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Summary

Statistical aspects of causality are reviewed in simple form and the impact of recent work discussed.
Three distinct notions of causality are set out and implications for densities and for linear dependencies
explained. The importance of appreciating the possibility of effect modifiers is stressed, be they intermedi-
ate variables, background variables or unobserved confounders. In many contexts the issue of unobserved
confounders is salient. The difficulties of interpretation when there are joint effects are discussed and
possible modifications of analysis explained. The dangers of uncritical conditioning and marginalization
over intermediate response variables are set out and some of the problems of generalizing conclusions
to populations and individuals explained. In general terms the importance of search for possibly causal
variables is stressed but the need for caution is emphasized.
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1 Introduction

Statisticians concerned with the interpretation of their analyses have implicitly always been inter-
ested in causality even if they have been sparing in the use of the word. Thus Yule (1900) emphasized,
especially in a time series context, the distinction between correlation and causation. Fisher (1926,
1935) showed that randomization could yield causal inference about treatment effects in which
uncertainty could be assessed probabilistically on the basis of the randomization without special
assumptions about the structure of the uncontrolled variation.

Cochran (1965) gave a penetrating discussion of many aspects of the analysis of observational
studies and in particular pointed to the need to extend Sewall Wright’s path analysis to address issues
of possible causality, thus anticipating the thrust of much recent work. In addition Cochran quoted
Fisher’s reply to a question that Cochran had asked him about how to make observational studies
more likely to yield causal answers: the answer was “Make your theories elaborate”. This might be
achieved in various ways, for example by assembling evidence of different types or by obtaining
somewhat similar evidence under a wide range of conditions.

Hill (1965) gave guidelines. Satisfaction of some or all of them would strengthen the case for
causality inferred from observational studies; he did not state explicitly what he meant by the term
causal, although it seems very likely that it was what is termed below first-level causality. Although
formulated in an epidemiological context his guidelines are widely relevant. He emphasized that
they were indeed guidelines not criteria.

Box (1966) stressed the care needed in giving in effect a causal interpretation to regression equa-
tions fitted to observational data. While his illustration was set in a chemical engineering context the
argument was again of broad applicability.

Rubin (1974), in an influential paper, adapted notions of causality from the design of experiments
to observational studies via a representation similar to Fisher’s which, without the essential element
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of physical randomization, had been given by Neyman (1923). Subsequently Rubin developed and
applied these ideas notably in social science contexts. His and much other previous work is best
approached through the review paper of Holland (1986).

Cox & Snell (1981, pp. 84, 85), in an elementary account of regression, outlined five different
interpretations of regression equations and coefficients. One was to examine the effect of imposed
changes in one or more variables and the care needed, especially in observational studies, in speci-
fying what is held fixed under the imposed changes was emphasized.

Robins, in a long series of papers, in effect explores notions of causality in a clinical trial and
epidemiological setting. For problems where treatments or interventions are applied in sequence,
see, for example, Robins (1997) and in more detail van der Laan & Robins (2002).

Rosenbaum (2002) has given a searching discussion of the conceptual and methodological issues
involved in the analysis of observational studies.

The above work can be regarded as in a main-stream statistical tradition. In this the central idea is
that of regression analysis, taken in a very general sense as meaning the study of the dependence of
one or more response variables on explanatory variables. The key issues are broadly as follows:

� to choose an appropriate general form of regression relation
� to determine which explanatoryvariables can legitimately be included in the relation additional

to those that have a potentially causal interpretation
� to examine possible nonlinear and interactive effects that may be central to correct interpreta-

tion
� to combine evidence from several studies.

There are some situations where causality is clear. The effect may be large and the consequence
of a major perturbation of the system or may be firmly related to long and broad experience or to
well-established theory. Our discussion, however, is largely focused on situations where establishing
causality is more delicate, either because the effect under study is small or because of the possibility
of competing explanations of the data. Freedman (2003) has warned against overinterpretation of
statistical analyses, giving examples especially from epidemiology and sociology; see also Dempster
(1988). Doll (2002) has emphasized that causality can be inferred from empirical epidemiological
studies but that considerable care is needed if the effect is only a modest one.

There are many examples where successful search for a causal effect has involved a chain of
studies of different types. It might start with the observation of several unusual events, followed by
retrospective and prospective studies and evidence from other sources, for example animal studies
in a human health context. One prominent example concerns a particular malformation of the eye. It
was first noted by an Australian physician (Gregg, 1941) as a common feature of several newborns
with this malformation that the mothers had been in early pregnancy during the height of a rubella
epidemic. It took a large number of additional studies to establish that the malformation can only
occur if the mother had not been exposed to rubella before the pregnancy and then only if she had
been in contact with rubella during the first three months of pregnancy. Major reports, in particular
on health issues, such as that of the U.S. Surgeon-General (U.S. Department of Health, Education
and Welfare, 1964) concluding that smoking is a cause of lung cancer, are typically based on a wide
range of evidence.

Deterministic notions of causality have a long history. More probabilistic notions of causality have
received much recent attention in the philosophical and computer science literature on knowledge
and belief systems and in particular there is both the important early work of Spirteset al. (1993),
for a review of which see, for example, Scheines (1997), and a book by Pearl (2000) summarizing
and extending his earlier work. This work is in a sense more formalized than most of the statistical
ideas summarised above and one of the aims of the present paper is to examine the relation between
the two strands of work; see especially Section 4.2.
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2 Some Definitions

We now sketch three different notions of causality. It is important to distinguish causality as a
property of the physical or biological or social world from its representation in statistical models. We
aim for statistical models that permit interpretations in the former sense; to call such models causal
models is, however, potentially misleading.

We start with a view of causality, to be called here zero-level causality, and used often in the
statistical literature. This is a statistical association, i.e. non-independence, with clearly established
ordering from cause to response and which cannot be removed by conditioning onallowable alter-
native features. A crucial aspect concerns the term allowable. For example, in assessing the possible
causal effect of an intervention on the occurrence of a cardiac event, blood pressure three months
after starting treatment would not be an allowable conditioning feature because it itself may be
affected by the intervention under study.

What is termed here the zero-level view of causality was studied by Good (1961, 1962) and
comprehensively developed by Suppes (1970) and in a time-series context by Granger (1969) and in
a more general stochastic process formulation by Schweder (1970) and by Aalen (1987).

We next introduce a different formulation, to be called first-level causality. This broad approach
seems most immediately relevant in many applications of concern to statisticians.

For this, faced with two or more possible interventions in a system, we may aim to compare
the outcomes that would arise under the different interventions. For example, consider two possible
medical interventions,C� andC�, a new treatment and a control, only one of which can be used on
a particular patient. We aim to compare the outcome observed, say withC �. with the outcome that
would have been observed on that patient hadC � been used,other things being equal. Evidence of a
systematic difference would be evidence that use ofC � rather thanC� causes a change in outcome.
This viewpoint may have a decision-making objective although this is by no means necessary. For
example, when considering whether an anomalous gene causes some disease, the intervention as
between the abnormal and normal version of the gene is hypothetical and moreover no immediate
decision-making process is typically involved. This definition of causality is explicitly comparative.

One of the delicate aspects of this formulation is that it is most immediately formulated as con-
cerning individuals but its verification and often its real meaning involve aggregate or statistical
issues, i.e. involve average effects over some set of individuals. In that case explicit specification of
a reference population of individuals may be important.

Finally we introduce what we name second-level causality. In a scientific context suppose that
careful design and analysis have established a pattern of dependencies or associations or have pro-
vided reasonable evidence of first- or zero-level causality. The question then arises of explaining
how these dependencies or associations arose. What underlying generating process was involved, i.e.
what is underlying the structure observed? Often this will involve incorporating information from
many different sources, for example in a physical science context establishing connections with basic
principles of classical or quantum physics and perhaps between observational and laboratory-scale
observations. Goldthorpe (1998) has argued for such a broad notion of causality also in sociology
and Hoover (2002) in macroeconomics. A methodological distinction between epidemiological and
sociological research is that in the former the possible causal effect of specific risk factors is often
of concern as a potential base for public health recommendations. In sociological work interest may
often lie in the whole process linking say parental socio-economic class and individual life-features.

In all fields, explanations via a generating process are inevitably to some extent provisional and the
process hardly lends itself to very formal characterization. In this view it is important to distinguish
between different types of explanation. Some are merely hypothesized, and these can be a valuable
preliminary and a source of stimulating research questions. Others are reasonably solidly evidence-
based. Moreover some such evidence-based explanations are formulated before the examination of
some data to be analysed, whereas others may be retrospectively constructed in the light of that
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analysis. The former are typically more immediately convincing and the latter will often call for
independent confirmation. This view of causality does not imply a notion of ultimate causation; any
proposed generating process may itself have a further explanation at some deeper level.

Use of terms varies substantially between individuals and fields. Nevertheless the notion of
evidence-based process seems to correspond broadly but not exclusively to usage in the natural
sciences. The first-level notion seems, however, to be most frequently involved in statistical work,
especially in such fields as epidemiology with a relatively applied focus. For further discussion of
these distinctions, see, for example, Cox (1992), Holland (1986) and Cox & Wermuth (1996, pp.
219–227).

Because of the need for care in interpretation, it is often convenient to use the following termi-
nology. We callC a candidate cause if it makes sense in the context in question to considerC as a
possible cause ofR, for example in the sense of level-one causality. We callC a potential cause if
there is evidence of a possibly causal effect, for example that the notional responses to alternative
levels, for exampleC� andC�, are systematically different. We omit the qualification potential when
the evidence is convincing that there is no alternative explanation, and especially when the develop-
mental process is well understood. We use this cautious approach not to discourage the search for
causality, but rather to rule out the possibility that real associations can be deemed causal merely by
naming them so.

A referee has pointed out a possible connection with the notions of Suppes (1970) of prima facie,
genuine and spurious causes. The first of these corresponds broadly to what we have called possible
and potential causes. The third of Suppes’s types deals with variables whose possible causal effect
is explained via other allowable variables.

Many of the essential points in the paper are concerned with putting into perspective the three
different views of causality outlined above and with showing them in a framework of probability
models. For this it is for most purposes enough to consider a system with four variables measured
on each individual, a responseR, an intermediate variableI , the potential causal variableC and a
background variableB; see Figure 1 for a graphical representation in which we suppose each of the
four variables to have two components.

Primary
responses

B1

B2

R1

R2

C1

C2

I1

I2

Potential
causes

Intermediate
variables

Background
variables

Figure 1. Graphical representation with four types of variable. In statistical analysis the background variables B, shown in
a double-lined box, would usually be considered conditionally on their observed values.

The role of I will be discussed later in the paper and will not contribute to the first part of the
discussion. We have, however, introduced it in the initial formulation because of its conceptual
importance. A primary role ofB is to specify what is held fixed under notional changes of the
variableC .

It is assumed that the variables can at the start be arranged so that a joint probability distribution
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is defined recursively. In a simplified notation for densities we write

fRICB � fR�ICB fI �CB fC�B fB � (1)

To ignoreI , i.e. marginalize over it, we integrate (1) over all valuesi of I .

3 Level-one Causality

Level-one causality (Rubin, 1974) involves for the simple situation of Section 2 the idea that
for each individual there are two notional responsesR � and R� depending on whetherC� or C� is
used. Only one of these notional responses can be observed and the other thus is in principle not
observable and therefore called a counterfactual. This formulation is combined with an assumption
that any difference betweenR� andR� is systematic, in an extreme form that

R� � R� � �� (2)

a constant, i.e. the same for all individuals in the study.
An important aspect hidden in this definition is that asC notionally changes other relevant aspects

are fixed; we shall see the more formal expression of this later via the role of background variableB.
A form equivalent to (2), that of so-called unit-treatment additivity, specifies that if unit of study

s receivesCi for i � �� � the resulting response is

�s � i�� (3)

with a direct extension if the potential cause takes more than two possible forms.
There is the further assumption that the response on units does not depend on the assignments of

C to other units. We shall not address this issue here but clearly there are contexts where this consid-
eration either dictates the size and nature of the appropriate unit of study or requires elaboration of
(2) and (3) and the resulting statistical analysis. Thus in an agricultural fertiliser trial if the plot size
were too small, quite apart from technical difficulties in implementation and harvesting, fertiliser
might diffuse from one plot to another and make the yield on one plot depend in part on the treatment
applied to an adjacent plot.

Note that the formulation (2) and (3), which is directly adapted from one used in the theory
of experimental design, is put deterministically at an individual level. We discuss later a different
formulation in which a population of individuals is involved and a stochastic element enters.

The assumption (2) is misleading even in an average sense if, for example, there are two different
types of individual responding very differently to the causal variableC . For instance a blood-thinning
agent used in the treatment of stroke could be beneficial to some patients and fatal to others, depend-
ing on the nature of the stroke.

Use of counterfactuals has been criticized by Dawid (2000) and defended in the resulting discus-
sion. It is clear that (2) and (3) can be tested only indirectly via the stability of estimated differences,
i.e. by the absence of interaction with meaningful features of the individuals. Further the parameter
� can be directly estimated only as an average rather than as an individual effect. For some purposes,
however, the individual interpretation of (2) is helpful.

This is not the place for an extended discussion of the role of counterfactuals. While it is clearly
important that crucial assumptions in a statistical argument are not merely capable of being tested in
principle but are subject to adequate test, there seems ample evidence that assumptions and formu-
lations open at best to indirect test can be helpful aids to concept formulation and interpretation.

In some contexts (2) and (3) would be better formulated by regarding any causal effect as operating
proportionally, or equivalently by taking (2) on a log scale.

The null hypothesis that there is no causal effect takes in this formulation the very strong form
that the response observed on any individual is totally unaffected by the choices aboutC � andC�. In
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randomized experiments this leads to a test based solely on the randomization. For binary data, this
is the exact hypergeometric test for a�� � table. The form (2) cannot in the nonnull case apply to
binary responses and then estimation via randomization theory of the magnitude of an effect is more
complicated; see Copas (1973).

We return to the issue of the individual versus the aggregate definition in Section 8.2.

4 Some Recent Work on Causality

4.1 Preliminary Results

We now review some recent work on statistical aspects of causality, especially stemming from
that of Pearl (2000).

That work comes from a different background from that of most statisticians. There are, however,
three accounts of it from a more statistical position. Lauritzen (2000) has placed Pearl’s work in
the context of the theory of graphical models in the form given in his book (Lauritzen, 1996).
Lindley (2002) has reviewed Pearl’s book and given a lucid account of some essential ideas and
made important comments. Finally Dawid (2002) has reformulated the discussion using influence
diagrams.

We first repeat two of Lindley’s comments. The value of Pearl’s formulation does not depend
on the particular view of probability taken. Thus while much is formulated in terms of probability
as assessing judgement or knowledge, the discussion is equally relevant to those concerned with
probability as representing say physical or biological processes. Secondly, while Pearl’s results
do establish conditions under which first level causal conclusions are possible, checking of these
conditions may be difficult; there is no suggestion that Pearl would disagree.

4.2 Conditioning and Intervening

A central theme in Pearl’s discussion is the distinction betweenconditioning on C andsetting or
intervening onC . We start with the joint distribution ofR�C� B, having integrated outI , taking it in
the recursive form

fRCB � fR�CB fC�B fB � (4)

In graphical representations of these systems, conditional independencies are represented by
missing edges. In particular, absence of an effect of a potential causeC on a responseR given
B would be represented by a missing edge betweenC and R; see Figure 2b. A key issue in the
formulation (4) is the assumption that the variables can ona priori grounds be placed in order so
that each variable is a response to the subsequent variables in the sequence.

R RR
C CC

B BB

(a) (c)(b)

Figure 2. (a) Graphical representation of general dependence of R on C and B and of C on B in initial system. (b) Absence
of effect of C on R given B shown by missing edge, implying R �� C � B. (c) Modified system with explanatory variables
acting independently shown as the missing edge between B and C.
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Conditioning in Pearl’s sense is the standard conditioning calculation in (4), given only thatC � c.
We consider the resulting conditional distribution ofR having marginalized overB. That is,

fR�C �

�
fR�CB fB�Cdb� (5)

where fB�C � fCB� fC � It would be appropriate to usef R�C for constructing an empirical prediction
of R given onlyC � c. It corresponds to the total regression ofR on C omitting B, i.e. allowingB
to change withc in accordance with its conditional distribution givenC � c.

To represent the effect of a notional or actual intervention to setC � c in a system in which
the directions of dependency in (4) are meaningful and thus can only act in one direction, we must
express the notion that intervening onC has no backward effect onB, i.e. the value ofB is unchanged
and hence the distribution ofB after the intervention remainsf B . That is, in (5) fB�C is replaced by
fB ; see Figure 2c. This in general defines a different distribution forR having intervened to make
C � c and various notations are in use to describe this. Lauritzen (2000) used�� to replace the usual
conditioning sign, leading to

fR��C �

�
fR�CB fB db� (6)

This is Pearl’s definition of a causal effect, interest focusing on how this distribution changes withc,
having marginalized overB. The relation of this to the counterfactual notion involved in level-one
causality is as follows. An individual has a given valueC � c and level-one causality concerns how
R would change ifc were to change by intervention.

The distinction between the two probability distributionsf R�C and f R��C is crucial to the discussion.
The former in (5) may sometimes have a useful interpretation but is inappropriate for examining
the effect of intervention onC in that unrealistic changes inB are involved, i.e. changes in the past
before the intervention.

In both (5) and (6) it is assumed that the conditional distribution ofR andI givenC andB remains
unaffected by the intervention. This is not a trivial assumption. For example, the idea that serious
interventions may distort all the relations in an economic system is the essence of the Lucas critique
in econometric theory (Lucas, 1976).

Dawid (2002) introduces a unifying synthesis in which there is an augmented variableC �, a
decision node, with a directed edge only toC and which indicates whether conditioning (Figure
2a) or intervention (Figure 2c) is involved for computing an effect ofC on R marginalizing over
B. An advantage of this new formulation is that the usual properties of directed acyclic graphs
apply in both cases. Dawid also shows the possibility of representing counterfactuals via functional
relations involving error random variables represented by additional nodes and stresses, in effect,
the impossibility of distinguishing an individual level version of (2) and (3) from an aggregate or
population level form.

For a wide-ranging series of papers on causality, see McKim & Turner (1997).

4.3 The Linear Case

The representation in Section 4.2 has been framed for general distributions and centres on notions
of statistical dependence and independence. It is, however, useful to set out the corresponding
discussion for linear systems. These are formed from linear least squares regression equations, that is
equations in which a response variable is expressed as a linear combination of explanatory variables
plus a residual term of zero mean uncorrelated with the relevant explanatory variables. Such a
relation is always possible subject to the existence of variances but its statistical relevance depends
on nonlinearities being relatively unimportant.

Thus with just three variables,R�C� B, measured as deviations from their means, we may write,
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corresponding to Figure 2a,

R � �RC�B C� �RB�C B� �R�

C � �CB B� �C �

B � �B �

Here, for example,�RC�B denotes the least squares linear regression coefficient ofR onC adjusting
for B, whereas�RB would denote the regression coefficient ofR on B marginalizing over, i.e.
ignoring,C . This is easily calculated by substitution of the second equation into the first, noting that
the resulting equation is indeed a linear least squares relation and hence giving (Cochran, 1938)

�RB � �RC�B�CB � �RB�C � (7)

Similarly

�RC � �RC�B � �RB�C�BC � (8)

A conditional independence statement such asR �� C � B in the general formulation of Section
4.2 corresponds in the linear theory to� RC�B � � andC �� B corresponds to�CB � � � �BC . For
multivariate Gaussian distributions this implies conditional independence. In general it implies the
weaker property of no relation detectable by analysis linear in the relevant variables.

Thus in the linear case (5) corresponds to computing the overall regression coefficient ofR on
C marginalizing overB, referring to the graph in Figure 2a. On the other hand (6) corresponds to
the overall regression coefficient ofR on C in the modified system of Figure 2c in whichB has
been decoupled fromC , i.e. B andC are nonadjacent in the graph. ThereforeB does not change
when there is an intervention onC . From equation (8) it follows for� BC � � that�RC � �RC�B , i.e.
the partial effect coincides with the overall effect by the assumptions of a notional intervention and
treatment-unit additivity.

If by design or otherwise�CB � � there is no difference between the two formulations. That is,
�RC�B � �RC or, in general, ifC �� B, then f R�C � fR��C .

4.4 Relation with Statistical Practice

There are strong connections and an important difference between the discussion summarized
above and mainstream statistical thinking. A concern common to the two fields is about what should
be regarded as held fixed under hypothetical changes in the causeC . In regression terminology,which
explanatory variables should be included in any regression equation forR additional toC itself?
There is no disagreement that for assessment of a potential causal effect ofC on R, background
variablesB are to be included, i.e. conditioned on, whereas any variables intermediate between the
causeC and the responseR should be excluded, i.e. marginalized over.

A major difficulty in many specific applications concerns whether all appropriate background
variables have been included inB to ensure that the relevant regression coefficient captures the effect
of C itself, so that the term cause is appropriately applied toC . This issue is distinct from the purely
statistical uncertainty in estimating the effect from limited data.

The general discussion in terms of arbitrary densities leaves quite open the special assumptions
of functional and distributional form that are often so important in serious statistical work. Of more
general concern, however, is the notion of averaging an effect over the distribution ofB. While this
is sometimes convenient, in general the marginalization is a bad idea, notably because it discourages
the study of interactions betweenC and additional features included inB. Such interactions may be
crucial for interpretation. Also, as will be discussed in Section 8.1, verifying the absence of important
interactions may give important security in interpretation.

In summary, marginalizing in (5) deals with the following question: given a probability distribution
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over a set of variables (estimated from appropriate data) and given onlyC � c, what can be inferred
about R? This question is remote from discussion of causality and is relevant in contexts where
the objective is exclusively empirical prediction and in particular excludes the study of pathways of
dependence; see Section 5.2.

Setting or intervention in (6) deals with the issue of estimating the effect of modifying the system
by imposing a change onC that has no impact on a background variableB in the past and which
leaves other statistical relations unchanged. The objective is to assess the effect onR of such a change
in C and thereby to compare the effect of different interventions, i.e. different values ofc. This is
expressed in (6) byB retaining its distributionf B independently of the intervention onC .

As already noted and as will be discussed further in Section 8.2, marginalizing overB is in general
unwise and the appropriate distribution for causal interpretation isf R�CB , as a function of bothc and
b, and not f R��C .

The distinctions set out here essentially formalize via the variable or variablesB the ideas men-
tioned in Sections 2 and 3 of respectivelyallowable alternative explanations and ofother things being
equal in connection with zero-level and with first-level causality. When the intermediate variables
I are marginalized, it is implicitly assumed that the conditional distribution ofR givenC� B is not
changed by intervention except via the implied change inC . Similarly, when background variables
are marginalized interactions betweenC andB are ignored.

5 Intermediate and Surrogate Variables

5.1 General Discussion

Up to now variables intermediate betweenC and R have been ignored; there are, however, a
number of important roles that they may play, including the following:

� to suggest pathways of development between the potential cause and the response and thereby
to link with the second-level definition of causality in Section 3

� in further studies or in the presence of missing responses to serve as a surrogate response
variable

� to monitor the correct application of the intervention
� to record any important unanticipated further effect that occurs between the potential cause

and the response.

The first two of these reasons are in a sense the most interesting. Figure 3a shows a general
dependence and Figures 3b and 3c are special cases of interest.

5.2 Study of Pathways

We turn now to second-level causality. As already stated, to find convincing evidence about the
generating process in general, in line with Fisher’s dictum as quoted by Cochran, requires assembly
of evidence of various kinds. Nevertheless an important first step towards level-two causality may
often be analysis involving the intermediate variable or variablesI which in the previous discussion
have been marginalized. These may indicate possible pathways between potential causal variables
C and the responseR, following the original motivation of Sewall Wright’s path analysis and, for
example, its introduction into sociology by Duncan (1975). Detailed interpretation will have the
limitations of observational studies discussed above but nevertheless may be the primary objective
of investigation. Even in the simpler discussion of potential causes it may sometimes be dangerous
to disregardI totally, for this may indicate some unexpected and in a sense unwanted consequence
of the intervention for which some account needs to be taken.
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We give a simple outline example.

Example. Suppose in an agricultural fertiliser trial different levels ofC represent different fer-
tilisers, R is the yield of crop and thatI is the number of plants per square metre all measured for
each plot, the last half-way through the growing season. An increased yield might arise from the
support of an increased number of plants per plot or from an increased yield per plant or from some
combination of effects. In estimating the effect ofC on yield, I would be ignored. The role ofI
is then to point to possible explanation of any fertiliser differences established. The case where the
effect ofC on R can be totally explained viaI is shown in Figure 3b.

R RR

C C C

I II

B BB

(a) (c)(b)

Figure 3. (a) General dependence of R on I� C� B. (b) Given B and I , response R depends on C only via I . (c) Variable I
conditionally independent of C given B and hence may be treated as an explanatory variable in addition to B when studying
possible causal dependence of R on C.

5.3 Surrogate Response

The possibility of an intermediate variable acting as a surrogate response can arise in two ways and
raises important fresh issues. In one context, some individuals have missing response variables but
measured surrogate. In another only the potential surrogate is recorded and its suitability has to be
judged from backgroundknowledge and previous data. If in the former case the missing responses are
missing at random and the intermediate variable is measured in a comparable way on all individuals,
fairly straightforward analysis should usually be possible. Essentially a regression equation in which
the response is regressed on a surrogate response (and possibly other explanatory variables) can be
used to predict the missing responses.

Strong conditions for a surrogate variableR S , say, to be suitable as a total substitute forR were
formulated by Prentice (1989). They are equivalent toR �� C � R B . The additional requirement thatR
andRS are not conditionally independent givenC� B, i.e. that there is some dependence, hopefully a
strong one, between real and surrogate responses is implied in every graphical formulation in which
an edge present corresponds to an association of substantive interest (Wermuth & Lauritzen, 1990).
For a further discussion of surrogates and related issues, see Frangakis & Rubin (2002) and Lauritzen
(2003).

A condition weaker than that of Prentice is that in tracing paths fromB�C to R the dependence
in the relation ofRS to C givenB is in the same direction as that whenR itself is used instead ofR S

(Cox, 1999). In terms of linear representations we require thatR andR S are measured in such a way
that a positive effect ofC on RS implies a positive effect onR and that zero effect onR S implies
zero effect onR. In terms of linear representations, we have that

�RC�B � �RC�RS B � �RRS �CB�RSC�B �

To preserve a qualitative interpretation we want� RC�B and�RSC�B to have the same sign. Simple
conditions for this when�RRS �CB � � are that�RC�B and�RC�B � �RC�RS B have the same sign. This
condition is appreciably weaker and more realistic than requiringR �� C � R S B.
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A major difficulty with conditions for the appropriateness of surrogates is that the conditions need
to hold for a broad range of circumstances or to be justified by some evidence-based knowledge of
process; verification in one set of pilot data would on its own give little security for their future use.

This means that suggestions of causality forR based in fact on the surrogateR S are likely to be
especially tentative unless the pathway fromR S to R is well understood.

There is a difference of emphasis depending on whether the surrogate variable is of some intrinsic
interest as compared with situations in which it is of no concern except in its surrogate role.

Example. In industrial life-testing accelerated testing in extreme environments is commonly used
as a surrogate assessing reliability in a working context and justified explicitly or implicitly by some
such proportionality assumptions as that ifR and R S are failure times in natural and accelerated
modes thenRS � R��, where� is an acceleration factor assumed relatively stable across the various
situations to be considered, i.e. in particular independent ofC .

In this instance the surrogate variable is likely to be of no intrinsic interest. On the other hand in
some medical applications, symptomatic improvement may be an intrinsically interesting surrogate
for longer term response.

5.4 Other Roles

In some very limited circumstances it is reasonable to condition on an intermediate variable as if
it were explanatory, namely ifI �� C � B; see Figure 3c. That is,I is independent of the potential
cause given the background information. For example,I might represent some important aspect of
environment knowna priori to be independent ofC . Thus in an industrial experiment in which each
day corresponded to a different experimental unit, the temperature and relative humidity occurring
on a particular day might very well be treated as independent ofC (Cox, 1958, p. 49).

In a linear representation

�RC�B � �RC�B I � �RI�CB�IC�B

and the second term vanishes if� IC�B � �.
More generally, the possibility of additional intervention or deviation from the protocol of the

investigation bears, in particular, on the issue of non-compliance, sometimes called non-adherence,
in clinical and other trials, i.e. of failure of patients to follow the treatment regime to which they have
been assigned. In this caseI serves a warning that the individual in question may not be informative
about the effect ofC in the way that was originally envisaged. Thus Cox & Wermuth (1996, p. 224)
describe an only partly apocryphal agricultural trial in which the intermediate variableI was the
severity of attack by birds. This acted selectively by treatment allocation and to ignore this would
lead to quite misleading conclusions, judged either scientifically or technologically.

In general, however, the variables intermediate betweenC and R should not be included as
explanatory variables in the primary analysis of the potential causal effect ofC on R.

Example. Violanti (1998) has used police records of traffic accidents in Oklahoma to study the
possible impact of mobile phones in vehicles on accidents. In one of the studies the occurrence or
non-occurrence of a fatality was taken as the outcome variable. That is, in effect the paper studied the
possible impact of a mobile phone on the seriousness of an accident, given that an accident occurred.
It used logistic regression of the outcome on a considerable number of explanatory variables of which
presence of a mobile phone was one. Another was a record that a vehicle ended on the wrong side of
the road. It can, however, plausibly be argued that this is an intermediate response between possible
mobile phone use and a fatality and as such should not be included in the regression equation for
assessing the potential causal impact of a mobile phone on the occurrence of a fatality.
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6 Unobserved Background Variables

6.1 Confounders in the Presence of Independencies

The main limitation to the interpretation of observational studies is often the possible presence
of unobserved confounders, i.e. variables,U , whose omission seriously distorts the dependence
of interest, but which were not observed, perhaps because their existence and nature were not
appreciated.

That is, we would like to have studiedf R�CBU but in fact can only estimatef R�CB . In this discussion
we again ignore possible intermediate variablesI ; see Figure 4a.

To study the relation between these distributions we return first to the linear case, writing now

�RC�B � �RC�BU � �RU�CB�UC�B � (9)

R RRC CC
B BB

U UU(a) (c)(b)

Figure 4. (a) Relations between R, C and B in presence of unobserved confounder U; (b) Missing edge between U and R,
i.e. R �� U � C B; (c) Missing edge between U and C, i.e. U �� C � B.

The two terms on the right-hand side of (9) correspond to the two paths betweenC and R not
passing throughB in Figure 4a. It follows that inclusion ofU has no effect on the regression
coefficient if and only if the second term on the right-hand side vanishes, i.e. either� RU�CB � �

or �CU�B � � � �UC�B . The first condition is shown in Figure 4b; there is no direct edge fromU
to R. The second condition is shown in Figure 4c; there is no edge betweenU andC given B. If
C is a randomized treatment the second condition is satisfied in virtue of the design even were the
randomization probabilities to depend onB; see Figure 4c. In observational studies, the assumption,
if made, amounts to supposing that the value ofC is determined in a way that is essentially equivalent
to such randomization, an assumption not directly checkable in the absence of observation ofU . It
may sometimes be rather less problematic if the variableU is a feature expected to be important but
which is not observed in the study under analysis, although it has been observed in other studies.

It is immaterial whetherU is a response to or explanatory toB and in general both variables may
be multidimensional and the ordering relation between them a partial ordering, in that some pairs of
variables may be on an equal footing in a sense to be explained in Section 7.1. Therefore no direction
need be attached to the edge betweenU andB.

The above discussion is for linear systems. For general distributions, the condition thatR �� U � C B
implies directly thatf R�CBU � fR�BC , corresponding to�RU�CB � �. That is, inclusion ofU in a
study of the dependence ofR on explanatory variables would, in large samples, induce no change.

First if R �� C � BU andC �� U � B, then	R�U
�� C � B, so that in the null case of no effect ofC
on R given BU no spurious effect is induced by omittingU .

Secondly when there is dependence ofR onC givenBU , butC �� U � B, as in Figure 4c, the form
of the relation is changed by marginalizing overU , but it can be shown (Cox & Wermuth, 2003) that
there is qualitative invariance in the following sense. IfR is stochastically increasing withC in the
conditional distribution givenB�U then it remains stochastically increasing after marginalization
overU . Thus, so long asU �� C � B, marginalizing overU cannot induce an effect reversal, showing
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the strong consequences of randomization in inducing qualitatively similar dependencies ofR onC
given B and ofR onC givenB andU .

However, even ifC �� BU , as in the case of randomization, there may be an unobserved interactive
effect ofU andC on the responseR. This is, for instance, the case in the example of stroke patients
mentioned in Section 3. ThereC is a blood-thinning treatment andU , the unobserved status of the
patient, could have two levels, corresponding to a burst vessel or a thrombosis. The omission of this
distinction had led to inconclusive and contradictory results in early controlled clinical trials with
thrombolytic agents (Zivin & Choi, 1991).

One important and traditional approach to the possible effect of unobserved confounders is by
sensitivity analysis. That is, one considers how strong an effect an unobserved confounder would
have to exert to explain an apparent dependence and then, if that effect is strong, one examines
what possible unobserved features might exert such an effect. Detailed discussion of this is given by
Rosenbaum (2002).

6.2 Confounders and Instrumental Variables

We have seen in the previous subsection some very special circumstances in which no confounding
is induced by unobserved background variables. There is another possibility of correcting for bias
induced by an unobserved confounder. We develop this in outline for the simple system of four
variablesR�C� Z �U , that is omittingB purely to simplify the notation. HereU is again unobserved.
In the system shown in Figure 5a, the variableZ is called an instrumental variable. It is marginally
independent ofU and it exerts an influence onR via C .

RR
CC

ZZ R
C

Z

U(a) (b) (c)

Figure 5. (a) Graphical representation of dependence of R on C and unobserved U, involving instrumental variable Z. (b)
Equivalent structural equation model with dashed edge denoting correlated errors. (c) Equivalent saturated system.

In the linear case this gives for variables measured from their mean

R � �RC�U C� � �RU�CU� �R�

C � �CU U� �CZ Z� �C �

Z � �Z �

U � �U �

(10)

where the�’s are error terms uncorrelated with the explanatory variables on the right-hand side of
the relevant equation. The variables are measured from their means. The special assumptions about
Z have been used to simplify the notation. Elimination ofU from the above equations shows that
the systemR�C� Z is saturated, i.e. has an arbitrary covariance matrix. This implies that the special
independence assumptions made in formulating these equations cannot be empirically tested from
R�C� Z alone; they can be justified only on subject-matter grounds. It follows that on investigating
the system in whichU is unobserved

���	R� Z
 � �RC�U�CZ ���	Z
� ���	C� Z
 � �CZ���	Z
�
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from which it follows that the coefficient of interest, namely� RC�U , can be estimated via���	R� Z
�
���	C� Z
 � �RZ��CZ .

This argumenthas a long history in more general form in econometrics (Goldberger,1991) but until
recently appears to have been little used in other fields and possibly is less frequently employed also
in its original context. This is partly because the assumptions are strong and not directly checkable
and partly because the resulting estimate has low precision unless the denominator� CZ is well
determined, i.e. the relation betweenC andZ is quite strong.

The instrumental variable formulation in (10) withU unobserved is equivalent to the structural
equation model

R � �C � �R� C � �Z � �C �

summarized in Figure 5b. In thisZ is uncorrelated with�C but C is correlated with�R , so that
the first equation is not a least squares regression equation. There are six parameters in this system
equivalent to the saturated system forR�C� Z shown in Figure 5c.

7 Joint Responses and Joint Causes

7.1 General Formulation

The discussion in Sections 3–6 has hinged on the assumption that all variables may be ordered
so that for any pair of variables one is explanatory to the other considered as a response. While
wheneverB andI are sets of variables with several components ordering of the variables within the
sets may be largely irrelevant, the set-up is too restrictive for many purposes and we therefore sketch
a more general formulation, thereby returning to Figure 1.

For each individual we suppose that a number of features or variables are recorded. These can
be classified in various ways that are context-specific. Typically one group will be one or more
response variables, representing in some sense outcomes. Another group will be explanatory to those
response variables and also can be regarded as candidate causal variables, in particular as conceivably
taking values for that individual different from those actually obtaining. A further set of variables is
regarded as intrinsic in that their values are essential to the definition of the individual in question.
Intrinsic variables are not regarded as potentially causal. Finally there may be intermediate responses,
sometimes used as surrogate markers, between the explanatory variables and the responses of main
interest.

In our graphical representation we place the intrinsic variables and other background variables in
a box to the right enclosed with double lines to indicate that they are not represented probabilistically
and are not potential causal variables in the context considered. Indeed the only reason to represent
them probabilistically would be to see whether their distribution matches that in some target popu-
lation, an issue we do not address here.

For all other variables we assume the following. For any pair of variables, sayX i � X j either

� Xi is explanatory toX j or vice versa
� Xi andX j are to be considered on an equal footing.

More detailed distinctions can be drawn. The explanatory-response relation may be based on tem-
poral ordering, a strong sense, or on a subject-matter working hypothesis, the latter being the only
possibility in those cross-sectional studies in which the variables measured all refer to the same time
point. Two or more variables which are somewhat arbitrary coordinates specifying a single multivari-
ate feature are naturally regarded on an equal footing. In other cases it may just be a noncommittal
view of the direction of dependency.
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It then follows under mild additional assumptions that the variables can be grouped in blocks in
such a way that

� all variables in the same block are on an equal footing
� the blocks are ordered with all variables in one block representing potential responses to

variables in subsequent blocks.

In the graphical representation of dependencies, directed edges are used between nodes in different
blocks and undirected edges between nodes in the same block, missing edges denoting conditional
independencies. To cover the possibilities encountered in applications it is necessary to distinguish
two types of conditioning (Cox & Wermuth, 1993, 1996) but here we consider only the possibility
that in considering the relation between two nodes in the same blockg we always condition on nodes
in subsequent blocks and marginalize over any additional nodes in blockg.

Example. Cox & Wermuth (1996, Chapter 6) discussed a cross-sectional study of the factors
influencing diabetic patients in controlling their disease. Because of the cross-sectional nature of the
study the progression of variables from explanatory to response, shown in graphical form in Figure
6, is based to some extent on working hypothesis; for example, it is possible that success at control
is explanatory to knowledge of the disease rather than vice versa. This raises the interesting issue of
the implications of the independencies implied by one ordering of the variables were the blocking
of the variables to be rearranged (Wermuth & Cox, 2004).

Figure 6. Schematic representation of dependencies in study of diabetes.

Details of the analysis are given in the reference cited. The essence is that the primary outcome
variable is regressed on all other variables by linear regression with some checks for interactions
and nonlinearities. Then the next variable is regressed on all other variables, excluding the primary
response and so on. In this instance no special complications arose from variables on an equal
footing. An outline summary of the resulting analysis is given in Figure 7a with Figure 7b showing
the structure after conditioning onA, duration of schooling, used as a binary variable. An important
conclusion of the analysis was that there was an interaction betweenA and duration of illness,W ,
studied by examining the dependencies ofY , X and Z separately at the two levels ofA. Such an
interaction is not easily shown in the graphical representations used here. In fact, while the same type
of generating process is suggested at the two levels ofA the direction and strengths of the effects
differ.
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A

Y

X

Z

W Y

X Z

given A

W

(a) (b)

Figure 7. (a) Detailed representation of dependencies between variables listed and grouped in Figure 6. (b) Representation
conditionally on A, i.e. for two given levels of formal schooling.

7.2 Causal Variables on an Equal Footing

This more general formulation allows us to address further issues. Very particularly, suppose that
there are two potential causal variablesC� andC� on an equal footing. When we notionally intervene
onC� what happens toC�? There are several possibilities

� C� may be unaffected, i.e. for this particular purpose be treated as a background variable.
� C� may change as specified by the generating distribution, i.e. for this particular purpose be

treated as an intermediate response.
� C� may change in a way that is governed by a different process from that involved in the

original generating process, possibly but not necessarily a situation intermediate between the
first two.

� It may ultimately be more informative to regardC ��C� as two factors defining a factorial
“treatment” structure to be assessed simultaneously rather than separately.

Example. Suppose thatC� andC� are respectively sodium and potassium levels in the blood andR
is some response, perhaps blood pressure or perhaps occurrence of a cardiac event. In the following
discussion it is important to distinguish the blood level of, say, sodium from the intake of sodium.
The latter is in principle controllable whereas the former is the outcome of a complex process.

If for a particular individual we consider imposing a change in sodium level to a new value, or
perhaps consider imposing a change of a certain magnitude, it is unclear what will happen to the level
of potassium. It would be conceptually possible to manipulate potassium intake rather than blood
level directly so that potassium blood level remained constant and this would be the first possibility
listed above.

The second possibility would be that potassium changes, consequent on the change in sodium, in
the same way as in the data under analysis; of course the reasonableness of this depends strongly on
how the data are collected and if the analysis involves inter-personal comparisons the assumption is
unreasonable.

The third possibility would involve collecting special data to study the effect of imposed changes
of sodium level on potassium level. This might include the study of the dynamics of the processes
involved.

The fourth possibility of treating sodium and potassium levels as factors defining an explicit or
implicit factorial experiment would imply interventions in which both variables were manipulated to
preset levels and, while in principle more informative about the effect on ultimate response, would
be even more remote from direct observation.



Causality: a Statistical View 301

The third possibility listed above requires for its implementation a separate set of data or theo-
retical calculation estimating the effect onC� of changing the prescribed level ofC � and use of a
generalization of (7) in the form

��
RC� �B � �RC� �BC�

� �RC� �C� B�C�C� �B �

Here�C�C� �B is a regression coefficient for an investigation in whichC � is varied and the consequent
changes ofC� are measured.

8 Some More Detailed Issues

8.1 Choice of Candidate Causal Variables

We now deal more briefly with some specific issues. For a variableC to be a potential causal
variableC it needs to be reasonable to consider at least notionally the idea that an individual with
C � c might have had a different value ofc without changing the essential nature of that individual.
This consideration is context-specific. Thus in most situations gender would not be considered as a
candidate cause. For to do so would involve the notion of considering the value ofR resulting for, say,
a male if that individual were female, all other aspects remaining unchanged, and this usually makes
no sense. In contexts of possible discriminatory employment practices, however, the comparison of,
say, pay for a man with given work experience, skills, etc. as compared with a woman with the same
work experience, etc. is the central issue (Dempster, 1988).

Another example is that passage of time is not to be considered as causal in itself, only processes
that develop in time. This is because the notional intervention in which passage of time does not
occur, other things being equal, makes no sense. Processes that develop in time may be considered
as potentially causal.

In principle in the more general formulation of Section 7 any variable that is not considered as
intrinsic might be considered as potentially causal for the responseR. Which are actually viewed as
causal and which as background variables depends crucially on the objectives of the investigation,
the most ambitious objective being to analyse the whole set of pathways from initial explanatory
variables to response. Since implicitly causality is regarded, in the contexts of most statistical interest,
as a multiple process there is no conflict in regarding for particular purposes variables that could
be causal as part of the background variablesB in assessing the effect of a variableC of primary
concern.

In approaching a system from first principles it would be sensible to regard variables far back in
time, or in the representation in question, as in some sense initial causes and then to estimate the
additional information provided by each new stage as it arises. An instance is the so-called foetal
origins hypothesis, where foetal events are claimed to have a life-long health impact. Of course
causal variables well separated from the response will often show relatively weak dependency.

In such studies the role of interaction effects may be very important and this is especially important
in genetic epidemiology. For example, suppose that in studying a clinical outcome both clinical and
genetic variables are considered explanatory. It might well happen that genetics is explanatory for
disease occurrence and indeed for some current clinical aspects, even if its overall explanatory power
for outcome is relatively small compared with current clinical status. Another important possibility
is of interaction between genetic and clinical features, in extreme cases that genetics separates the
disease into distinct types for which the interpretation of given clinical features is different. The
study of Wilm’s tumour (Beckwithet al., 1990) is an important example of this.
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8.2 Basis of Generalization

Suppose next that a potentially causal difference is established between, say, two treatments on the
basis of a well-conducted randomized trial. Under what circumstances is it reasonable to conclude
that similar conclusions will apply in the future in inevitably somewhat different circumstances?
Also what basis is there for concluding that the conclusion will apply to a single individual?

Even if the conclusions are replicated in independent studies, any notion of generalization based
on regarding the studies as a random sample from a population of studies seems very artificial (Yates
& Cochran, 1938), even though any such replication is clearly reassuring at a qualitative level at least.
Basis for generalizing may better rest partly on second-level causality, i.e. on some understanding of
underlying process, and partly on absence of interaction with important intrinsic variables describing
the study individuals. Subject to essential stability of effect, the basis for generalization can be
achieved either by synthesis of conclusions from different studies, or by initial design to ensure a
broad range of validity; see, for example, Cox (1958, p. 17).

The same considerations apply also to specificity. A randomized experiment establishes an average
treatment effect over the study individuals. To conclude something for a new specific individual,
for example for a new patient, requires both generalization, often to a new environment, and the
assumption that there is relatively little treatment by individual interaction. Part of the advantage of
independent replication of studies with a broadly similar objective as contrasted with increasing the
size of single studies is that the range of explanatory features involved is likely to be increased.

The formulation (2) and (3), which is directly adapted from one used in the theory of experimental
design, is initially formulated deterministically at an individual level. The addition to the notional
responses of independent and identically distributed random variables representing measurement
error has no immediate impact on the resulting analysis and conclusions. A different interpretation
of such an extended model is to regard the potential causal effect as defined only at an aggregate
level over some population of individuals (Cox, 1958, sections 2.1–2.3). In the original formulation,
however, the conclusions refer to the individuals actually studied.

The population-based formulation appears to give a broader base to the conclusions but unless the
individuals studied are a random sample, or at least a representative sample, of a target population
of interest the extension has little direct force. If, indeed, the population is purely hypothetical then
it is unclear that any real basis for meaningful generalization has been achieved.

Example. In a clinical trial setting the conclusions might be regarded as applying fairly directly to
the population of individuals from the regions in question and giving informed consent to participa-
tion. This may well differ appreciably from the target population of, for example, all patients with a
particular condition. If there are special features in which these populations differ, it becomes espe-
cially important to check that any treatment effect does not depend, i.e. interact with, those features.
Thus in randomized clinical trials it is desirable to check not only that the features agree reasonably
well as between the treatment arms, i.e. check on the effectiveness of the randomization, but more
importantly that any major discrepancies with the presumed target population are uncovered.

For specificity the individual level formulation of Section 8.1 is more appropriate but as is clear
this can be checked only partially.

We do not, even in the discussion of Section 7, allow the possibility that two variablesC � andC�

on an equal footing are each a cause of the other and hence in effect responses. Such representations
are studied in linear form in the econometric literature as simultaneous equation models in which
cyclic dependencies are permitted such as thatR� depends onR� and R� depends onR�. Such
dependencies are best studied by the explicit introduction of time.



Causality: a Statistical View 303

8.3 Design Issues

We do not in this paper discuss details of study design and statistical analysis important though
these ideas are. Implicitly we have taken the form of most studies to be randomized experiments
or their approximate observational equivalent, a cohort study. If applied to cross-sectional data
particularly strong subject-matter knowledge is essential to give any plausibility to the ordering of
variables that is essential to the present analysis. In some fields, especially those studying relatively
rare outcomes, retrospective studies, broadly of the case-control form, are common. They are best
analysed and interpreted by considering the questions: what is the corresponding cohort study and
to what extent does the retrospective data allow conclusions about such a cohort study to be drawn?
As such, no special issues of principle concerning the nature of causality appear, although there are
more detailed and often major concerns about data quality, especially concerning the possibility of
recall bias, and about the appropriate choice of control group.

9 Discussion

The object of the present paper is to review the concepts and assumptions involved in attaching
a causal interpretation to statistical dependencies. Especially in the context of observational studies
the role of unobserved confounders is probably the most critical aspect. We have ignored the
more technical statistical issues. These include key concerns about data quality, the formulation
of representations that capture empirical dependencies in interpretable form, the assessment of
the magnitude of random errors of estimation and the dealing with biases and random errors of
measurement, missing values and any consequences of unusual design structures.

The main broad implications for statistical work are simple but important and are as follows:

� Studies of dependence with a causal objective are not to be confused with the construction of
empirical prediction systems.

� Only some variables may be treated as potentially causal and their choice is critical.
� Choice of explanatory variables for inclusion or exclusion in principle from regression-like

calculations is crucial.
� This choice may be clarified by a chain block representation of the variables involved corre-

sponding to a process in single or joint variables.
� Checks for possible interaction between the effect of a potential cause and intrinsic features

of the study individuals are essential, in particular in connection with generalizability and
specificity.

� Especially in observational studies, some description, even if only qualitative, of the possible
role of unobserved explanatory variables is desirable in general and essential if they represent
confounders.

Our attitude is that the search for causality is of key importance in many contexts but that the goal
is hard to achieve except when large effects are involved. Then sensitivity analysis may reasonably
establish that some of the complications discussed here are unlikely to affect the conclusions mate-
rially and that delicate statistical analysis is likely to be unnecessary. The approach sketched above
is designed to encourage the uncovering of causal structure while at the same time being realistic
about the assumptions involved. In more applied contexts, especially biomedical ones, there is some
empirical evidence that false claims of causality undermine the credibility of other careful studies
where causality is indeed reasonably firmly established. The case for reasoned and optimistic caution
is then particularly clear.
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Résumé

On fait une revue critique de la causalité statistique. On presente trois definitions de la causalité et on discute les
consequences pour l’analyse statistique et l’interpretation.
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