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S

It is shown that both the simple form of the Rasch model for binary data and a generalisation
are essentially equivalent to special dichotomised Gaussian models. In these the underlying
Gaussian structure is of single factor form; that is, the correlations between the binary variables
arise via a single underlying variable, called in psychometrics a latent trait. The implications for
scoring of the binary variables are discussed, in particular regarding the scoring system as in effect
estimating the latent trait. In particular, the role of the simple sum score, in effect the total number
of ‘successes’, is examined. Relations with the principal component analysis of binary data are
outlined and some connections with the quadratic exponential binary model are sketched.

Some key words: Logistic function; Median dichotomy; Multivariate Gaussian distribution; Principal compo-
nents; Probit; Rasch model; Sheppard’s formula.

1. I

There are a number of different types of model for the joint distribution of a set of binary
variables. When the number of components p is small a multinomial distribution on the 2p possible
values may be used but for larger values of p some distribution with a smaller number of adjustable
parameters will often be useful, in some sense an analogue of the multivariate Gaussian distribution
for continuous variables. Three important such special distributions are the dichotomised Gaussian
distribution (Pearson, 1909), the Rasch model (Rasch, 1960, 1961) and the quadratic binary
exponential model (Cox, 1972; Cox & Wermuth, 1994), a special case of a log-linear representation
of probabilities.

Denote the vector p×1 binary random variable by A, the components taking values 1 and −1,
which we occasionally call success and failure. The convention of choosing 1 and −1 rather than
the more usual 1 and 0 simplifies some calculations slightly.

There are a number of distinct purposes for which a model for the joint distribution might be
required. We consider here internal analysis (Bartlett, 1947), i.e. the study of the internal relation
between the components, as contrasted with external analysis in which the components are studied
in their relationship to a second set of variables. Even in internal analysis the emphasis changes
somewhat depending on whether the components are of intrinsic interest or are what we shall call
items, recorded because they form multiple indicators for some underlying variable, W. Our empha-
sis here is on the latter possibility, in particular on the use of sum scores, that is weighted linear
combinations of the components of A, to estimate the latent trait, W. In particular, we examine
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the efficiency of the simple sum score in which the components are given equal weight, this being
essentially equivalent to counting the number of components with the ‘upper’ level of response,
here conventionally called successes.

2. T  G 

A specification with a long history (Pearson, 1909) is obtained by supposing that the binary
vector A is derived from an unobserved Gaussian vector, U. Without loss of generality suppose
that U has zero mean and unit standard deviations; denote its covariance matrix by S

UU
and

suppose that A
s
=1 if and only if U

s
>−c

s
. Then, for example,

E(A
s
)=2W (c

s
)−1, var (A

s
)=4W (c

s
)W (−c

s
), cov (A

s
, A
t
)=4Y2 (cs, ct ; rst ),

for sNt, where r
st

is the correlation coefficient of (U
s
, U
t
) and

Y2 (x, y; r)=W2 (x, y; r)−W(x)W(y),

where W(x) is the standardised Gaussian cumulative distribution function and Y2 (x, y; r) denotes
the cumulative distribution function of the standardised bivariate normal distribution of correlation
r. Now, by a formula of Sheppard (1898), we have in the special case of median dichotomy, i.e.
when c

s
=c
t
=0, that

Y2 (0, 0; r)=2p−1 sin−1 r. (1)

We shall explore the consequences of a very special dichotomised Gaussian distribution in which
the underlying latent variables themselves have a single factor structure. This is based on there
being two levels of latent variable. That is, the U’s which generate the binary variables are them-
selves generated from a single underlying variable W with error in such a way that U

1
, . . . , U

p
are

mutually independent given W. This corresponds to the simple graphical Markov model (Edwards,
2000, p. 189; Lauritzen, 1996, p. 4; Cox & Wermuth, 1996, p. 30) of Fig. 1(a). It implies the corre-
sponding independence structure in the binary variables A derived from U; see Fig. 1(b).
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Fig. 1. (a) Normally distributed variables conditionally independent given latent
variable W ; correlations obey tetrad conditions. (b) Binary variables derived from
(a) by dichotomy; tetrachoric correlations obey tetrad condition. (c) Binary variables
in latent class model derived from latent class model with two latent classes defined

by L ; conditional log-odds obey tetrad condition.

Explicitly let U
1
, . . . , U

p
be unobserved standardised Gaussian variables such that

U
s
=l
s
W+√(1−l2

s
)V
s
,

where W, V
1
, . . . , V

p
are independent standard Gaussian variables. The parameter l

s
, which is the

least squares regression coefficient of U
s
on W, is called a loading in the context of a single-factor

model. The joint marginal distribution of the U
s

is thus a standardised multivariate Gaussian
distribution with the special correlation matrix T(l), that is having (s, t)th element l

s
l
t
. This

satisfies the so-called tetrad condition for correlations involving four different indices (q, r, s, t),
namely that for nonzero correlations

r
st
/r
rt
=r
sq

/r
rq
=l
s
/l
r
.
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The tetrad condition is a consequence of the linear structure underlying the Gaussian distribution
and so will not apply to correlations derived from general random variables with the independence
structure of Fig. 1(a) or (b). In particular it will not apply to binary variables. For median dichot-
omy, however, (1) applies and, for small x, sin−1(x) is approximately x+x3/6; in fact sin−1(x)
differs from x by less than 10% provided that x<0·65. Thus the correlation between the binary
variables is approximately proportional to the correlation between the corresponding Gaussian
components and thus the tetrad condition will hold approximately for the binary variables, so long
as the correlations are not too large. The tetrachoric correlations derived by finding via the bivariate
normal integral the correlations in the underlying Gaussian distribution will, however, continue
to satisfy a tetrad condition.

We denote the covariance matrix of the vector A by S
AA

. Further we write S
WA

for the row
vector cov (W, A

s
); it has elements

2l
s
w(c
s
),

where w(x) denotes the standard normal density function.

3. T R 

Let L (x)=ex/(1+ex)=1−L (−x) denote the unit logistic function. Then in the Rasch model
(Rasch, 1960, 1961) the probability that, for example, all the p binary variables for a given subject
are successes is

a
s

L (a∞
s
+b∞
s
w), (2)

where w is a subject effect on some standardised scale and a∞
s
, b∞
s
characterise the sth variable. The

general form is

pr{A
s
=a
s

(s=1, . . . , p)}=a
s

L {a
s
(a∞
s
+b∞
s
w)}. (3)

In the context of educational testing, a∞
s
is a measure of item general difficulty and b∞

s
a measure

of its selectivity. In the simple form of the Rasch model the b∞
s
are all equal. This leads to the simple

sum score, equivalent to the total number of successes, as the sufficient statistic for an individual
with unknown w.

In a random subject version, w is the value of a random variable W so that the probability (3)
is replaced by its expectation over the distribution of W. In particular we shall suppose for the
present paper that W has the standard normal distribution. From this viewpoint the model has in
W a single latent variable. This is often also called a construct and sometimes one aims to estimate
its value for an individual via multiple observed indicators, A.

4. A    

It is known that to a close approximation

L (x)=W(cx) (4)

for a suitable constant c. If we combine this with the assumption that the random variable W has
a standard Gaussian distribution we have that (2) becomes approximately

P2
−2

dww(w)a
s
W(a
s
+b
s
w), (5)

where a
s
=ca∞

s
and b

s
=cb∞

s
. Note incidentally that use of a different scaling constant c for each s

is allowable and that if the effective range of the probability of success is very different for the
different items this would lead to an improved approximation (4). The approximation will work
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worst when there are some component variables with much steeper slopes, that is b
s
, than the

majority. In that case for some values of w the arguments of the distribution functions are likely
to be at the extremes of the range and the Gaussian distribution then assigns more extreme
probabilities than does the logistic.

It can now be shown that the integral (5) is the p-dimensional standard Gaussian distribution
function

W
p
{a
s
/√(1+b2

s
) (s=1, . . . , p); T(b

s
/√(1+b2

s
))}. (6)

Note that for the simple Rasch model, that is the model with all slopes, i.e. loadings, equal, T
becomes an intraclass correlation matrix, i.e. a matrix with all correlations the same, namely
b/√(1+b2 ).

The result (6) can be proved analytically from the integral I in (5) by forming

∂pI/∂a1 . . . ∂ap ,

simplifying and then integrating the resulting exponentiated quadratic form. A direct probabilistic
proof is as follows. Let V1 , . . . , Vp be independent standard Gaussian random variables. Then
conditionally on W=w the required probability has the form

pr{V
s
<a
s
+b
s
w (s=1, . . . , p)},

and when we integrate over the distribution of W this becomes

pr{(V
s
−b
s
W )/√(1+b2

s
)<a
s
/√(1+b2

s
) (s=1, . . . , p)}. (7)

Note that the random variables in (7) are all standardised to zero mean and unit variance and
that their correlation matrix is the tetrad matrix T defined above, thus proving the approximate
equivalence of (5) and (6).

5. L      A

When the A
s
are regarded primarily as multiple indicators for some unobserved feature, i.e. a

latent trait or a construct, which we shall take to be W, we are then interested in summary scores
based on A, in particular in the simple unweighted sum score S=1T

p
A, where 1

p
is a column vector

of ones, equivalent to the total number of successes. We shall consider only linear combinations
of the individual item responses, although for binary responses the restriction to linear sum scores,
however convenient in practice, has no obvious formal statistical justification. There are, however,
clear practical arguments in favour of such a restriction. The arguments set out below can be
extended to include polynomial, and hence entirely general, functions of A.

The linear least squares regression of W on A gives the optimal linear combination S
WA
S−1
AA

A
for estimating the unobserved W and, noting that the marginal variance of W is one, we may
define the efficiency of the corresponding estimator of W by the squared multiple correlation of
W on the vector A, namely

E
A
=S
WA
S−1
AA
ST
WA

.

By contrast the efficiency of the simple sum score, S, is

E
S
={cov(S, W )}2/var(S)= (S

WA
1
p
)2/(1T
p
S
AA

1
p
).

Under the simple Rasch model, corresponding to equal slopes, S is, among functions of A, fully
efficient for estimating W.

More generally we might use weighted linear scores derived by some different approach, or even
more than one score simultaneously. If L is a r×p matrix defining a set of scores L A, the correspond-
ing measure of efficiency is

E
LA
=S
WA

L T(L S
AA

L T )−1L ST
WA

.
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Finally, for comparison it is helpful to have the efficiency in this sense that would be achievable
were the continuous variables U to be observed. This is

E
U
=S
WU
S−1
UU
ST
WU

,

where S
WU
={l1 , . . . , lp} and S

UU
=T(l1 , . . . , lp ) is the corresponding tetrad matrix. Since the

inverse of a tetrad matrix is also of tetrad form (Bartlett, 1951) it follows that

E
U
=

Sl2
j
/(1−l2

j
)

1+Sl2
j
/(1−l2

j
)
.

If, in particular, all the l
j
are equal, say to l, then

E
U
=

pl2
1+( p−1)l2

.

6. R    

Before illustrating the above results numerically and discussing their interpretation we comment
briefly on the principal component analysis of binary data.

One version focuses on the individuals and aims to map points in p dimensions into a reduced
number of dimensions preserving so far as possible the Euclidean distance between pairs of points.
From this point of view analysis of the covariance matrix of binary features poses no special
problem; the Euclidean distance in the originating binary variables is essentially the number of
discrepant components. Note that principal component analysis of the correlation matrix would
not have this interpretation.

In the dual interpretation, emphasis is on the variables. Here the relevance for binary variables
is much less clear, essentially because orthogonal transformation of binary variables, standardised
or not, has no clear meaning. Nevertheless there is the possibility that the first principal component
of the correlation matrix of binary variables may be close to the optimal linear combination of
the binary responses as defined above for estimating a hypothesised underlying Gaussian single-
factor latent variable model.

We shall see in § 7 that this is indeed sometimes the case. In some extreme situations this is
immediately clear. For example, if there were a mixture of exchangeable binary variables following
the Gaussian latent factor model and some mutually independent variables independent also of
the first set, then principal component analysis would give the latter variables zero weight. The
simple sum score of the first set would be recovered. Furthermore, if some of the variables are
scored in the wrong direction, but otherwise the variables are exchangeable, again the optimal
combination would be recovered.

7. S 

We now consider some detailed results for a binary distribution derived from an underlying
single factor latent Gaussian model. Note that the dichotomised Gaussian model corresponding
to the simple Rasch model has to a first approximation all loadings equal.

In the simplest exchangeable case where all the variables are median dichotomised and have
equal loadings l, so that S is the optimal linear sum score, the limiting behaviour of E

S
is slightly

delicate. As l tends to zero for fixed p, E
S
tends to zero, as would be expected. As p tends to infinity

for fixed l, E
S

tends to a limit which is a decreasing function of l, the limit being close to one for
small l. This is because, when the internal correlation of the items is very high, there is little gain
from replication. When l is small, however, the limit for large p is approached slowly. Table 1
shows some typical values of E

S
. The relative loss by observing only the dichotomised variable A

rather than the continuous variable U is shown by the ratio E
S
/E
U

and is typically about 0·7 for
p=4 and slightly larger for p=8.
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Table 1. Some eYciencies of the simple sum score
for equal loadings and median dichotomy

l2 E
S

E
U

p=4 p=8 p�2 p=4 p=8

0·1 0·214 0·352 0·998 0·308 0·471
0·2 0·368 0·537 0·993 0·500 0·667
0·4 0·571 0·719 0·973 0·727 0·842
0·6 0·685 0·790 0·932 0·857 0·923
0·8 0·735 0·794 0·863 0·941 0·970
0·9 0·730 0·765 0·804 0·973 0·986

A reasonably detailed further study has been made for p=4. It is difficult to summarise the
conclusions concisely but they are essentially the following. If we consider the totally exchangeable
case, i.e. where all components have the same loading, l, and cut-off point, c, the simple sum score,
the optimal linear score and the first principal component coincide, by symmetry. For fixed c the
efficiency of the linear score has a maximum as a function of l at approximately l=0·9, the
position depending slightly on the value of c.

The closest parallel to the assumptions of the simple Rasch model requires all components to
have the same l but allows different marginal distributions, i.e. different l. In these cases indeed
the simple sum score has an efficiency within less than 1% of the most efficient linear combination.
The first principal component of the correlation matrix of the binary variables is only very slightly
less efficient; see, for example, the first row of Table 2.

Table 2. Some eYciencies with diVerent marginal distribution and load-
ings; p=4. EYciencies are of optimal linear combination of binary
responses, simple sum score, first principal component of binary items

and of underlying continuous variables

(c, L ) E
E

E
S

EPCA E
U

(−1, 0·98), (−0·5, 0·98), (0·5, 0·98), (1, 0·98) 0·867 0·867 0·865 0·990
(0, 0·4), (0, 0·4), (0, 0·98), (0, 0·98) 0·692 0·614 0·678 0·980

(−1, 0·4), (−1, 0·4), (−1, 0·98), (−1, 0·98) 0·496 0·451 0·494 0·980
(0, 0·2), (0, 0·6), (0, 0·95), (0, 0·99) 0·699 0·614 0·686 0·983

(−1, 0·2), (−1, 0·6), (−1, 0·95), (−1, 0·99) 0·501 0·448 0·498 0·983
(−1, 0·98), (−1, 0·4), (1, 0·4), (1, 0·98) 0·721 0·568 0·604 0·980

If all components have the same c, in particular if they are median dichotomised, c=0, but have
different loadings, l, the first principal component derived from the correlation matrix of the binary
items is appreciably better than the simple sum score, but is capable of some small further improve-
ment; see the second to fifth rows of Table 2. When, however, there are large variations in both
marginal distribution and in loadings the first principal component, while still an improvement on
the simple sum score, is appreciably less predictive than the optimal linear combination. See the
last row of Table 2.

Note again that all this discussion is concerned with the properties of probability distributions.
If the underlying single factor model is indeed assumed as the basis of interpretation, there are at
least two routes to statistical estimation of a linear function intended to improve on the simple
sum score. One is by principal component analysis. Another is to estimate as simply as possible
the parameters l

s
and a

s
and via them the coefficients of the optimal linear estimating function for W.

8. Q   

We now turn to a third distributional form. The quadratic binary distribution has

pr{A
s
=a
s

(s=1, . . . , p)}=exp{Sd
s
a
s
+S
s>t
d
st
a
s
a
t
−k(d)}, (8)
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where k(d) is a normalising constant depending on the full parameter vector d; see, for example,
Cox (1972) and Cox & Wermuth (1994). The interpretation of d

st
=0 is that A

s
aA
t
|A
u
(uNs, t).

In this sense the symmetric matrix formed from d
st

is analogous to the inverse covariance or
concentration matrix in the multivariate normal distribution. The simplification corresponding to
the vanishing of particular quadratic coefficients is thus incisively represented via an undirected
independence graph in which conditional independencies given all remaining variables are shown
by missing edges; this is sometimes called a concentration graph (Cox & Wermuth, 1996). The
properties of such graphs are known in generality (Lauritzen, 1996).

Such a model is a special case of a whole family of log-linear models including when the full
number of parameters is allowed the saturated multinomial model on 2p points. The special interest
of (8) lies in the reduced number of parameters obtained by excluding cubic and higher terms in
the expansion.

An underlying continuous variable is not easily manipulated within this model in general but a
binary latent class variable, L , can be included by assuming that it and A jointly have a quadratic
exponential distribution in which, analogously to the situation in Fig. 1(b), A1 , . . . , Ap are mutually
independent given L , see Fig. 1(c); that is, we start from the form (8) for the p+1 variables
L , A
1
, . . . , A

p
in which the only nonzero quadratic coefficients are those involving L . If we now

marginalise over L the quadratic exponential form is retained only as an approximation, but in
that approximation d

(L)rs
, the coefficient of a

r
a
s
marginalised over L, is approximately of the tetrad

form

d
(L)rs
=d
Lr
d
Ls

sech2 d
L
;

that is, the underlying structure yields a tetrad condition not on the correlations or on the tetra-
choric correlations but on the conditional log-odds ratios.

9. S  

In the general p-dimensional multivariate Gaussian distribution the standard parameterisation
is in terms of p means, p variances, or equivalently conditional precisions, and p( p−1)/2 corre-
lations. Alternatively one may use the means and the elements of the concentration matrix, these
being equivalent to conditional variances and partial correlations. In the simple Rasch model and
its Gaussian equivalent there are p location parameters and a single parameter defining inter-
relations. In the general Rasch model and its Gaussian equivalent there are p location parameters
and p parameters defining interrelations.

In some ways the most important consequence of the present paper is that the Rasch model and
the corresponding dichotomised Gaussian model are likely to lead to essentially the same con-
clusions. In any case, empirical discrimination between Rasch and multivariate Gaussian models
with the same number of parameters would depend on aspects of the difference between logistic
and integrated normal distribution functions and hence is very unlikely to be either feasible or
interesting in practical cases. Discrimination between Rasch and quadratic binary exponential
distributions in their general form is also likely to be difficult; it will not be discussed further here.

Their relative usefulness as tools for detailed analysis will depend on how relevant it is for
interpretation to establish a connection with a hypothesised latent variable.
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