with blond hair,
and by a girl with a ponytail.

Probabilities were assigned to these six features and,
assuming independence, multiplied to give a prob-
ability P� 0.8�10−�, the smallness of this being

Table 1
Counts, percentages and odds-ratios; the two explanatory variables are
independent, C�B, due to randomized allocation of treatments, C, to
patients; depending on the patient’s unobserved status, B, the thrombolitic
agent has a very different chance of treatment success

B� 1, Burst vein B� 2, Thrombus

R, Success of C, Thrombolytic agent C, Thrombolytic agent
treatment yes no yes no

yes 6 60 1425 300
(2 percent) (20 percent) (95 percent) (20 percent)

no 294 240 75 1200

sum 300 300 1500 1500
odds-ratio 0.08 16

argued as evidence of guilt. The California Court of
Appeal rejected this argument as inappropriate, pri-
marily because they regarded the issue as being
whether there could be one or more further matching
couples in theLosAngeles area. For this they argued in
effect that if N is the population of the greater Los
Angeles area then the number of couples with the
assigned properties has a Poisson distribution of mean
NP and, since one such couple is known to exist, the
number has a zero-truncated Poisson distribution with
parameter NP. From this the Court of Appeal calcu-
lated a probability of about 0.4 of there being one or
more further couples with matching features, too high
to justify a safe conviction of the original couple.

Amore formal argumentwould useBayes’s theorem
to calculate the posterior probability of guilt, assuming
that the only evidence is that stated above and that the
numerical assignments are reasonably accurate.

5.2 Interacti�e Effect In�ol�ing an Unobser�ed
Explanatory Variable

It has been reported (Zivin and Choi 1991) that early
controlled clinical trials with stroke patients were
discouraging because they appeared to give differing
answers to the question: do thrombolytic agents
effectively improve the status of stroke patients? These
are substances to dissolve blood clots, i.e., thrombi.
Nowadays it is known that a stroke can be caused by
a thrombus or by a burst vein. Thus, a thrombolytic
agent may improve the patient’s status or it may
worsen it considerably, depending on the reason for
the stroke. With patients of both types in any study
‘treatment-unit’ additivity will not hold, nor can there
be ‘strongly ignorable treatment allocation,’ even if
the study is a controlled clinical trial with random
allocation of patients to one group treated with a
thrombolytic agent and the other with a placebo.

Instead, observations like those in Table 1 are to be
anticipated. The main response is success of treatment
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Table 2
Counts, percentages and the same association between R and C as measured in terms of relative chances given each
level combination of A and B; strong three-factor interaction between A, B, C; response depends on each of the
explanatory variables A, B, C

A� 1 A� 1

B� 1 B� 2 B� 1 B� 2

C� 1 C� 2 C� 1 C� 2 C� 1 C� 2 C� 1 C� 2

R� 1 604 40 300 2000 301 2015 600 40
(30 percent) (20 percent) (75 percent) (50 percent) (75 percent) (50 percent) (30 percent) (20 percent)

R� 2 1396 160 100 2000 99 1985 1400 160

Sum 2000 200 400 4000 400 4000 2000 200

Relative chances for R� 1 comparing C� 1 to C� 2 given A, B

1.5 1.5 1.5 1.5

Table 3
Counts, percentages and relative chances obtained from Table 2 by summing
over the levels of A show seemingly replicated associations for R and C given
B; the actual associations between R and C, as shown in the previous table,
appear reversed and (R, C)�B

B� 1 B� 2

C� 1 C� 2 C� 1 C� 2

R� 1 905 2055 900 2040
(38 percent) (49 percent) (38 percent) (49 percent)

R� 2 1495 2145 1500 2160

Sum 2400 4200 2400 4200

Relative chances for R� 1 comparing C� 1 to C� 2 given B

0.78 0.78

and the main explanatory variable is the type of
treatment. In this example there is a ratio of 1:5 for the
number of stroke patients with a burst vein to those
with a thrombus. With successful randomization the
patient’s status will be independent of treatment, but
the strong interactive effect of status and treatment on
outcome cannot be avoided.Whenever it is not feasible
to observe the patient’s status, then the reported results
of any clinical trial will strongly depend on the actual
percentage of patients in the study having a thrombus
as cause of the stroke. In any case, nowadays it would
be unethical to include stroke patients known to have
a burst vein in a clinical trial designed to study a
thrombolytic agent.

5.3 Dependence Re�ersal

The artificial data in Table 2 illustrate that a strong
three-way interaction among explanatory variables A,
B, C can lead to replicated dependence reversals
whenever the response R depends on each of the
explanatory variables.

Here, treatment C� 1 is consistently better under
four different conditions, since the chances for suc-
cessful treatment R� 1 are higher for C� 1 if
compared with C� 2; relative chances are even
identical in the four conditions. But, this treatment
appears to be consistently worse under two repli-
cations B� 1 and B� 2, i.e., when A is unobserved.
In addition, in an analysis of only the three variables
R, B, C, it appears as if randomization had been used
successfully since C�B.

These effects are an extreme example of what is
often called the Yule-Simpson paradox. Although in a
sense the word paradox is inappropriate, the possi-
bility of this kind of dependence reversal reinforces the
need for either carefully studying relations among
explanatory variables or for using effective randomiz-
ation procedures.

If a statistical association is to be judged as evidence
for a causal hypothesis, then one should be certain that
the observed associations do not mislead us about the
actual associations. This is impossible without
assumptions about unobserved variables even in trials
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with randomization (see also Stone 1993). Therefore it
appears that substantial progress in establishing causes
can be expected only via understanding and descrip-
tion of the processes which generate observed effects.
See Linear Hypothesis: Fallacies and Interpreti�e Prob-
lems (Simpson’s Paradox).

6. Suggested Further Reading

The statistical aspects of causality are best approached
via the discussion paper of Holland (1986), where in
particular, key references to the earlier literature will
be found; see also Cox and Wermuth (1996, Sect. 8.7).
For general issues about observational studies, see
Cochran (1965) and Rosenbaum (1995). For a philo-
sophical perspective, see Simon (1972) and Cartwright
(1989). For an interventionist view, see Rubin (1974)
and for a more formal analysis still from a social
science viewpoint Sobel (1995). For a development
based on directed acyclic graphs, see Pearl (2000) and
for the general connections with graph theory
Lauritzen (2000). For an approach based on a com-
plete specification of all independencies between a set
of variables, followed by a computer-generated listing
of all directed acyclic graphs consistent with those
independencies, see Spirtes et al. (1993). The use of
counterfactuals is criticized by Dawid (2000). The
reader should be aware that many rather different
interpretations of causality are involved in these
discussions.

An elementary account of fallacies is given, with
many interesting examples, by Huff (1954). Good
(1978) gives a detailed classification of types of fallacy,
again with excellent examples. See also Agresti
(1983).

See also: Causation (Theories and Models): Con-
ceptions in the Social Sciences; Causation: Physical,
Mental, and Social; Explanation: Conceptions in the
Social Sciences; Scientific Reasoning and Discovery,
Cognitive Psychology of
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D. R. Cox and N. Wermuth

Causation (Theories and Models):

Conceptions in the Social Sciences

Many, perhaps most problems and hypotheses in
social and behavioral research concern causal rela-
tions. What caused the fall of communism? What
caused Peter’s depression? What causes aggression in
general? Atkinson and Birch (1978, p. 30) consider as
one of the fundamental questions in the study of
motivation: ‘What causes the strength of tendencies to
change?’ However, the idea or concept of causation is
also involved in many cases in which people do not use
the word ‘cause.’ Many concepts include the idea of
causation as part of their meaning, for example, a
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